probe_rs/debug/source_instructions.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
use super::{
canonical_path_eq,
unit_info::{self, UnitInfo},
ColumnType, DebugError, DebugInfo, GimliReader,
};
use gimli::LineSequence;
use serde::Serialize;
use std::{
fmt::{Debug, Formatter},
num::NonZeroU64,
ops::Range,
};
use typed_path::{TypedPath, TypedPathBuf};
/// A verified breakpoint represents an instruction address, and the source location that it corresponds to it,
/// for locations in the target binary that comply with the DWARF standard terminology for "recommended breakpoint location".
/// This typically refers to instructions that are not part of the prologue or epilogue, and are part of the user code,
/// or are the final instruction in a sequence, before the processor begins the epilogue code.
/// The `probe-rs` debugger uses this information to identify valid halt locations for breakpoints and stepping.
#[derive(Clone, Debug)]
pub struct VerifiedBreakpoint {
/// The address in target memory, where the breakpoint can be set.
pub address: u64,
/// If the breakpoint request was for a specific source location, then this field will contain the resolved source location.
pub source_location: SourceLocation,
}
impl VerifiedBreakpoint {
/// Return the first valid breakpoint location of the statement that is greater than OR equal to `address`.
/// e.g., if the `address` is the current program counter, then the return value will be the next valid halt address
/// in the current sequence.
pub(crate) fn for_address(
debug_info: &DebugInfo,
address: u64,
) -> Result<VerifiedBreakpoint, DebugError> {
let instruction_sequence = InstructionSequence::from_address(debug_info, address)?;
// Cycle through various degrees of matching, to find the most relevant source location.
if let Some(verified_breakpoint) = match_address(&instruction_sequence, address, debug_info)
{
tracing::debug!(
"Found valid breakpoint for address: {:#010x} : {verified_breakpoint:?}",
&address
);
return Ok(verified_breakpoint);
}
// If we get here, we have not found a valid breakpoint location.
let message = format!("Could not identify a valid breakpoint for address: {address:#010x}. Please consider using instruction level stepping.");
Err(DebugError::WarnAndContinue { message })
}
/// Identifying the breakpoint location for a specific location (path, line, colunmn) is a bit more complex,
/// compared to the `for_address()` method, due to a few factors:
/// - The correct program instructions, may be in any of the compilation units of the current program.
/// - The debug information may not contain data for the "specific source" location requested:
/// - DWARFv5 standard, section 6.2, allows omissions based on certain conditions. In this case,
/// we need to find the closest "relevant" source location that has valid debug information.
/// - The requested location may not be a valid source location, e.g. when the
/// debug information has been optimized away. In this case we will return an appropriate error.
///
/// #### The logic used to find the "most relevant" source location is as follows:
/// 1. Filter [`UnitInfo`], by using [`gimli::LineProgramHeader`] to match units that include
/// the requested path.
/// 2. For each matching compilation unit, get the [`gimli::LineProgram`] and
/// [`Vec<LineSequence>`][LineSequence].
/// 3. Filter the [`Vec<LineSequence>`][LineSequence] entries to only include sequences that match the requested path.
/// 3. Convert remaining [`LineSequence`], to [`InstructionSequence`].
/// 4. Return the first [`InstructionSequence`] that contains the requested source location.
/// 4a. This may be an exact match on file/line/column, or,
/// 4b. Failing an exact match, a match on file/line only.
/// 4c. Failing that, a match on file only, where the line number is the "next" available instruction,
/// on the next available line of the specified file.
pub(crate) fn for_source_location(
debug_info: &DebugInfo,
path: TypedPath,
line: u64,
column: Option<u64>,
) -> Result<Self, DebugError> {
for program_unit in &debug_info.unit_infos {
let Some(ref line_program) = program_unit.unit.line_program else {
// Not all compilation units need to have debug line information, so we skip those.
continue;
};
let mut num_files = line_program.header().file_names().len();
// For DWARF version 5, the current compilation file is included in the file names, with index 0.
//
// For earlier versions, the current compilation file is not included in the file names, but index 0 still refers to it.
// To get the correct number of files, we have to add 1 here.
if program_unit.unit.header.version() <= 4 {
num_files += 1;
}
// There can be multiple file indices which match, due to the inclusion of the current compilation file with index 0.
//
// At least for DWARF 4 there are cases where the current compilation file is also included in the file names with
// a non-zero index.
let matching_file_indices: Vec<_> = (0..num_files)
.filter_map(|file_index| {
let file_index = file_index as u64;
debug_info
.get_path(&program_unit.unit, file_index)
.and_then(|combined_path: TypedPathBuf| {
if canonical_path_eq(path, combined_path.to_path()) {
tracing::debug!(
"Found matching file index: {file_index} for path: {path}",
file_index = file_index,
path = path.display()
);
Some(file_index)
} else {
None
}
})
})
.collect();
if matching_file_indices.is_empty() {
continue;
}
let Ok((complete_line_program, line_sequences)) = line_program.clone().sequences()
else {
tracing::debug!("Failed to get line sequences for line program");
continue;
};
for line_sequence in line_sequences {
let instruction_sequence = InstructionSequence::from_line_sequence(
debug_info,
program_unit,
&complete_line_program,
&line_sequence,
);
for matching_file_index in &matching_file_indices {
// Cycle through various degrees of matching, to find the most relevant source location.
if let Some(verified_breakpoint) = match_file_line_column(
&instruction_sequence,
*matching_file_index,
line,
column,
debug_info,
program_unit,
) {
return Ok(verified_breakpoint);
}
if let Some(verified_breakpoint) = match_file_line_first_available_column(
&instruction_sequence,
*matching_file_index,
line,
debug_info,
program_unit,
) {
return Ok(verified_breakpoint);
}
}
}
}
// If we get here, we have not found a valid breakpoint location.
Err(DebugError::Other(format!("No valid breakpoint information found for file: {}, line: {line:?}, column: {column:?}", path.display())))
}
}
/// Find the valid halt instruction location that is equal to, or greater than, the address.
fn match_address(
instruction_sequence: &InstructionSequence<'_>,
address: u64,
debug_info: &DebugInfo,
) -> Option<VerifiedBreakpoint> {
if instruction_sequence.address_range.contains(&address) {
let instruction_location =
instruction_sequence
.instructions
.iter()
.find(|instruction_location| {
instruction_location.instruction_type == InstructionType::HaltLocation
&& instruction_location.address >= address
})?;
let source_location = SourceLocation::from_instruction_location(
debug_info,
instruction_sequence.program_unit,
instruction_location,
)?;
Some(VerifiedBreakpoint {
address: instruction_location.address,
source_location,
})
} else {
None
}
}
/// Find the valid halt instruction location that matches the file, line and column.
fn match_file_line_column(
instruction_sequence: &InstructionSequence<'_>,
matching_file_index: u64,
line: u64,
column: Option<u64>,
debug_info: &DebugInfo,
program_unit: &UnitInfo,
) -> Option<VerifiedBreakpoint> {
let instruction_location =
instruction_sequence
.instructions
.iter()
.find(|instruction_location| {
instruction_location.instruction_type == InstructionType::HaltLocation
&& matching_file_index == instruction_location.file_index
&& NonZeroU64::new(line) == instruction_location.line
&& column
.map(ColumnType::Column)
.is_some_and(|col| col == instruction_location.column)
})?;
let source_location =
SourceLocation::from_instruction_location(debug_info, program_unit, instruction_location)?;
Some(VerifiedBreakpoint {
address: instruction_location.address,
source_location,
})
}
/// Find the first valid halt instruction location that matches the file and line, ignoring column.
fn match_file_line_first_available_column(
instruction_sequence: &InstructionSequence<'_>,
matching_file_index: u64,
line: u64,
debug_info: &DebugInfo,
program_unit: &UnitInfo,
) -> Option<VerifiedBreakpoint> {
let instruction_location =
instruction_sequence
.instructions
.iter()
.find(|instruction_location| {
instruction_location.instruction_type == InstructionType::HaltLocation
&& matching_file_index == instruction_location.file_index
&& NonZeroU64::new(line) == instruction_location.line
})?;
let source_location =
SourceLocation::from_instruction_location(debug_info, program_unit, instruction_location)?;
Some(VerifiedBreakpoint {
address: instruction_location.address,
source_location,
})
}
fn serialize_typed_path<S>(path: &TypedPathBuf, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
serializer.serialize_str(&path.to_string_lossy())
}
/// A specific location in source code.
/// Each unique line, column, file and directory combination is a unique source location.
#[derive(Clone, PartialEq, Eq, Serialize)]
pub struct SourceLocation {
/// The path to the source file
#[serde(serialize_with = "serialize_typed_path")]
pub path: TypedPathBuf,
/// The line number in the source file with zero based indexing.
pub line: Option<u64>,
/// The column number in the source file.
pub column: Option<ColumnType>,
}
impl Debug for SourceLocation {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{}:{:?}:{:?}",
self.path.to_path().display(),
self.line,
self.column
)
}
}
impl SourceLocation {
/// Resolve debug information for a [`InstructionLocation`] and create a [`SourceLocation`].
fn from_instruction_location(
debug_info: &DebugInfo,
program_unit: &unit_info::UnitInfo,
instruction_location: &InstructionLocation,
) -> Option<SourceLocation> {
debug_info
.find_file_and_directory(&program_unit.unit, instruction_location.file_index)
.map(|path| SourceLocation {
line: instruction_location.line.map(std::num::NonZeroU64::get),
column: Some(instruction_location.column),
path,
})
}
/// Get the file name of the source file
pub fn file_name(&self) -> Option<String> {
self.path
.file_name()
.map(|name| String::from_utf8_lossy(name).to_string())
}
}
/// Keep track of all the instruction locations required to satisfy the operations of [`SteppingMode`][s].
/// This is a list of target instructions, belonging to a [`gimli::LineSequence`],
/// and filters it to only user code instructions (no prologue code, and no non-statement instructions),
/// so that we are left only with what DWARF terms as "recommended breakpoint location".
///
/// [s]: crate::debug::debug_step::SteppingMode
struct InstructionSequence<'debug_info> {
/// The `address_range.start` is the starting address of the program counter for which this sequence is valid,
/// and allows us to identify target instruction locations where the program counter lies inside the prologue.
/// The `address_range.end` is the first address that is not covered by this sequence within the line number program,
/// and allows us to identify when stepping over a instruction location would result in leaving a sequence.
/// - This is typically the instruction address of the first instruction in the next sequence,
/// which may also be the first instruction in a new function.
address_range: Range<u64>,
// NOTE: Use Vec as a container, because we will have relatively few statements per sequence, and we need to maintain the order.
instructions: Vec<InstructionLocation>,
// The following private fields are required to resolve the source location information for
// each instruction location.
debug_info: &'debug_info DebugInfo,
program_unit: &'debug_info UnitInfo,
}
impl Debug for InstructionSequence<'_> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
writeln!(
f,
"Instruction Sequence with address range: {:#010x} - {:#010x}",
self.address_range.start, self.address_range.end
)?;
for instruction_location in &self.instructions {
writeln!(
f,
"\t{instruction_location:?} - {}",
self.debug_info
.get_path(&self.program_unit.unit, instruction_location.file_index)
.map(|file_path| file_path.to_string_lossy().to_string())
.unwrap_or("<unknown file>".to_string())
)?;
}
Ok(())
}
}
impl<'debug_info> InstructionSequence<'debug_info> {
/// Extract all the instruction locations, belonging to the active sequence (i.e. the sequence that contains the `address`).
fn from_address(
debug_info: &'debug_info DebugInfo,
program_counter: u64,
) -> Result<Self, DebugError> {
let program_unit = debug_info.compile_unit_info(program_counter)?;
let (offset, address_size) = if let Some(line_program) =
program_unit.unit.line_program.clone()
{
(
line_program.header().offset(),
line_program.header().address_size(),
)
} else {
let message = "The specified source location does not have any line_program information available. Please consider using instruction level stepping.".to_string();
return Err(DebugError::WarnAndContinue { message });
};
// Get the sequences of rows from the CompleteLineProgram at the given program_counter.
let incomplete_line_program =
debug_info
.debug_line_section
.program(offset, address_size, None, None)?;
let (complete_line_program, line_sequences) = incomplete_line_program.sequences()?;
// Get the sequence of rows that belongs to the program_counter.
let Some(line_sequence) = line_sequences.iter().find(|line_sequence| {
line_sequence.start <= program_counter && program_counter < line_sequence.end
}) else {
let message = "The specified source location does not have any line information available. Please consider using instruction level stepping.".to_string();
return Err(DebugError::WarnAndContinue { message });
};
let instruction_sequence = Self::from_line_sequence(
debug_info,
program_unit,
&complete_line_program,
line_sequence,
);
if instruction_sequence.len() == 0 {
let message = "Could not find valid instruction locations for this address. Consider using instruction level stepping.".to_string();
Err(DebugError::WarnAndContinue { message })
} else {
tracing::trace!(
"Instruction location for pc={:#010x}\n{:?}",
program_counter,
instruction_sequence
);
Ok(instruction_sequence)
}
}
/// Build [`InstructionSequence`] from a [`gimli::LineSequence`], with all the markers we need to determine valid halt locations.
fn from_line_sequence(
debug_info: &'debug_info DebugInfo,
program_unit: &'debug_info UnitInfo,
complete_line_program: &gimli::CompleteLineProgram<GimliReader>,
line_sequence: &LineSequence<GimliReader>,
) -> Self {
let program_language = program_unit.get_language();
let mut sequence_rows = complete_line_program.resume_from(line_sequence);
// We have enough information to create the InstructionSequence.
let mut instruction_sequence = InstructionSequence {
address_range: line_sequence.start..line_sequence.end,
instructions: Vec::new(),
debug_info,
program_unit,
};
let mut prologue_completed = false;
let mut previous_row: Option<gimli::LineRow> = None;
while let Ok(Some((_, row))) = sequence_rows.next_row() {
// Don't do anything until we are at least at the prologue_end() of a function.
if row.prologue_end() {
prologue_completed = true;
}
// For GNU C, it is known that the `DW_LNS_set_prologue_end` is not set, so we employ the same heuristic as GDB to determine when the prologue is complete.
// For other C compilers in the C99/11/17 standard, they will either set the `DW_LNS_set_prologue_end` or they will trigger this heuristic also.
// See https://gcc.gnu.org/legacy-ml/gcc-patches/2011-03/msg02106.html
if !prologue_completed
&& matches!(
program_language,
gimli::DW_LANG_C99 | gimli::DW_LANG_C11 | gimli::DW_LANG_C17
)
{
if let Some(prev_row) = previous_row {
if row.end_sequence()
|| (row.is_stmt()
&& (row.file_index() == prev_row.file_index()
&& (row.line() != prev_row.line() || row.line().is_none())))
{
prologue_completed = true;
}
}
}
if !prologue_completed {
log_row_eval(line_sequence, row, " inside prologue>");
} else {
log_row_eval(line_sequence, row, " after prologue>");
}
// The end of the sequence is not a valid halt location,
// nor is it a valid instruction in the current sequence.
if row.end_sequence() {
break;
}
instruction_sequence.add(prologue_completed, row, previous_row.as_ref());
previous_row = Some(*row);
}
instruction_sequence
}
/// Add a instruction location to the list.
fn add(
&mut self,
prologue_completed: bool,
row: &gimli::LineRow,
previous_row: Option<&gimli::LineRow>,
) {
// Workaround the line number issue (if recorded as 0 in the DWARF, then gimli reports it as None).
// For debug purposes, it makes more sense to be the same as the previous line, which almost always
// has the same file index and column value.
// This prevents the debugger from jumping to the top of the file unexpectedly.
let mut instruction_line = row.line();
if let Some(prev_row) = previous_row {
if row.line().is_none()
&& prev_row.line().is_some()
&& row.file_index() == prev_row.file_index()
&& prev_row.column() == row.column()
{
instruction_line = prev_row.line();
}
}
let instruction_location = InstructionLocation {
address: row.address(),
file_index: row.file_index(),
line: instruction_line,
column: row.column().into(),
instruction_type: if !prologue_completed {
InstructionType::Prologue
} else if row.epilogue_begin() || row.is_stmt() {
InstructionType::HaltLocation
} else {
InstructionType::Unspecified
},
};
self.instructions.push(instruction_location);
}
/// Get the number of instruction locations in the list.
fn len(&self) -> usize {
self.instructions.len()
}
}
#[derive(Debug, Clone, PartialEq)]
/// The type of instruction, as defined by [`gimli::LineRow`] attributes and relative position in the sequence.
enum InstructionType {
/// We need to keep track of source lines that signal function signatures,
/// even if their program lines are not valid halt locations.
Prologue,
/// DWARF defined "recommended breakpoint location",
/// typically marked with `is_stmt` or `epilogue_begin`.
HaltLocation,
/// Any other instruction that is not part of the prologue or epilogue, and is not a statement,
/// is considered to be an unspecified instruction type.
Unspecified,
}
#[derive(Clone)]
/// - A [`InstructionLocation`] filters and maps [`gimli::LineRow`] entries to be used for determining valid halt points.
/// - Each [`InstructionLocation`] maps to a single machine instruction on target.
/// - For establishing valid halt locations (breakpoint or stepping), we are only interested,
/// in the [`InstructionLocation`]'s that represent DWARF defined `statements`,
/// which are not part of the prologue or epilogue.
/// - A line of code in a source file may contain multiple instruction locations, in which case
/// a new [`InstructionLocation`] with unique `column` is created.
/// - A [`InstructionSequence`] is a series of contiguous [`InstructionLocation`]'s.
struct InstructionLocation {
address: u64,
file_index: u64,
line: Option<NonZeroU64>,
column: ColumnType,
instruction_type: InstructionType,
}
impl Debug for InstructionLocation {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Instruction @ {:010x}, on line={:04} col={:05} f={:02}, type={:?}",
&self.address,
match &self.line {
Some(line) => line.get(),
None => 0,
},
match &self.column {
ColumnType::LeftEdge => 0,
ColumnType::Column(column) => column.to_owned(),
},
&self.file_index,
&self.instruction_type,
)?;
Ok(())
}
}
/// Helper function to avoid code duplication when logging of information during row evaluation.
fn log_row_eval(
active_sequence: &LineSequence<super::GimliReader>,
row: &gimli::LineRow,
status: &str,
) {
tracing::trace!("Sequence: line={:04} col={:05} f={:02} stmt={:5} ep={:5} es={:5} eb={:5} : {:#010X}<={:#010X}<{:#010X} : {}",
match row.line() {
Some(line) => line.get(),
None => 0,
},
match row.column() {
gimli::ColumnType::LeftEdge => 0,
gimli::ColumnType::Column(column) => column.get(),
},
row.file_index(),
row.is_stmt(),
row.prologue_end(),
row.end_sequence(),
row.epilogue_begin(),
active_sequence.start,
row.address(),
active_sequence.end,
status);
}