probe_rs/debug/debug_info.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
use super::{
exception_handling::ExceptionInterface,
function_die::{Die, FunctionDie},
get_object_reference,
unit_info::UnitInfo,
variable::*,
DebugError, DebugRegisters, StackFrame, VariableCache,
};
use crate::{
core::{RegisterRole, RegisterValue, UnwindRule},
debug::{
registers, stack_frame::StackFrameInfo, unit_info::RangeExt, SourceLocation,
VerifiedBreakpoint,
},
Error, MemoryInterface,
};
use gimli::{
BaseAddresses, DebugFrame, DebugInfoOffset, UnwindContext, UnwindSection, UnwindTableRow,
};
use object::read::{Object, ObjectSection};
use probe_rs_target::InstructionSet;
use std::{
borrow, cmp::Ordering, num::NonZeroU64, ops::ControlFlow, path::Path, rc::Rc, str::from_utf8,
};
use typed_path::{TypedPath, TypedPathBuf};
pub(crate) type GimliReader = gimli::EndianReader<gimli::LittleEndian, std::rc::Rc<[u8]>>;
pub(crate) type GimliReaderOffset =
<gimli::EndianReader<gimli::LittleEndian, Rc<[u8]>> as gimli::Reader>::Offset;
pub(crate) type GimliAttribute = gimli::Attribute<GimliReader>;
pub(crate) type DwarfReader = gimli::read::EndianRcSlice<gimli::LittleEndian>;
/// Debug information which is parsed from DWARF debugging information.
pub struct DebugInfo {
pub(crate) dwarf: gimli::Dwarf<DwarfReader>,
pub(crate) frame_section: gimli::DebugFrame<DwarfReader>,
pub(crate) locations_section: gimli::LocationLists<DwarfReader>,
pub(crate) address_section: gimli::DebugAddr<DwarfReader>,
pub(crate) debug_line_section: gimli::DebugLine<DwarfReader>,
pub(crate) unit_infos: Vec<UnitInfo>,
}
impl DebugInfo {
/// Read debug info directly from a ELF file.
pub fn from_file<P: AsRef<Path>>(path: P) -> Result<DebugInfo, DebugError> {
let data = std::fs::read(path)?;
DebugInfo::from_raw(&data)
}
/// Parse debug information directly from a buffer containing an ELF file.
pub fn from_raw(data: &[u8]) -> Result<Self, DebugError> {
let object = object::File::parse(data)?;
// Load a section and return as `Cow<[u8]>`.
let load_section = |id: gimli::SectionId| -> Result<DwarfReader, gimli::Error> {
let data = object
.section_by_name(id.name())
.and_then(|section| section.uncompressed_data().ok())
.unwrap_or_else(|| borrow::Cow::Borrowed(&[][..]));
Ok(gimli::read::EndianRcSlice::new(
Rc::from(&*data),
gimli::LittleEndian,
))
};
// Load all of the sections.
let dwarf_cow = gimli::Dwarf::load(&load_section)?;
use gimli::Section;
let mut frame_section = gimli::DebugFrame::load(load_section)?;
let address_section = gimli::DebugAddr::load(load_section)?;
let debug_loc = gimli::DebugLoc::load(load_section)?;
let debug_loc_lists = gimli::DebugLocLists::load(load_section)?;
let locations_section = gimli::LocationLists::new(debug_loc, debug_loc_lists);
let debug_line_section = gimli::DebugLine::load(load_section)?;
let mut unit_infos = Vec::new();
let mut iter = dwarf_cow.units();
while let Ok(Some(header)) = iter.next() {
if let Ok(unit) = dwarf_cow.unit(header) {
// The DWARF V5 standard, section 2.4 specifies that the address size
// for the object file (or the target architecture default) will be used for
// DWARF debugging information.
// The following line is a workaround for instances where the address size of the
// CIE (Common Information Entry) is not correctly set.
// The frame section address size is only used for CIE versions before 4.
frame_section.set_address_size(unit.encoding().address_size);
unit_infos.push(UnitInfo::new(unit));
};
}
Ok(DebugInfo {
dwarf: dwarf_cow,
frame_section,
locations_section,
address_section,
debug_line_section,
unit_infos,
})
}
/// Try get the [`SourceLocation`] for a given address.
pub fn get_source_location(&self, address: u64) -> Option<SourceLocation> {
for unit_info in &self.unit_infos {
let unit = &unit_info.unit;
let mut ranges = match self.dwarf.unit_ranges(unit) {
Ok(ranges) => ranges,
Err(error) => {
tracing::warn!(
"No valid source code ranges found for unit {:?}: {:?}",
unit.dwo_name(),
error
);
continue;
}
};
while let Ok(Some(range)) = ranges.next() {
if !(range.begin <= address && address < range.end) {
continue;
}
// Get the DWARF LineProgram.
let ilnp = unit.line_program.as_ref()?.clone();
let (program, sequences) = match ilnp.sequences() {
Ok(value) => value,
Err(error) => {
tracing::warn!(
"No valid source code ranges found for address {}: {:?}",
address,
error
);
continue;
}
};
// Normalize the address.
let mut target_seq = None;
for seq in sequences {
if seq.start <= address && address < seq.end {
target_seq = Some(seq);
break;
}
}
let Some(target_seq) = target_seq.as_ref() else {
continue;
};
let mut previous_row: Option<gimli::LineRow> = None;
let mut rows = program.resume_from(target_seq);
while let Ok(Some((_, row))) = rows.next_row() {
match row.address().cmp(&address) {
Ordering::Greater => {
// The address is after the current row, so we use the previous row data.
//
// (If we don't do this, you get the artificial effect where the debugger
// steps to the top of the file when it is steppping out of a function.)
if let Some(previous_row) = previous_row {
if let Some(path) =
self.find_file_and_directory(unit, previous_row.file_index())
{
tracing::debug!("{:#010x} - {:?}", address, previous_row.isa());
return Some(SourceLocation {
line: previous_row.line().map(NonZeroU64::get),
column: Some(previous_row.column().into()),
path,
});
}
}
}
Ordering::Less => {}
Ordering::Equal => {
if let Some(path) = self.find_file_and_directory(unit, row.file_index())
{
tracing::debug!("{:#010x} - {:?}", address, row.isa());
return Some(SourceLocation {
line: row.line().map(NonZeroU64::get),
column: Some(row.column().into()),
path,
});
}
}
}
previous_row = Some(*row);
}
}
}
None
}
/// We do not actually resolve the children of `[VariableName::StaticScope]` automatically,
/// and only create the necessary header in the `VariableCache`.
/// This allows us to resolve the `[VariableName::StaticScope]` on demand/lazily, when a user requests it from the debug client.
/// This saves a lot of overhead when a user only wants to see the `[VariableName::LocalScope]` or `
/// [VariableName::Registers]` while stepping through code (the most common use cases)
pub fn create_static_scope_cache(&self) -> VariableCache {
VariableCache::new_static_cache()
}
/// Creates the unpopulated cache for `function` variables
pub(crate) fn create_function_scope_cache(
&self,
die_cursor_state: &FunctionDie,
unit_info: &UnitInfo,
) -> Result<VariableCache, DebugError> {
let function_variable_cache = VariableCache::new_dwarf_cache(
die_cursor_state.function_die.offset(),
VariableName::LocalScopeRoot,
unit_info,
)?;
Ok(function_variable_cache)
}
/// This effects the on-demand expansion of lazy/deferred load of all the 'child' `Variable`s for a given 'parent'.
#[tracing::instrument(level = "trace", skip_all, fields(parent_variable = ?parent_variable.variable_key()))]
pub fn cache_deferred_variables(
&self,
cache: &mut VariableCache,
memory: &mut dyn MemoryInterface,
parent_variable: &mut Variable,
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
if !parent_variable.is_valid() {
// Do nothing. The parent_variable.get_value() will already report back the debug_error value.
return Ok(());
}
// Only attempt this part if we have not yet resolved the referenced children.
if cache.has_children(parent_variable) {
return Ok(());
}
match parent_variable.variable_node_type {
VariableNodeType::TypeOffset(header_offset, type_offset) => {
let unit_header = self.dwarf.debug_info.header_from_offset(header_offset)?;
let unit_info = UnitInfo::new(gimli::Unit::new(&self.dwarf, unit_header)?);
// Find the parent node
let mut type_tree = unit_info.unit.entries_tree(Some(type_offset))?;
let parent_node = type_tree.root()?;
unit_info.process_tree(
self,
parent_node,
parent_variable,
memory,
cache,
frame_info,
)?;
}
VariableNodeType::DirectLookup(header_offset, unit_offset) => {
let unit_header = self.dwarf.debug_info.header_from_offset(header_offset)?;
let unit_info = UnitInfo::new(gimli::Unit::new(&self.dwarf, unit_header)?);
// Find the parent node
let mut type_tree = unit_info.unit.entries_tree(Some(unit_offset))?;
let parent_node = type_tree.root()?;
unit_info.process_tree(
self,
parent_node,
parent_variable,
memory,
cache,
frame_info,
)?;
}
VariableNodeType::UnitsLookup => {
// Look up static variables from all units
let mut unit_infos = self.unit_infos.iter();
let Some(unit_info) = unit_infos.next() else {
// No unit infos
return Err(DebugError::Other("Missing unit infos".to_string()));
};
let mut entries = unit_info.unit.entries();
// Only process statics for this unit header.
// Navigate the current unit from the header down.
let (_, unit_node) = entries.next_dfs()?.unwrap();
let mut tree = unit_info.unit.entries_tree(Some(unit_node.offset()))?;
unit_info.process_tree(
self,
tree.root()?,
parent_variable,
memory,
cache,
frame_info,
)?;
for unit in unit_infos {
let mut entries = unit.unit.entries();
// Only process statics for this unit header.
// Navigate the current unit from the header down.
let (_, unit_node) = entries.next_dfs()?.unwrap();
let mut tree = unit.unit.entries_tree(Some(unit_node.offset()))?;
unit.process_tree(
self,
tree.root()?,
parent_variable,
memory,
cache,
frame_info,
)?;
}
}
_ => {
// Do nothing. These have already been recursed to their maximum.
}
}
Ok(())
}
/// Returns a populated (resolved) [`StackFrame`] struct.
/// This function will also populate the `DebugInfo::VariableCache` with in scope `Variable`s for each `StackFrame`, while taking into account the appropriate strategy for lazy-loading of variables.
pub(crate) fn get_stackframe_info(
&self,
memory: &mut impl MemoryInterface,
address: u64,
unwind_context: &mut UnwindContext<GimliReaderOffset>,
unwind_registers: ®isters::DebugRegisters,
) -> Result<Vec<StackFrame>, DebugError> {
// When reporting the address, we format it as a hex string, with the width matching
// the configured size of the datatype used in the `RegisterValue` address.
let unknown_function = || {
format!(
"<unknown function @ {:#0width$x}>",
address,
width = (unwind_registers.get_address_size_bytes() * 2 + 2)
)
};
let mut frames = Vec::new();
let Ok((unit_info, functions)) = self.get_function_dies(address) else {
// No function found at the given address.
return Ok(frames);
};
if functions.is_empty() {
// No function found at the given address.
return Ok(frames);
}
// Determining the frame base may need the CFA (Canonical Frame Address) to be calculated first.
let cfa = get_unwind_info(unwind_context, &self.frame_section, address)
.ok()
.and_then(|unwind_info| determine_cfa(unwind_registers, unwind_info).ok())
.flatten();
// The first function is the non-inlined function, and the rest are inlined functions.
// The frame base only exists for the non-inlined function, so we can reuse it for all the inlined functions.
let frame_base = functions[0].frame_base(
self,
memory,
StackFrameInfo {
registers: unwind_registers,
frame_base: None,
canonical_frame_address: cfa,
},
)?;
// Handle all functions which contain further inlined functions. For
// these functions, the location is the call site of the inlined function.
for (index, function_die) in functions[0..functions.len() - 1].iter().enumerate() {
let function_name = function_die
.function_name(self)
.unwrap_or_else(unknown_function);
tracing::debug!("UNWIND: Function name: {}", function_name);
let next_function = &functions[index + 1];
assert!(next_function.is_inline());
// Calculate the call site for this function, so that we can use it later to create an additional 'callee' `StackFrame` from that PC.
let address_size = unit_info.unit.header.address_size() as u64;
let Some(next_function_low_pc) = next_function.low_pc() else {
tracing::warn!(
"UNWIND: Unknown starting address for inlined function {}.",
function_name
);
continue;
};
if next_function_low_pc > address_size && next_function_low_pc < u32::MAX as u64 {
// The first instruction of the inlined function is used as the call site
let inlined_call_site = RegisterValue::from(next_function_low_pc);
tracing::debug!(
"UNWIND: Callsite for inlined function {:?}",
next_function.function_name(self)
);
let inlined_caller_source_location = next_function.inline_call_location(self);
tracing::debug!("UNWIND: Call site: {inlined_caller_source_location:?}");
// Now that we have the function_name and function_source_location, we can create the appropriate variable caches for this stack frame.
// Resolve the statics that belong to the compilation unit that this function is in.
// Next, resolve and cache the function variables.
let local_variables = self
.create_function_scope_cache(function_die, unit_info)
.map_or_else(
|error| {
tracing::error!(
"Could not resolve function variables. {error}. Continuing..."
);
None
},
Some,
);
frames.push(StackFrame {
id: get_object_reference(),
function_name,
source_location: inlined_caller_source_location,
registers: unwind_registers.clone(),
pc: inlined_call_site,
frame_base,
is_inlined: function_die.is_inline(),
local_variables,
canonical_frame_address: cfa,
});
} else {
tracing::warn!("UNWIND: Unknown call site for inlined function {function_name}.",);
}
}
// Handle last function, which contains no further inlined functions
// `unwrap`: Checked at beginning of loop, functions must contain at least one value
#[allow(clippy::unwrap_used)]
let last_function = functions.last().unwrap();
let function_name = last_function
.function_name(self)
.unwrap_or_else(unknown_function);
let function_location = self.get_source_location(address);
// Now that we have the function_name and function_source_location, we can create the appropriate variable caches for this stack frame.
// Resolve and cache the function variables.
let local_variables =
self.create_function_scope_cache(last_function, unit_info)
.map_or_else(
|error| {
tracing::error!(
"Could not resolve function variables. {error}. Continuing...",
);
None
},
Some,
);
frames.push(StackFrame {
id: get_object_reference(),
function_name,
source_location: function_location,
registers: unwind_registers.clone(),
pc: match unwind_registers.get_address_size_bytes() {
4 => RegisterValue::U32(address as u32),
8 => RegisterValue::U64(address),
_ => RegisterValue::from(address),
},
frame_base,
is_inlined: last_function.is_inline(),
local_variables,
canonical_frame_address: cfa,
});
Ok(frames)
}
/// Performs the logical unwind of the stack and returns a `Vec<StackFrame>`
/// - The first 'StackFrame' represents the frame at the current PC (program counter), and ...
/// - Each subsequent `StackFrame` represents the **previous or calling** `StackFrame` in the call stack.
/// - The majority of the work happens in the `'unwind: while` loop, where each iteration
/// will create a `StackFrame` where possible, and update the `unwind_registers` to prepare for
/// the next iteration.
///
/// The unwind loop will continue until we meet one of the following conditions:
/// - We can no longer unwind a valid PC value to be used for the next frame.
/// - We encounter a LR register value of 0x0 or 0xFFFFFFFF (Arm 'Reset' value for that register).
/// - We can not intelligently calculate a valid LR register value from the other registers,
/// or the `gimli::RegisterRule` result is a value of 0x0.
/// Note: [DWARF](https://dwarfstd.org) 6.4.4 - CIE defines the return register address
/// used in the `gimli::RegisterRule` tables for unwind operations.
/// Theoretically, if we encounter a function that has `Undefined` `gimli::RegisterRule` for
/// the return register address, it means we have reached the bottom of the stack
/// OR the function is a 'no return' type of function.
/// I have found actual examples (e.g. local functions) where we get `Undefined` for register
/// rule when we cannot apply this logic.
/// Example 1: local functions in main.rs will have LR rule as `Undefined`.
/// Example 2: main()-> ! that is called from a trampoline will have a valid LR rule.
/// - Similarly, certain error conditions encountered in `StackFrameIterator` will also break out of the unwind loop.
///
/// Note: In addition to populating the `StackFrame`s, this function will also
/// populate the `DebugInfo::VariableCache` with `Variable`s for available Registers
/// as well as static and function variables.
/// TODO: Separate logic for stackframe creation and cache population
pub fn unwind(
&self,
core: &mut impl MemoryInterface,
initial_registers: DebugRegisters,
exception_handler: &dyn ExceptionInterface,
instruction_set: Option<InstructionSet>,
) -> Result<Vec<StackFrame>, crate::Error> {
self.unwind_impl(initial_registers, core, exception_handler, instruction_set)
}
pub(crate) fn unwind_impl(
&self,
initial_registers: registers::DebugRegisters,
memory: &mut impl MemoryInterface,
exception_handler: &dyn ExceptionInterface,
instruction_set: Option<InstructionSet>,
) -> Result<Vec<StackFrame>, crate::Error> {
let mut stack_frames = Vec::<StackFrame>::new();
let mut unwind_context = Box::new(gimli::UnwindContext::new());
let mut unwind_registers = initial_registers;
// Unwind [StackFrame]'s for as long as we can unwind a valid PC value.
'unwind: while let Some(frame_pc_register_value) =
unwind_registers.get_program_counter().and_then(|pc| {
if pc.is_zero() | pc.is_max_value() {
None
} else {
pc.value
}
})
{
// PART 0: The first step is to determine the exception context for the current PC.
// - If we are at an exception hanlder frame:
// - Create a "handler" stackframe that can be inserted into the stack_frames list,
// instead of "unknown function @ address";
// - Overwrite the unwind registers with the exception context.
// - If for some reason we cannot determine the exception context, we silently continue with the rest of the unwind.
// At worst, the unwind will be able to unwind the stack to the frame of the most recent exception handler.
let frame_pc = frame_pc_register_value.try_into().map_err(|error| {
let message = format!("Cannot convert register value for program counter to a 64-bit integer value: {error:?}");
crate::Error::Register(message)
})?;
let exception_frame = match exception_handler.exception_details(
memory,
&unwind_registers,
self,
) {
Ok(Some(exception_info)) => {
tracing::trace!(
"UNWIND: Stack unwind reached an exception handler {}",
exception_info.description
);
Some(exception_info.handler_frame)
}
Ok(None) => {
tracing::trace!(
"UNWIND: No exception context found. Stack unwind will continue."
);
None
}
Err(e) => {
let message = format!("UNWIND: Error while checking for exception context. The stack trace will not include the calling frames. : {e}");
tracing::warn!("{message}");
stack_frames.push(StackFrame {
id: get_object_reference(),
function_name: message,
source_location: None,
registers: unwind_registers.clone(),
pc: frame_pc_register_value,
frame_base: None,
is_inlined: false,
local_variables: None,
canonical_frame_address: None,
});
break 'unwind;
}
};
// PART 1: Construct the `StackFrame` for the current pc.
tracing::trace!("UNWIND: Will generate `StackFrame` for function at address (PC) {frame_pc_register_value:#}");
// PART 1-a: Prepare the `StackFrame`'s that holds the current frame information.
let mut cached_stack_frames = match self.get_stackframe_info(
memory,
frame_pc,
&mut unwind_context,
&unwind_registers,
) {
Ok(cached_stack_frames) => cached_stack_frames,
Err(e) => {
tracing::error!("UNWIND: Unable to complete `StackFrame` information: {}", e);
// There is no point in continuing with the unwind, so let's get out of here.
break;
}
};
// Part 1-b: If there were inlined functions, we push them to the stack first.
while cached_stack_frames.len() > 1 {
// If we encountered INLINED functions (all `StackFrames`s in this Vec, except for the last one, which is the containing NON-INLINED function), these are simply added to the list of stack_frames we return.
#[allow(clippy::unwrap_used)]
let inlined_frame = cached_stack_frames.pop().unwrap(); // unwrap is safe while .len() > 1
tracing::trace!(
"UNWIND: Found inlined function - name={}, pc={}",
inlined_frame.function_name,
inlined_frame.pc
);
stack_frames.push(inlined_frame);
}
// PART 1-c: Process the remaining frame, if any, in the list of cached_stack_frames.
let unwind_canonical_frame_address = match cached_stack_frames.pop() {
Some(frame) => {
// We have valid code for the current frame.
let unwind_canonical_frame_address = frame.canonical_frame_address;
stack_frames.push(frame);
unwind_canonical_frame_address
}
None if exception_frame.is_some() => {
// Nothing to do, we will add the exception frame to the stack_frames list,
// and use it's unwind registers to we prepare for unwinding the preceding frame.
None
}
None => {
// We have no valid code for the current frame, so we
// construct a frame, using what information we have.
stack_frames.push(StackFrame {
id: get_object_reference(),
function_name: format!(
"<unknown function @ {:#0width$x}>",
frame_pc,
width = (unwind_registers.get_address_size_bytes() * 2 + 2)
),
source_location: self.get_source_location(frame_pc),
registers: unwind_registers.clone(),
pc: frame_pc_register_value,
frame_base: None,
is_inlined: false,
local_variables: None,
canonical_frame_address: None,
});
None
}
};
// Part 1-d: If we have an exception frame, we will insert it, before we continue unwinding.
if let Some(exception_frame) = exception_frame {
unwind_registers = exception_frame.registers.clone();
stack_frames.push(exception_frame);
// We have everything we need to unwind the next frame in the stack.
continue 'unwind;
};
// PART 2: Setup the registers for the next iteration (a.k.a. unwind previous frame, a.k.a. "callee", in the call stack).
tracing::trace!("UNWIND - Preparing to unwind the registers for the previous frame.");
// PART 2-a: get the `gimli::FrameDescriptorEntry` for the program counter
// and then the unwind info associated with this row.
let unwind_info =
match get_unwind_info(&mut unwind_context, &self.frame_section, frame_pc) {
Ok(unwind_info) => {
tracing::trace!("UNWIND: Found unwind info for address {frame_pc:#010x}");
unwind_info
}
Err(err) => {
tracing::trace!(
"UNWIND: Unable to find unwind info for address {frame_pc:#010x}: {err}"
);
if let ControlFlow::Break(error) = exception_handler
.unwind_without_debuginfo(
&mut unwind_registers,
frame_pc,
&stack_frames,
instruction_set,
memory,
)
{
if let Some(error) = error {
// This is not fatal, but we cannot continue unwinding beyond the current frame.
tracing::error!("{:?}", &error);
if let Some(first_frame) = stack_frames.first_mut() {
first_frame.function_name =
format!("{} : ERROR : {error}", first_frame.function_name);
};
}
break 'unwind;
}
continue 'unwind;
}
};
// Because we will be updating the `unwind_registers` with previous frame unwind info, we need to keep a copy of the current frame's registers that can be used to resolve [DWARF](https://dwarfstd.org) expressions.
let callee_frame_registers = unwind_registers.clone();
// PART 2-b: Unwind registers for the "previous/calling" frame.
// We sometimes need to keep a copy of the LR value to calculate the PC. For both ARM, and RISC-V, The LR will be unwound before the PC, so we can reference it safely.
let mut unwound_return_address: Option<RegisterValue> = None;
// When we unwind the registers for the current frame, we should always do the FP and SP first,
// since many of the unwind rule calculations for the other registers depend on either one of these two.
let critical_unwind_registers =
&mut [RegisterRole::FramePointer, RegisterRole::StackPointer].to_vec();
for register_role in critical_unwind_registers.iter() {
if let ControlFlow::Break(error) = unwind_register(
unwind_registers.get_register_mut_by_role(register_role)?,
&callee_frame_registers,
Some(unwind_info),
unwind_canonical_frame_address,
&mut None,
memory,
instruction_set,
) {
tracing::error!("{:?}", &error);
if let Some(first_frame) = stack_frames.last_mut() {
first_frame.function_name =
format!("{} : ERROR: {error}", first_frame.function_name);
};
break 'unwind;
};
}
for debug_register in unwind_registers.0.iter_mut() {
if debug_register
.core_register
.register_has_role(RegisterRole::FramePointer)
|| debug_register
.core_register
.register_has_role(RegisterRole::StackPointer)
{
continue;
}
if let ControlFlow::Break(error) = unwind_register(
debug_register,
&callee_frame_registers,
Some(unwind_info),
unwind_canonical_frame_address,
&mut unwound_return_address,
memory,
instruction_set,
) {
tracing::error!("{:?}", &error);
if let Some(first_frame) = stack_frames.last_mut() {
first_frame.function_name =
format!("{} : ERROR: {error}", first_frame.function_name);
};
break 'unwind;
};
}
}
Ok(stack_frames)
}
/// Find the program counter where a breakpoint should be set,
/// given a source file, a line and optionally a column.
// TODO: Move (and fix) this to the [`InstructionSequence::for_source_location`] method.
#[tracing::instrument(skip_all)]
pub fn get_breakpoint_location(
&self,
path: TypedPath,
line: u64,
column: Option<u64>,
) -> Result<VerifiedBreakpoint, DebugError> {
tracing::debug!(
"Looking for breakpoint location for {}:{}:{}",
path.display(),
line,
column
.map(|c| c.to_string())
.unwrap_or_else(|| "-".to_owned())
);
VerifiedBreakpoint::for_source_location(self, path, line, column)
}
/// Get the path for an entry in a line program header, using the compilation unit's directory and file entries.
// TODO: Determine if it is necessary to navigate the include directories to find the file absolute path for C files.
pub(crate) fn get_path(
&self,
unit: &gimli::read::Unit<DwarfReader>,
file_index: u64,
) -> Option<TypedPathBuf> {
let line_program = unit.line_program.as_ref()?;
let header = line_program.header();
let Some(file_entry) = header.file(file_index) else {
tracing::warn!(
"Unable to extract file entry for file_index {:?}.",
file_index
);
return None;
};
let file_name_attr_string = self.dwarf.attr_string(unit, file_entry.path_name()).ok()?;
let name_path = from_utf8(&file_name_attr_string).ok()?;
let dir_name_attr_string = file_entry
.directory(header)
.and_then(|dir| self.dwarf.attr_string(unit, dir).ok());
let dir_path = dir_name_attr_string.and_then(|dir_name| {
from_utf8(&dir_name)
.ok()
.map(|p| TypedPath::derive(p).to_path_buf())
});
let mut combined_path = match dir_path {
Some(dir_path) => dir_path.join(name_path),
None => TypedPath::derive(name_path).to_path_buf(),
};
if combined_path.is_relative() {
let comp_dir = unit
.comp_dir
.as_ref()
.map(|dir| from_utf8(dir))
.transpose()
.ok()?
.map(TypedPath::derive);
if let Some(comp_dir) = comp_dir {
combined_path = comp_dir.join(&combined_path);
}
}
Some(combined_path)
}
pub(crate) fn find_file_and_directory(
&self,
unit: &gimli::read::Unit<DwarfReader>,
file_index: u64,
) -> Option<TypedPathBuf> {
let combined_path = self.get_path(unit, file_index)?;
Some(combined_path)
}
// Return the compilation unit that contains the given address
pub(crate) fn compile_unit_info(
&self,
address: u64,
) -> Result<&super::unit_info::UnitInfo, DebugError> {
for header in &self.unit_infos {
match self.dwarf.unit_ranges(&header.unit) {
Ok(mut ranges) => {
while let Ok(Some(range)) = ranges.next() {
if range.contains(address) {
return Ok(header);
}
}
}
Err(_) => continue,
};
}
Err(DebugError::WarnAndContinue {
message: format!("No debug information available for the instruction at {address:#010x}. Please consider using instruction level stepping.")
})
}
/// Search accross all compilation untis, and retrive the DIEs for the function containing the given address.
/// This is distinct from [`UnitInfo::get_function_dies`] in that it will search all compilation units.
/// - The first entry in the vector will be the outermost function containing the address.
/// - If the address is inlined, the innermost function will be the last entry in the vector.
pub(crate) fn get_function_dies(
&self,
address: u64,
) -> Result<(&UnitInfo, Vec<FunctionDie>), DebugError> {
for unit_info in &self.unit_infos {
let function_dies = unit_info.get_function_dies(self, address)?;
if !function_dies.is_empty() {
return Ok((unit_info, function_dies));
}
}
Err(DebugError::Other(format!(
"No function DIE's at address {address:#x}."
)))
}
/// Get the DIE at the given offset into the debug info section.
pub(crate) fn get_die_at_offset(&self, offset: DebugInfoOffset) -> Result<Die, DebugError> {
for unit_info in &self.unit_infos {
if let Some(unit_offset) = offset.to_unit_offset(&unit_info.unit.header) {
return unit_info.unit.entry(unit_offset).map_err(|error| {
DebugError::Other(format!(
"Error reading DIE at debug info offset {:#x} : {}",
offset.0, error
))
});
}
}
Err(DebugError::Other(format!(
"DIE at debug info offset {:#010x} not found",
offset.0
)))
}
/// Look up the DIE reference for the given attribute, if it exists.
pub(crate) fn resolve_die_reference<'debug_info, 'unit_info>(
&'debug_info self,
attribute: gimli::DwAt,
die: &Die,
unit_info: &'unit_info UnitInfo,
) -> Option<Die<'debug_info, 'debug_info>>
where
'unit_info: 'debug_info,
{
let value = die.attr_value(attribute).ok().flatten()?;
match value {
gimli::AttributeValue::UnitRef(unit_ref) => unit_info.unit.entry(unit_ref).ok(),
gimli::AttributeValue::DebugInfoRef(debug_info_ref) => {
self.get_die_at_offset(debug_info_ref).ok()
}
other_value => {
tracing::warn!(
"Unsupported {:?} value: {other_value:?}",
attribute.static_string(),
);
None
}
}
}
}
/// Uses the [`TypedPathBuf::normalize`] function to normalize both paths before comparing them
pub(crate) fn canonical_path_eq(primary_path: TypedPath, secondary_path: TypedPath) -> bool {
primary_path.normalize() == secondary_path.normalize()
}
/// Get a handle to the [`gimli::UnwindTableRow`] for this call frame, so that we can reference it to unwind register values.
pub fn get_unwind_info<'a>(
unwind_context: &'a mut UnwindContext<GimliReaderOffset>,
frame_section: &DebugFrame<DwarfReader>,
frame_program_counter: u64,
) -> Result<&'a gimli::UnwindTableRow<GimliReaderOffset>, DebugError> {
let transform_error = |error| {
DebugError::Other(format!(
"UNWIND: Error reading FrameDescriptorEntry at PC={} : {}",
frame_program_counter, error
))
};
let unwind_bases = BaseAddresses::default();
let frame_descriptor_entry = frame_section
.fde_for_address(
&unwind_bases,
frame_program_counter,
DebugFrame::cie_from_offset,
)
.map_err(transform_error)?;
frame_descriptor_entry
.unwind_info_for_address(
frame_section,
&unwind_bases,
unwind_context,
frame_program_counter,
)
.map_err(transform_error)
}
/// Determines the CFA (canonical frame address) for the current [`gimli::UnwindTableRow`], using the current register values.
pub fn determine_cfa<R: gimli::ReaderOffset>(
unwind_registers: &DebugRegisters,
unwind_info: &UnwindTableRow<R>,
) -> Result<Option<u64>, crate::Error> {
let gimli::CfaRule::RegisterAndOffset { register, offset } = unwind_info.cfa() else {
unimplemented!()
};
let reg_val = unwind_registers
.get_register_by_dwarf_id(register.0)
.and_then(|register| register.value);
let cfa = match reg_val {
None => {
tracing::error!("UNWIND: `StackFrameIterator` unable to determine the unwind CFA: Missing value of register {}", register.0);
None
}
Some(reg_val) if reg_val.is_zero() => {
// If we encounter this rule for CFA, it implies the scenario depends on a FP/frame pointer to continue successfully.
// Therefore, if reg_val is zero (i.e. FP is zero), then we do not have enough information to determine the CFA by rule.
tracing::trace!(
"UNWIND: Stack unwind complete - The FP register value unwound to a value of zero."
);
None
}
Some(reg_val) => {
let unwind_cfa = add_to_address(
reg_val.try_into()?,
*offset,
unwind_registers.get_address_size_bytes(),
);
tracing::trace!(
"UNWIND - CFA : {:#010x}\tRule: {:?}",
unwind_cfa,
unwind_info.cfa()
);
Some(unwind_cfa)
}
};
Ok(cfa)
}
/// Unwind the program counter for the caller frame, using the LR value from the callee frame.
pub fn unwind_pc_without_debuginfo(
unwind_registers: &mut DebugRegisters,
frame_pc: u64,
stack_frames: &[StackFrame],
instruction_set: Option<crate::InstructionSet>,
memory: &mut dyn MemoryInterface,
) -> ControlFlow<Option<DebugError>> {
// For non exception frames, we cannot do stack unwinding if we do not have debug info.
// However, there is one case where we can continue. When the frame registers have a valid
// return address/LR value, we can use the LR value to calculate the PC for the calling frame.
// The current logic will then use that PC to get the next frame's unwind info, and if that exists,
// we will be able to continue unwinding.
// If the calling frame has no debug info, then the unwinding will end with that frame.
let callee_frame_registers = unwind_registers.clone();
let mut unwound_return_address: Option<RegisterValue> = unwind_registers
.get_return_address()
.and_then(|lr| lr.value);
// This will update the program counter in the `unwind_registers` with the PC value calculated from the LR value.
if let Some(calling_pc) = unwind_registers.get_program_counter_mut() {
if let ControlFlow::Break(error) = unwind_register(
calling_pc,
&callee_frame_registers,
None,
stack_frames
.last()
.and_then(|first_frame| first_frame.canonical_frame_address),
&mut unwound_return_address,
memory,
instruction_set,
) {
return ControlFlow::Break(Some(error.into()));
};
if calling_pc
.value
.map(|calling_pc_value| calling_pc_value == RegisterValue::from(frame_pc))
.unwrap_or(false)
{
// Typically if we have to infer the PC value, it might happen that we are in
// a function that has no debug info, and the code is in a tight loop (typical of exception handlers).
// In such cases, we will not be able to unwind the stack beyond this frame.
return ControlFlow::Break(None);
}
}
ControlFlow::Continue(())
}
/// A per_register unwind, applying register rules and updating the [`registers::DebugRegister`] value as appropriate, before returning control to the calling function.
pub fn unwind_register(
debug_register: &mut super::DebugRegister,
// The callee_frame_registers are used to lookup values and never updated.
callee_frame_registers: &DebugRegisters,
unwind_info: Option<&gimli::UnwindTableRow<GimliReaderOffset>>,
unwind_cfa: Option<u64>,
unwound_return_address: &mut Option<RegisterValue>,
memory: &mut dyn MemoryInterface,
instruction_set: Option<InstructionSet>,
) -> ControlFlow<crate::Error, ()> {
use gimli::read::RegisterRule;
// If we do not have unwind info, or there is no register rule, then use UnwindRule::Undefined.
let register_rule = debug_register
.dwarf_id
.and_then(|register_position| {
unwind_info.map(|unwind_info| unwind_info.register(gimli::Register(register_position)))
})
.unwrap_or(RegisterRule::Undefined);
let mut register_rule_string = format!("{register_rule:?}");
let new_value = match register_rule {
RegisterRule::Undefined => {
// In many cases, the DWARF has `Undefined` rules for variables like frame pointer, program counter, etc., so we hard-code some rules here to make sure unwinding can continue. If there is a valid rule, it will bypass these hardcoded ones.
match &debug_register {
fp if fp
.core_register
.register_has_role(RegisterRole::FramePointer) =>
{
register_rule_string = "FP=CFA (dwarf Undefined)".to_string();
unwind_cfa.map(|unwind_cfa| {
if fp.is_u32() {
RegisterValue::U32(unwind_cfa as u32 & !0b11)
} else {
RegisterValue::U64(unwind_cfa & !0b11)
}
})
}
sp if sp
.core_register
.register_has_role(RegisterRole::StackPointer) =>
{
// NOTE: [ARMv7-M Architecture Reference Manual](https://developer.arm.com/documentation/ddi0403/ee), Section B.1.4.1: Treat bits [1:0] as `Should be Zero or Preserved`
// - Applying this logic to RISC-V has no adverse effects, since all incoming addresses are already 32-bit aligned.
register_rule_string = "SP=CFA (dwarf Undefined)".to_string();
unwind_cfa.map(|unwind_cfa| {
if sp.is_u32() {
RegisterValue::U32(unwind_cfa as u32 & !0b11)
} else {
RegisterValue::U64(unwind_cfa & !0b11)
}
})
}
lr if lr
.core_register
.register_has_role(RegisterRole::ReturnAddress) =>
{
let Ok(current_pc) = callee_frame_registers
.get_register_value_by_role(&RegisterRole::ProgramCounter)
else {
return ControlFlow::Break(
crate::Error::Other(
"UNWIND: Tried to unwind return address value where current program counter is unknown.".to_string()
)
);
};
let Ok(current_lr) = callee_frame_registers
.get_register_value_by_role(&RegisterRole::ReturnAddress)
else {
return ControlFlow::Break(
crate::Error::Other(
"UNWIND: Tried to unwind return address value where current return address is unknown.".to_string()
)
);
};
*unwound_return_address = if current_pc == current_lr & !0b1 {
// If the previous PC is the same as the half-word aligned current LR,
// we have no way of inferring the previous frames LR until we have the PC.
register_rule_string = "LR=Undefined (dwarf Undefined)".to_string();
None
} else {
// We can attempt to continue unwinding with the current LR value, e.g. inlined code.
register_rule_string = "LR=Current LR (dwarf Undefined)".to_string();
lr.value
};
*unwound_return_address
}
pc if pc
.core_register
.register_has_role(RegisterRole::ProgramCounter) =>
{
let Ok(current_pc) = callee_frame_registers
.get_register_value_by_role(&RegisterRole::ProgramCounter)
else {
return ControlFlow::Break(
crate::Error::Other(
"UNWIND: Tried to unwind return address value where current program counter is unknown.".to_string()
)
);
};
// NOTE: PC = Value of the unwound LR, i.e. the first instruction after the one that called this function.
// If both the LR and PC registers have undefined rules, this will prevent the unwind from continuing.
register_rule_string = "PC=(unwound LR) (dwarf Undefined)".to_string();
unwound_return_address.and_then(|return_address| {
unwind_program_counter_register(
return_address,
current_pc,
instruction_set,
&mut register_rule_string,
)
})
}
other_register => {
// If the the register rule was not specified, then we either carry the previous value forward,
// or we clear the register value, depending on the architecture and register type.
match other_register.core_register.unwind_rule {
UnwindRule::Preserve => {
register_rule_string = "Preserve".to_string();
callee_frame_registers
.get_register(other_register.core_register.id)
.and_then(|reg| reg.value)
}
UnwindRule::Clear => {
register_rule_string = "Clear".to_string();
None
}
UnwindRule::SpecialRule => {
// When no DWARF rules are available, and it is not a special register like PC, SP, FP, etc.,
// we will preserve the value. It is possible it might have its value set later if
// exception frame information is available.
register_rule_string = "Clear (no unwind rules specified)".to_string();
None
}
}
}
}
}
RegisterRule::SameValue => callee_frame_registers
.get_register(debug_register.core_register.id)
.and_then(|reg| reg.value),
RegisterRule::Offset(address_offset) => {
// "The previous value of this register is saved at the address CFA+N where CFA is the current CFA value and N is a signed offset"
let Some(unwind_cfa) = unwind_cfa else {
return ControlFlow::Break(crate::Error::Other(
"UNWIND: Tried to unwind `RegisterRule` at CFA = None.".to_string(),
));
};
let address_size = callee_frame_registers.get_address_size_bytes();
let previous_frame_register_address =
add_to_address(unwind_cfa, address_offset, address_size);
register_rule_string = format!("CFA {register_rule:?}");
let result = match address_size {
4 => {
let mut buff = [0u8; 4];
memory
.read(previous_frame_register_address, &mut buff)
.map(|_| RegisterValue::U32(u32::from_le_bytes(buff)))
}
8 => {
let mut buff = [0u8; 8];
memory
.read(previous_frame_register_address, &mut buff)
.map(|_| RegisterValue::U64(u64::from_le_bytes(buff)))
}
_ => {
return ControlFlow::Break(Error::Other(format!(
"UNWIND: Address size {} not supported.",
address_size
)));
}
};
match result {
Ok(register_value) => {
if debug_register
.core_register
.register_has_role(RegisterRole::ReturnAddress)
{
// We need to store this value to be used by the calculation of the PC.
*unwound_return_address = Some(register_value);
}
Some(register_value)
}
Err(error) => {
tracing::error!(
"UNWIND: Rule: Offset {} from address {:#010x}",
address_offset,
unwind_cfa
);
return ControlFlow::Break(
Error::Other(format!(
"UNWIND: Failed to read value for register {} from address {} ({} bytes): {}",
debug_register.get_register_name(),
RegisterValue::from(previous_frame_register_address),
4,
error
)),
);
}
}
}
//TODO: Implement the remainder of these `RegisterRule`s
_ => unimplemented!(),
};
debug_register.value = new_value;
tracing::trace!(
"UNWIND - {:>10}: Caller: {}\tCallee: {}\tRule: {}",
debug_register.get_register_name(),
debug_register.value.unwrap_or_default(),
callee_frame_registers
.get_register(debug_register.core_register.id)
.and_then(|reg| reg.value)
.unwrap_or_default(),
register_rule_string,
);
ControlFlow::Continue(())
}
/// Helper function to determine the program counter value for the previous frame.
fn unwind_program_counter_register(
return_address: RegisterValue,
current_pc: u64,
instruction_set: Option<InstructionSet>,
register_rule_string: &mut String,
) -> Option<RegisterValue> {
if return_address.is_max_value() || return_address.is_zero() {
tracing::warn!("No reliable return address is available, so we cannot determine the program counter to unwind the previous frame.");
return None;
}
match return_address {
RegisterValue::U32(return_address) => {
match instruction_set {
Some(InstructionSet::Thumb2) => {
// NOTE: [ARMv7-M Architecture Reference Manual](https://developer.arm.com/documentation/ddi0403/ee), Section A5.1.2:
//
// We have to clear the last bit to ensure the PC is half-word aligned. (on ARM architecture,
// when in Thumb state for certain instruction types will set the LSB to 1)
*register_rule_string = "PC=(unwound LR & !0b1) (dwarf Undefined)".to_string();
Some(RegisterValue::U32(return_address & !0b1))
}
Some(InstructionSet::RV32C) => {
*register_rule_string = "PC=(unwound x1 - 2) (dwarf Undefined)".to_string();
Some(RegisterValue::U32(return_address - 2))
}
Some(InstructionSet::RV32) => {
*register_rule_string = "PC=(unwound x1 - 4) (dwarf Undefined)".to_string();
Some(RegisterValue::U32(return_address - 4))
}
Some(InstructionSet::Xtensa) => {
// TODO: detect CALL0
let upper_bits = (current_pc as u32) & 0xC000_0000;
*register_rule_string = "PC=(unwound x0 - 3) (dwarf Undefined)".to_string();
Some(RegisterValue::U32(
(return_address & 0x3FFF_FFFF | upper_bits) - 3,
))
}
_ => Some(RegisterValue::U32(return_address)),
}
}
RegisterValue::U64(return_address) => Some(RegisterValue::U64(return_address)),
RegisterValue::U128(_) => {
tracing::warn!("128 bit address space not supported");
None
}
}
}
/// Helper function to handle adding a signed offset to a [`RegisterValue`] address.
/// The numerical overflow is handled based on the byte size (`address_size_in_bytes` parameter )
/// of the [`RegisterValue`], as opposed to just the datatype of the `address` parameter.
/// In the case of unwinding stack frame register values, it makes no sense to wrap,
/// because it will result in invalid register address reads.
/// Instead, when we detect over/underflow, we return an address value of 0x0,
/// which will trigger a graceful (and logged) end of a stack unwind.
fn add_to_address(address: u64, offset: i64, address_size_in_bytes: usize) -> u64 {
match address_size_in_bytes {
4 => {
if offset >= 0 {
(address as u32)
.checked_add(offset as u32)
.map(u64::from)
.unwrap_or(0x0)
} else {
(address as u32).saturating_sub(offset.unsigned_abs() as u32) as u64
}
}
8 => {
if offset >= 0 {
address.checked_add(offset as u64).unwrap_or(0x0)
} else {
address.saturating_sub(offset.unsigned_abs())
}
}
_ => {
panic!(
"UNWIND: Address size {} not supported. Please report this as a bug.",
address_size_in_bytes
);
}
}
}
#[cfg(test)]
mod test {
use crate::{
architecture::arm::core::registers::cortex_m::CORTEX_M_CORE_REGISTERS,
debug::{
exception_handling::exception_handler_for_core,
exception_handling::{armv6m::ArmV6MExceptionHandler, armv7m::ArmV7MExceptionHandler},
stack_frame::{StackFrameInfo, TestFormatter},
DebugInfo, DebugRegister, DebugRegisters,
},
test::MockMemory,
CoreDump, RegisterValue,
};
use std::path::{Path, PathBuf};
use test_case::test_case;
/// Get the full path to a file in the `tests` directory.
fn get_path_for_test_files(relative_file: &str) -> PathBuf {
let mut path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
path.push("tests");
path.push(relative_file);
path
}
/// Load the DebugInfo from the `elf_file` for the test.
/// `elf_file` should be the name of a file(or relative path) in the `tests` directory.
fn load_test_elf_as_debug_info(elf_file: &str) -> DebugInfo {
let path = get_path_for_test_files(elf_file);
DebugInfo::from_file(&path)
.unwrap_or_else(|err| panic!("Failed to open file {}: {:?}", path.display(), err))
}
#[test]
fn unwinding_first_instruction_after_exception() {
let debug_info = load_test_elf_as_debug_info("exceptions");
// Registers:
// R0 : 0x00000001
// R1 : 0x2001ffcf
// R2 : 0x20000044
// R3 : 0x20000044
// R4 : 0x00000000
// R5 : 0x00000000
// R6 : 0x00000000
// R7 : 0x2001fff0
// R8 : 0x00000000
// R9 : 0x00000000
// R10 : 0x00000000
// R11 : 0x00000000
// R12 : 0x00000000
// R13 : 0x2001ffd0
// R14 : 0xfffffff9
// R15 : 0x00000182
// MSP : 0x2001ffd0
// PSP : 0x00000000
// XPSR : 0x2100000b
// EXTRA : 0x00000000
// FPSCR : 0x00000000
let values: Vec<_> = [
0x00000001, // R0
0x2001ffcf, // R1
0x20000044, // R2
0x20000044, // R3
0x00000000, // R4
0x00000000, // R5
0x00000000, // R6
0x2001fff0, // R7
0x00000000, // R8
0x00000000, // R9
0x00000000, // R10
0x00000000, // R11
0x00000000, // R12
0x2001ffd0, // R13
0xfffffff9, // R14
0x00000182, // R15
0x2001ffd0, // MSP
0x00000000, // PSP
0x2100000b, // XPSR
]
.into_iter()
.enumerate()
.map(|(id, r)| DebugRegister {
dwarf_id: Some(id as u16),
core_register: CORTEX_M_CORE_REGISTERS.core_register(id),
value: Some(RegisterValue::U32(r)),
})
.collect();
let regs = DebugRegisters(values);
let expected_regs = regs.clone();
let mut mocked_mem = MockMemory::new();
// Stack:
// 0x2001ffd0 = 0x00000001
// 0x2001ffd4 = 0x2001ffcf
// 0x2001ffd8 = 0x20000044
// 0x2001ffdc = 0x20000044
// 0x2001ffe0 = 0x00000000
// 0x2001ffe4 = 0x0000017f
// 0x2001ffe8 = 0x00000180
// 0x2001ffec = 0x21000000
// 0x2001fff0 = 0x2001fff8
// 0x2001fff4 = 0x00000161
// 0x2001fff8 = 0x00000000
// 0x2001fffc = 0x0000013d
mocked_mem.add_word_range(
0x2001_ffd0,
&[
0x00000001, 0x2001ffcf, 0x20000044, 0x20000044, 0x00000000, 0x0000017f, 0x00000180,
0x21000000, 0x2001fff8, 0x00000161, 0x00000000, 0x0000013d,
],
);
let exception_handler = Box::new(ArmV6MExceptionHandler {});
let frames = debug_info
.unwind_impl(
regs,
&mut mocked_mem,
exception_handler.as_ref(),
Some(probe_rs_target::InstructionSet::Thumb2),
)
.unwrap();
let first_frame = &frames[0];
assert_eq!(first_frame.pc, RegisterValue::U32(0x00000182));
assert_eq!(
first_frame.function_name,
"__cortex_m_rt_SVCall_trampoline".to_string()
);
assert_eq!(first_frame.registers, expected_regs);
let next_frame = &frames[1];
assert_eq!(next_frame.function_name, "SVC");
assert_eq!(next_frame.pc, RegisterValue::U32(0x00000180));
// Expected stack frame(s):
// Frame 0: __cortex_m_rt_SVCall_trampoline @ 0x00000182
// /home/dominik/code/probe-rs/probe-rs-repro/nrf/exceptions/src/main.rs:22:1
//
// <--- A frame seems to be missing here, to indicate the exception entry
//
// Frame 1: __cortex_m_rt_main @ 0x00000180 (<--- This should be 0x17e). See the doc comment
// on probe_rs::architecture::arm::core::exception_handling::armv6m_armv7m_shared::EXCEPTION_STACK_REGISTERS
// for the explanation of why this is the case.
// /home/dominik/code/probe-rs/probe-rs-repro/nrf/exceptions/src/main.rs:19:5
// Frame 2: __cortex_m_rt_main_trampoline @ 0x00000160
// /home/dominik/code/probe-rs/probe-rs-repro/nrf/exceptions/src/main.rs:11:1
// Frame 3: memmove @ 0x0000013c
// Frame 4: memmove @ 0x0000013c
// Registers in frame 1:
// R0 : 0x00000001
// R1 : 0x2001ffcf
// R2 : 0x20000044
// R3 : 0x20000044
// R4 : 0x00000000
// R5 : 0x00000000
// R6 : 0x00000000
// R7 : 0x2001fff0
// R8 : 0x00000000
// R9 : 0x00000000
// R10 : 0x00000000
// R11 : 0x00000000
// R12 : 0x00000000
// R13 : 0x2001fff0
// R14 : 0x0000017f
// R15 : 0x0000017e
// MSP : 0x2001fff0
// PSP : 0x00000000
// XPSR : 0x21000000
// EXTRA : 0x00000000
// XPSR : 0x21000000
}
#[test]
fn unwinding_in_exception_handler() {
let debug_info = load_test_elf_as_debug_info("exceptions");
// Registers:
// R0 : 0x00000001
// R1 : 0x2001ff9f
// R2 : 0x20000047
// R3 : 0x20000047
// R4 : 0x00000000
// R5 : 0x00000000
// R6 : 0x00000000
// R7 : 0x2001ffc0
// R8 : 0x00000000
// R9 : 0x00000000
// R10 : 0x00000000
// R11 : 0x00000000
// R12 : 0x00000000
// R13 : 0x2001ffc0
// R14 : 0x0000042f
// R15 : 0x000001a4
// MSP : 0x2001ffc0
// PSP : 0x00000000
// XPSR : 0x2100000b
// EXTRA : 0x00000000
let values: Vec<_> = [
0x00000001, // R0
0x2001ff9f, // R1
0x20000047, // R2
0x20000047, // R3
0x00000000, // R4
0x00000000, // R5
0x00000000, // R6
0x2001ffc0, // R7
0x00000000, // R8
0x00000000, // R9
0x00000000, // R10
0x00000000, // R11
0x00000000, // R12
0x2001ffc0, // R13
0x0000042f, // R14
0x000001a4, // R15
0x2001ffc0, // MSP
0x00000000, // PSP
0x2100000b, // XPSR
]
.into_iter()
.enumerate()
.map(|(id, r)| DebugRegister {
dwarf_id: Some(id as u16),
core_register: CORTEX_M_CORE_REGISTERS.core_register(id),
value: Some(RegisterValue::U32(r)),
})
.collect();
let regs = DebugRegisters(values);
let mut dummy_mem = MockMemory::new();
// Stack:
// 0x2001ffc0 = 0x2001ffc8
// 0x2001ffc4 = 0x0000018b
// 0x2001ffc8 = 0x2001fff0
// 0x2001ffcc = 0xfffffff9
// 0x2001ffd0 = 0x00000001
// 0x2001ffd4 = 0x2001ffcf
// 0x2001ffd8 = 0x20000044
// 0x2001ffdc = 0x20000044
// 0x2001ffe0 = 0x00000000
// 0x2001ffe4 = 0x0000017f
// 0x2001ffe8 = 0x00000180
// 0x2001ffec = 0x21000000
// 0x2001fff0 = 0x2001fff8
// 0x2001fff4 = 0x00000161
// 0x2001fff8 = 0x00000000
// 0x2001fffc = 0x0000013d
dummy_mem.add_word_range(
0x2001_ffc0,
&[
0x2001ffc8, 0x0000018b, 0x2001fff0, 0xfffffff9, 0x00000001, 0x2001ffcf, 0x20000044,
0x20000044, 0x00000000, 0x0000017f, 0x00000180, 0x21000000, 0x2001fff8, 0x00000161,
0x00000000, 0x0000013d,
],
);
let exception_handler = Box::new(ArmV6MExceptionHandler {});
let frames = debug_info
.unwind_impl(
regs,
&mut dummy_mem,
exception_handler.as_ref(),
Some(probe_rs_target::InstructionSet::Thumb2),
)
.unwrap();
assert_eq!(frames[0].pc, RegisterValue::U32(0x000001a4));
assert_eq!(
frames[1].function_name,
"__cortex_m_rt_SVCall_trampoline".to_string()
);
assert_eq!(frames[1].pc, RegisterValue::U32(0x0000018A)); // <-- This is the instruction *after* the jump into the topmost frame.
// The PC value in the exception data
// depends on the exception type, and for some exceptions, it will
// be the address of the instruction that caused the exception, while for other exceptions
// it will be the address of the next instruction after the instruction that caused the exception.
// See: https://developer.arm.com/documentation/ddi0403/d/System-Level-Architecture/System-Level-Programmers--Model/ARMv7-M-exception-model/Exception-entry-behavior?lang=en
assert_eq!(
frames[1]
.registers
.get_frame_pointer()
.and_then(|r| r.value),
Some(RegisterValue::U32(0x2001ffc8))
);
let printed_backtrace = frames
.into_iter()
.map(|f| TestFormatter(&f).to_string())
.collect::<Vec<String>>()
.join("");
insta::assert_snapshot!(printed_backtrace);
}
#[test]
fn unwinding_in_exception_trampoline() {
let debug_info = load_test_elf_as_debug_info("exceptions");
// Registers:
// R0 : 0x00000001
// R1 : 0x2001ffcf
// R2 : 0x20000044
// R3 : 0x20000044
// R4 : 0x00000000
// R5 : 0x00000000
// R6 : 0x00000000
// R7 : 0x2001ffc8
// R8 : 0x00000000
// R9 : 0x00000000
// R10 : 0x00000000
// R11 : 0x00000000
// R12 : 0x00000000
// R13 : 0x2001ffc8
// R14 : 0x0000018B
// R15 : 0x0000018A
// MSP : 0x2001ffc8
// PSP : 0x00000000
// XPSR : 0x2100000b
// EXTRA : 0x00000000
let values: Vec<_> = [
0x00000001, // R0
0x2001ffcf, // R1
0x20000044, // R2
0x20000044, // R3
0x00000000, // R4
0x00000000, // R5
0x00000000, // R6
0x2001ffc8, // R7
0x00000000, // R8
0x00000000, // R9
0x00000000, // R10
0x00000000, // R11
0x00000000, // R12
0x2001ffc8, // R13
0x0000018B, // R14
0x0000018A, // R15
0x2001ffc8, // MSP
0x00000000, // PSP
0x2100000b, // XPSR
]
.into_iter()
.enumerate()
.map(|(id, r)| DebugRegister {
dwarf_id: Some(id as u16),
core_register: CORTEX_M_CORE_REGISTERS.core_register(id),
value: Some(RegisterValue::U32(r)),
})
.collect();
let regs = DebugRegisters(values);
let mut dummy_mem = MockMemory::new();
// Stack:
// 0x2001ffc8 = 0x2001fff0
// 0x2001ffcc = 0xfffffff9
// 0x2001ffd0 = 0x00000001
// 0x2001ffd4 = 0x2001ffcf
// 0x2001ffd8 = 0x20000044
// 0x2001ffdc = 0x20000044
// 0x2001ffe0 = 0x00000000
// 0x2001ffe4 = 0x0000017f
// 0x2001ffe8 = 0x00000180
// 0x2001ffec = 0x21000000
// 0x2001fff0 = 0x2001fff8
// 0x2001fff4 = 0x00000161
// 0x2001fff8 = 0x00000000
// 0x2001fffc = 0x0000013d
dummy_mem.add_word_range(
0x2001_ffc8,
&[
0x2001fff0, 0xfffffff9, 0x00000001, 0x2001ffcf, 0x20000044, 0x20000044, 0x00000000,
0x0000017f, 0x00000180, 0x21000000, 0x2001fff8, 0x00000161, 0x00000000, 0x0000013d,
],
);
let exception_handler = Box::new(ArmV6MExceptionHandler {});
let frames = debug_info
.unwind_impl(
regs,
&mut dummy_mem,
exception_handler.as_ref(),
Some(probe_rs_target::InstructionSet::Thumb2),
)
.unwrap();
let printed_backtrace = frames
.into_iter()
.map(|f| TestFormatter(&f).to_string())
.collect::<Vec<String>>()
.join("");
insta::assert_snapshot!(printed_backtrace);
}
#[test]
fn unwinding_inlined() {
let debug_info = load_test_elf_as_debug_info("inlined-functions");
// Registers:
// R0 : 0xfffffecc
// R1 : 0x00000001
// R2 : 0x00000000
// R3 : 0x40008140
// R4 : 0x000f4240
// R5 : 0xfffffec0
// R6 : 0x00000000
// R7 : 0x20003ff0
// R8 : 0x00000000
// R9 : 0x00000000
// R10 : 0x00000000
// R11 : 0x00000000
// R12 : 0x5000050c
// R13 : 0x20003ff0
// R14 : 0x00200000
// R15 : 0x000002e4
// MSP : 0x20003ff0
// PSP : 0x00000000
// XPSR : 0x61000000
// EXTRA : 0x00000000
// FPSCR : 0x00000000
let values: Vec<_> = [
0xfffffecc, // R0
0x00000001, // R1
0x00000000, // R2
0x40008140, // R3
0x000f4240, // R4
0xfffffec0, // R5
0x00000000, // R6
0x20003ff0, // R7
0x00000000, // R8
0x00000000, // R9
0x00000000, // R10
0x00000000, // R11
0x5000050c, // R12
0x20003ff0, // R13
0x00200000, // R14
0x000002e4, // R15
0x20003ff0, // MSP
0x00000000, // PSP
0x61000000, // XPSR
]
.into_iter()
.enumerate()
.map(|(id, r)| DebugRegister {
dwarf_id: Some(id as u16),
core_register: CORTEX_M_CORE_REGISTERS.core_register(id),
value: Some(RegisterValue::U32(r)),
})
.collect();
let regs = DebugRegisters(values);
let mut dummy_mem = MockMemory::new();
// Stack:
// 0x20003ff0 = 0x20003ff8
// 0x20003ff4 = 0x00000161
// 0x20003ff8 = 0x00000000
// 0x20003ffc = 0x0000013d
dummy_mem.add_word_range(
0x2000_3ff0,
&[0x20003ff8, 0x00000161, 0x00000000, 0x0000013d],
);
let exception_handler = Box::new(ArmV7MExceptionHandler);
let frames = debug_info
.unwind_impl(
regs,
&mut dummy_mem,
exception_handler.as_ref(),
Some(probe_rs_target::InstructionSet::Thumb2),
)
.unwrap();
let printed_backtrace = frames
.into_iter()
.map(|f| TestFormatter(&f).to_string())
.collect::<Vec<String>>()
.join("");
insta::assert_snapshot!(printed_backtrace);
}
#[test]
fn test_print_stacktrace() {
let elf = Path::new("./tests/gpio-hal-blinky/elf");
let coredump = include_bytes!("../../tests/gpio-hal-blinky/coredump");
let mut adapter = CoreDump::load_raw(coredump).unwrap();
let debug_info = DebugInfo::from_file(elf).unwrap();
let initial_registers = adapter.debug_registers();
let exception_handler = exception_handler_for_core(adapter.core_type());
let instruction_set = adapter.instruction_set();
let stack_frames = debug_info
.unwind(
&mut adapter,
initial_registers,
exception_handler.as_ref(),
Some(instruction_set),
)
.unwrap();
let printed_backtrace = stack_frames
.into_iter()
.map(|f| TestFormatter(&f).to_string())
.collect::<Vec<String>>()
.join("");
insta::assert_snapshot!(printed_backtrace);
}
#[test_case("RP2040_full_unwind"; "full_unwind Armv6-m using RP2040")]
#[test_case("RP2040_svcall"; "svcall Armv6-m using RP2040")]
#[test_case("RP2040_systick"; "systick Armv6-m using RP2040")]
#[test_case("nRF52833_xxAA_full_unwind"; "full_unwind Armv7-m using nRF52833_xxAA")]
#[test_case("nRF52833_xxAA_svcall"; "svcall Armv7-m using nRF52833_xxAA")]
#[test_case("nRF52833_xxAA_systick"; "systick Armv7-m using nRF52833_xxAA")]
#[test_case("nRF52833_xxAA_hardfault_from_usagefault"; "hardfault_from_usagefault Armv7-m using nRF52833_xxAA")]
#[test_case("nRF52833_xxAA_hardfault_from_busfault"; "hardfault_from_busfault Armv7-m using nRF52833_xxAA")]
#[test_case("nRF52833_xxAA_hardfault_in_systick"; "hardfault_in_systick Armv7-m using nRF52833_xxAA")]
#[test_case("atsamd51p19a"; "Armv7-em from C source code")]
#[test_case("esp32c3_full_unwind"; "full_unwind RISC-V32E using esp32c3")]
fn full_unwind(test_name: &str) {
// TODO: Add RISC-V tests.
let debug_info =
load_test_elf_as_debug_info(format!("debug-unwind-tests/{test_name}.elf").as_str());
let mut adapter = CoreDump::load(&get_path_for_test_files(
format!("debug-unwind-tests/{test_name}.coredump").as_str(),
))
.unwrap();
let snapshot_name = test_name.to_string();
let initial_registers = adapter.debug_registers();
let exception_handler = exception_handler_for_core(adapter.core_type());
let instruction_set = adapter.instruction_set();
let mut stack_frames = debug_info
.unwind(
&mut adapter,
initial_registers,
exception_handler.as_ref(),
Some(instruction_set),
)
.unwrap();
// Expand and validate the static and local variables for each stack frame.
for frame in stack_frames.iter_mut() {
let mut variable_caches = Vec::new();
if let Some(local_variables) = &mut frame.local_variables {
variable_caches.push(local_variables);
}
for variable_cache in variable_caches {
// Cache the deferred top level children of the of the cache.
variable_cache.recurse_deferred_variables(
&debug_info,
&mut adapter,
10,
StackFrameInfo {
registers: &frame.registers,
frame_base: frame.frame_base,
canonical_frame_address: frame.canonical_frame_address,
},
);
}
}
// Using YAML output because it is easier to read than the default snapshot output,
// and also because they provide better diffs.
insta::assert_yaml_snapshot!(snapshot_name, stack_frames);
}
#[test_case("RP2040_full_unwind"; "Armv6-m using RP2040")]
#[test_case("nRF52833_xxAA_full_unwind"; "Armv7-m using nRF52833_xxAA")]
#[test_case("atsamd51p19a"; "Armv7-em from C source code")]
//TODO: #[test_case("esp32c3"; "RISC-V32E using esp32c3")]
fn static_variables(chip_name: &str) {
// TODO: Add RISC-V tests.
let debug_info =
load_test_elf_as_debug_info(format!("debug-unwind-tests/{chip_name}.elf").as_str());
let mut adapter = CoreDump::load(&get_path_for_test_files(
format!("debug-unwind-tests/{chip_name}.coredump").as_str(),
))
.unwrap();
let initial_registers = adapter.debug_registers();
let snapshot_name = format!("{chip_name}_static_variables");
let mut static_variables = debug_info.create_static_scope_cache();
static_variables.recurse_deferred_variables(
&debug_info,
&mut adapter,
10,
StackFrameInfo {
registers: &initial_registers,
frame_base: None,
canonical_frame_address: None,
},
);
// Using YAML output because it is easier to read than the default snapshot output,
// and also because they provide better diffs.
insta::assert_yaml_snapshot!(snapshot_name, static_variables);
}
}