probe_rs/debug/unit_info.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
use std::ops::Range;
use super::{
debug_info::*, extract_byte_size, extract_file, extract_line, function_die::FunctionDie,
variable::*, DebugError, DebugRegisters, EndianReader, SourceLocation, VariableCache,
};
use crate::{
debug::{language, stack_frame::StackFrameInfo},
MemoryInterface,
};
use gimli::{
AttributeValue, DebugInfoOffset, DebuggingInformationEntry, EvaluationResult, Location,
UnitOffset,
};
/// The result of `UnitInfo::evaluate_expression()` can be the value of a variable, or a memory location.
#[derive(Debug)]
pub(crate) enum ExpressionResult {
Value(VariableValue),
Location(VariableLocation),
}
/// A struct containing information about a single compilation unit.
pub struct UnitInfo {
pub(crate) unit: gimli::Unit<GimliReader, usize>,
dwarf_language: gimli::DwLang,
language: Box<dyn language::ProgrammingLanguage>,
}
impl UnitInfo {
/// Create a new `UnitInfo` from a `gimli::Unit`.
pub fn new(unit: gimli::Unit<GimliReader, usize>) -> Self {
let dwarf_language = if let Ok(Some(AttributeValue::Language(unit_language))) = unit
.entries_tree(None)
.and_then(|mut tree| tree.root()?.entry().attr_value(gimli::DW_AT_language))
{
unit_language
} else {
tracing::warn!("Unable to retrieve DW_AT_language attribute, assuming Rust.");
gimli::DW_LANG_Rust
};
Self {
unit,
dwarf_language,
language: language::from_dwarf(dwarf_language),
}
}
/// Retrieve the value of the `DW_AT_language` attribute of the compilation unit.
///
/// In the unlikely event that we are unable to retrieve the language, we assume Rust.
pub(crate) fn get_language(&self) -> gimli::DwLang {
self.dwarf_language
}
pub(crate) fn debug_info_offset(&self) -> Result<DebugInfoOffset, DebugError> {
self.unit.header.offset().as_debug_info_offset().ok_or_else(|| DebugError::Other(
"Failed to convert unit header offset to debug info offset. This is a bug, please report it.".to_string()
))
}
/// Get the compilation unit DIEs for the function containing the given address.
/// - The first entry in the vector will be the outermost function containing the address.
/// - If the address is inlined, the innermost function will be the last entry in the vector.
pub(crate) fn get_function_dies<'debug_info>(
&'debug_info self,
debug_info: &'debug_info super::DebugInfo,
address: u64,
) -> Result<Vec<FunctionDie<'debug_info>>, DebugError> {
tracing::trace!("Searching Function DIE for address {:#010x}", address);
let mut entries_cursor = self.unit.entries();
while let Ok(Some((_depth, current))) = entries_cursor.next_dfs() {
let Some(die) = FunctionDie::new(current.clone(), self, debug_info, address)? else {
continue;
};
let mut functions = vec![die];
tracing::debug!(
"Found DIE: name={:?}",
functions[0].function_name(debug_info)
);
tracing::debug!("Checking for inlined functions");
let inlined_functions =
self.find_inlined_functions(debug_info, address, current.offset())?;
tracing::debug!(
"{} inlined functions for address {:#010x}",
inlined_functions.len(),
address
);
functions.extend(inlined_functions.into_iter());
return Ok(functions);
}
Ok(vec![])
}
/// Check if the function located at the given offset contains inlined functions at the
/// given address.
pub(crate) fn find_inlined_functions<'abbrev>(
&'abbrev self,
debug_info: &'abbrev DebugInfo,
address: u64,
parent_offset: UnitOffset,
) -> Result<Vec<FunctionDie<'abbrev>>, DebugError> {
// If we don't have any entries at our unit offset, return an empty vector.
// This cursor starts at, and includes the entries for the non-inlined function at 'parent_offset'.
let Ok(mut cursor) = self.unit.entries_at_offset(parent_offset) else {
return Ok(vec![]);
};
let mut current_depth = 0;
// The abort depth is used to control navigation of `cursor.next_dfs()` tree that contains
// the inlined functions for the current address. It is set to the current depth when a
// qualifying inlined function is found, and prevents the cursor from searching back up the
// tree, for sibling branches.
// This is a performance optimization only, and will not affect the correctness of the result.
let mut abort_depth = 0;
let mut functions = Vec::new();
while let Ok(Some((depth, current))) = cursor.next_dfs() {
current_depth += depth;
if current.offset() == parent_offset {
// We only want children of the non-inlined function DIE at the given `parent_offset`.
continue;
}
if current_depth < abort_depth {
// We have found all the inlined functions for the current address
// so we can abort the search, before it starts searching other branches of the tree.
break;
}
// Keep the current DIE only if it is an inlined function
let Some(die) = FunctionDie::new(current.clone(), self, debug_info, address)? else {
continue;
};
// Everytime we find a qualifying inlined-function, we set the abort depth
// to ensure the `cursor.next_dfs()` will be prevented from reversing the depth traversal to search for peers.
abort_depth = current_depth;
functions.push(die);
}
Ok(functions)
}
/// Recurse the ELF structure below the `tree_node`,
/// and updates the `cache` with the updated value of the `child_variable`.
#[allow(clippy::too_many_arguments)]
pub(crate) fn process_tree_node_attributes(
&self,
debug_info: &DebugInfo,
tree_node: &gimli::DebuggingInformationEntry<GimliReader>,
parent_variable: &mut Variable,
child_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
cache: &mut VariableCache,
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
// Identify the parent.
child_variable.parent_key = parent_variable.variable_key;
let abstract_entry;
// We need to determine if we are working with a 'abstract` location, and use that node for the attributes we need
let attributes_entry = if let Ok(Some(abstract_origin)) =
tree_node.attr(gimli::DW_AT_abstract_origin)
{
match abstract_origin.value() {
gimli::AttributeValue::UnitRef(unit_ref) => {
// The abstract origin is a reference to another DIE, so we need to resolve that,
// but first we need to process the (optional) memory location using the current DIE.
self.process_memory_location(
debug_info,
tree_node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
abstract_entry = self.unit.entry(unit_ref)?;
Some(&abstract_entry)
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_abstract_origin {other_attribute_value:?}"
)));
None
}
}
} else {
Some(tree_node)
};
let specification_entry;
// We need to determine if we are working with a variable definition which refers to a declaration,
// and use that node for the attributes we need
let attributes_entry = if let Ok(Some(specification)) =
tree_node.attr(gimli::DW_AT_specification)
{
match specification.value() {
gimli::AttributeValue::UnitRef(unit_ref) => {
// The abstract origin is a reference to another DIE, so we need to resolve that,
// but first we need to process the (optional) memory location using the current DIE.
self.process_memory_location(
debug_info,
tree_node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
specification_entry = self.unit.entry(unit_ref)?;
Some(&specification_entry)
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_specification {other_attribute_value:?}"
)));
None
}
}
} else {
attributes_entry
};
// For variable attribute resolution, we need to resolve a few attributes in advance of looping through all the other ones.
// Try to exact the name first, for easier debugging
if let Some(entry) = attributes_entry.as_ref() {
if let Ok(Some(name)) = extract_name(debug_info, entry) {
child_variable.name = VariableName::Named(name);
}
}
if let Some(attributes_entry) = attributes_entry {
child_variable.source_location =
self.extract_source_location(debug_info, attributes_entry)?;
let mut variable_attributes = attributes_entry.attrs();
// Now loop through all the unit attributes to extract the remainder of the `Variable` definition.
while let Ok(Some(attr)) = variable_attributes.next() {
match attr.name() {
gimli::DW_AT_location | gimli::DW_AT_data_member_location => {
// The child_variable.location is calculated with attribute gimli::DW_AT_type, to ensure it
// gets done before DW_AT_type is processed
}
gimli::DW_AT_name => {
// This was done before we started looping through attributes, so we can ignore it.
}
gimli::DW_AT_decl_file | gimli::DW_AT_decl_line | gimli::DW_AT_decl_column => {
// Handled in extract_source_location()
}
gimli::DW_AT_containing_type => {
// TODO: Implement [documented RUST extensions to DWARF standard](https://rustc-dev-guide.rust-lang.org/debugging-support-in-rustc.html?highlight=dwarf#dwarf-and-rustc)
}
gimli::DW_AT_type => {
// The rules to calculate the type of a child variable are complex, and depend on a number of
// other attributes.
// Depending on the presence and value of these attributes, the [Variable::memory_location] may
// need to be calculated differently.
// - The `DW_AT_type` of the parent (e.g. is it a pointer, or a struct, or an array, etc.).
// - The `DW_AT_address_class of the child (we need to know if it is present, and if it has a
// value of 0 - unspecified)
// - The `DW_AT_data_member_location` of the child.
// - The `DW_AT_location` of the child.
// - The `DW_AT_byte_size` of the child.
// - The `DW_AT_name` of the data type node.
self.process_type_attribute(
&attr,
debug_info,
attributes_entry,
parent_variable,
child_variable,
memory,
frame_info,
cache,
)?;
}
gimli::DW_AT_enum_class => match attr.value() {
gimli::AttributeValue::Flag(true) => {
child_variable
.set_value(VariableValue::Valid(child_variable.type_name()));
}
gimli::AttributeValue::Flag(false) => {
child_variable.set_value(VariableValue::Error(
"Unimplemented: DW_AT_enum_class(false)".to_string(),
));
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_enum_class: {other_attribute_value:?}"
)));
}
},
gimli::DW_AT_const_value => {
let attr_value = attr.value();
let variable_value = if let Some(const_value) = attr_value.udata_value() {
VariableValue::Valid(const_value.to_string())
} else if let Some(const_value) = attr_value.sdata_value() {
VariableValue::Valid(const_value.to_string())
} else {
VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_const_value: {:?}",
attr_value
))
};
child_variable.set_value(variable_value)
}
gimli::DW_AT_alignment => {
// TODO: Figure out when (if at all) we need to do anything with DW_AT_alignment for the
// purposes of decoding data values.
}
gimli::DW_AT_artificial => {
// These are references for entries like discriminant values of `VariantParts`.
child_variable.name = VariableName::Artifical;
}
gimli::DW_AT_discr => match attr.value() {
// This calculates the active discriminant value for the `VariantPart`.
gimli::AttributeValue::UnitRef(unit_ref) => {
let discriminant_node = self.unit.entry(unit_ref)?;
let mut discriminant_variable =
cache.create_variable(parent_variable.variable_key, Some(self))?;
self.process_tree_node_attributes(
debug_info,
&discriminant_node,
parent_variable,
&mut discriminant_variable,
memory,
cache,
frame_info,
)?;
let variant_part = if discriminant_variable.is_valid() {
discriminant_variable
.to_string(cache)
.parse()
.unwrap_or(u64::MAX)
} else {
u64::MAX
};
parent_variable.role = VariantRole::VariantPart(variant_part);
cache.remove_cache_entry(discriminant_variable.variable_key)?;
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_discr {other_attribute_value:?}"
)));
}
},
gimli::DW_AT_linkage_name => {
let value = attr.value();
let raw_str = debug_info.dwarf.attr_string(&self.unit, value).ok();
let linkage_name = raw_str.and_then(|r| String::from_utf8(r.to_vec()).ok());
child_variable.linkage_name = linkage_name;
}
gimli::DW_AT_accessibility => {
// Silently ignore these for now.
// TODO: Add flag for public/private/protected for `Variable`, once we have a use case.
}
gimli::DW_AT_external => {
// TODO: Implement globally visible variables.
}
gimli::DW_AT_declaration => {
// Unimplemented.
}
gimli::DW_AT_encoding => {
// Ignore these. RUST data types handle this intrinsicly.
}
gimli::DW_AT_discr_value => {
// Processed by `extract_variant_discriminant()`.
}
gimli::DW_AT_byte_size => {
// Processed by `extract_byte_size()`.
}
gimli::DW_AT_abstract_origin => {
// Processed before looping through all attributes
}
gimli::DW_AT_address_class => {
// Processed by `extract_type()`
}
gimli::DW_AT_data_bit_offset
| gimli::DW_AT_bit_offset
| gimli::DW_AT_bit_size => {
// Processed by `extract_bitfield_info()`
}
other_attribute => {
tracing::info!(
"Unimplemented: Variable Attribute {:.100} : {:.100}, with children = {}",
format!("{:?}", other_attribute.static_string()),
format!("{:?}", attributes_entry.attr_value(other_attribute)),
attributes_entry.has_children()
);
}
}
}
}
// Need to process bitfields last as they need type information to be resolved first.
self.process_bitfield_info(child_variable, tree_node, cache)?;
child_variable.extract_value(memory, cache);
cache.update_variable(child_variable)?;
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn process_type_attribute(
&self,
attr: &gimli::Attribute<GimliReader>,
debug_info: &DebugInfo,
attributes_entry: &gimli::DebuggingInformationEntry<GimliReader>,
parent_variable: &Variable,
child_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
frame_info: StackFrameInfo<'_>,
cache: &mut VariableCache,
) -> Result<(), DebugError> {
match attr.value() {
gimli::AttributeValue::UnitRef(unit_ref) => {
// Reference to a type, or an entry to another type or a type modifier which will point to another type.
// Before we resolve that type tree, we need to resolve the current node's memory location.
// This is because the memory location of the type nodes and child variables often inherit this value.
self.process_memory_location(
debug_info,
attributes_entry,
parent_variable,
child_variable,
memory,
frame_info,
)?;
// Now resolve the referenced tree node for the type.
let referenced_type_tree_node = self.unit.entry(unit_ref)?;
self.extract_type(
debug_info,
&referenced_type_tree_node,
parent_variable,
child_variable,
memory,
cache,
frame_info,
)?;
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_type {other_attribute_value:?}"
)));
}
}
Ok(())
}
/// Recurse the ELF structure below the `parent_node`, and ...
/// - Consumes the `parent_variable`.
/// - Updates the `DebugInfo::VariableCache` with all descendant `Variable`s.
/// - Returns a clone of the most up-to-date `parent_variable` in the cache.
pub(crate) fn process_tree(
&self,
debug_info: &DebugInfo,
parent_node: gimli::EntriesTreeNode<GimliReader>,
parent_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
cache: &mut VariableCache,
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
if !parent_variable.is_valid() {
cache.update_variable(parent_variable)?;
return Ok(());
}
tracing::trace!("process_tree for parent {:?}", parent_variable.variable_key);
let mut child_nodes = parent_node.children();
while let Some(child_node) = child_nodes.next()? {
match child_node.entry().tag() {
gimli::DW_TAG_namespace => {
let variable_name =
if let Ok(Some(name)) = extract_name(debug_info, child_node.entry()) {
VariableName::Namespace(name)
} else {
VariableName::AnonymousNamespace
};
// See if this namespace already exists in the cache.
let mut namespace_variable = if let Some(existing_var) = cache
.get_variable_by_name_and_parent(
&variable_name,
parent_variable.variable_key,
) {
existing_var
} else {
let mut namespace_variable = Variable::new(Some(self));
namespace_variable.name = variable_name;
namespace_variable.type_name = VariableType::Namespace;
namespace_variable.memory_location = VariableLocation::Unavailable;
cache
.add_variable(parent_variable.variable_key, &mut namespace_variable)?;
namespace_variable
};
// Recurse for additional namespace variables.
self.process_tree(
debug_info,
child_node,
&mut namespace_variable,
memory,
cache,
frame_info,
)?;
// Do not keep empty namespaces around
if !cache.has_children(&namespace_variable) {
cache.remove_cache_entry(namespace_variable.variable_key)?;
}
}
gimli::DW_TAG_formal_parameter | gimli::DW_TAG_variable | gimli::DW_TAG_member => {
// This branch handles:
// - Parameters to functions.
// - Typical top-level variables.
// - Members of structured types.
// - Possible values for enumerators, used by extract_type() when processing DW_TAG_enumeration_type.
let mut child_variable =
cache.create_variable(parent_variable.variable_key, Some(self))?;
self.process_tree_node_attributes(
debug_info,
child_node.entry(),
parent_variable,
&mut child_variable,
memory,
cache,
frame_info,
)?;
// In the case of C code, we can have entries for both the declaration and the definition of a variable.
// We don't do anything with the declaration right now, so we remove it from the cache.
let is_declaration = if let Ok(Some(AttributeValue::Flag(value))) =
child_node.entry().attr_value(gimli::DW_AT_declaration)
{
value
} else {
false
};
// Do not keep or process PhantomData nodes, or variant parts that we have already used.
if is_declaration
|| child_variable.type_name.is_phantom_data()
|| child_variable.name == VariableName::Artifical
{
cache.remove_cache_entry(child_variable.variable_key)?;
} else if child_variable.is_valid() {
// Recursively process each child.
self.process_tree(
debug_info,
child_node,
&mut child_variable,
memory,
cache,
frame_info,
)?;
}
}
gimli::DW_TAG_variant_part => {
// We need to recurse through the children, to find the DW_TAG_variant with discriminant matching
// the DW_TAG_variant, and ONLY add it's children to the parent variable.
// The structure looks like this (there are other nodes in the structure that we use and discard
// before we get here):
// Level 1: --> An actual variable that has a variant value
// Level 2: --> this DW_TAG_variant_part node (some child nodes are used to calc the active
// Variant discriminant)
// Level 3: --> Some DW_TAG_variant's that have discriminant values to be matched against
// the discriminant
// Level 4: --> The actual variables, with matching discriminant, which will be added
// to `parent_variable`
// TODO: Handle Level 3 nodes that belong to a DW_AT_discr_list, instead of having a discreet
// DW_AT_discr_value
let mut child_variable =
cache.create_variable(parent_variable.variable_key, Some(self))?;
// To determine the discriminant, we use the following rules:
// - If there is no DW_AT_discr, then there will be a single DW_TAG_variant, and this will be the
// matching value. In the code here, we assign a default value of u64::MAX to both, so that they
// will be matched as belonging together (https://dwarfstd.org/ShowIssue.php?issue=180517.2)
// - TODO: The [DWARF] standard, 5.7.10, allows for a case where there is no DW_AT_discr attribute,
// but a DW_AT_type to represent the tag. I have not seen that generated from RUST yet.
// - If there is a DW_AT_discr that has a value, then this is a reference to the member entry for
// the discriminant. This value will be resolved to match against the appropriate DW_TAG_variant.
// - TODO: The [DWARF] standard, 5.7.10, allows for a DW_AT_discr_list, but I have not seen that
// generated from RUST yet.
parent_variable.role = VariantRole::VariantPart(u64::MAX);
self.process_tree_node_attributes(
debug_info,
child_node.entry(),
parent_variable,
&mut child_variable,
memory,
cache,
frame_info,
)?;
// At this point we have everything we need (It has updated the parent's `role`) from the
// child_variable, so elimnate it before we continue ...
cache.remove_cache_entry(child_variable.variable_key)?;
self.process_tree(
debug_info,
child_node,
parent_variable,
memory,
cache,
frame_info,
)?;
}
// Variant is a child of a structure, and one of them should have a discriminant value to match the
// DW_TAG_variant_part
gimli::DW_TAG_variant => {
// We only need to do this if we have not already found our variant,
if !cache.has_children(parent_variable) {
let mut child_variable =
cache.create_variable(parent_variable.variable_key, Some(self))?;
self.extract_variant_discriminant(&child_node, &mut child_variable)?;
self.process_tree_node_attributes(
debug_info,
child_node.entry(),
parent_variable,
&mut child_variable,
memory,
cache,
frame_info,
)?;
if child_variable.is_valid() {
if let VariantRole::Variant(discriminant) = child_variable.role {
// Only process the discriminant variants or when we eventually encounter the default
if parent_variable.role == VariantRole::VariantPart(discriminant)
|| discriminant == u64::MAX
{
self.process_memory_location(
debug_info,
child_node.entry(),
parent_variable,
&mut child_variable,
memory,
frame_info,
)?;
// Recursively process each relevant child node.
self.process_tree(
debug_info,
child_node,
&mut child_variable,
memory,
cache,
frame_info,
)?;
if child_variable.is_valid() {
// Eliminate intermediate DWARF nodes, but keep their children
cache.adopt_grand_children(
parent_variable,
&child_variable,
)?;
}
} else {
cache.remove_cache_entry(child_variable.variable_key)?;
}
}
} else {
cache.remove_cache_entry(child_variable.variable_key)?;
}
}
}
gimli::DW_TAG_lexical_block => {
let Some(program_counter) = frame_info
.registers
.get_program_counter()
.and_then(|reg| reg.value)
else {
return Err(DebugError::WarnAndContinue {
message:
"Cannot unwind `Variable` without a valid PC (program_counter)"
.to_string(),
});
};
let program_counter = program_counter.try_into()?;
// Determine the low and high ranges for which this DIE and children are in scope. These can be
// specified discreetly, or in ranges.
let mut in_scope = false;
if let Ok(Some(low_pc_attr)) = child_node.entry().attr(gimli::DW_AT_low_pc) {
let low_pc = match low_pc_attr.value() {
gimli::AttributeValue::Addr(value) => value,
_other => u64::MAX,
};
let high_pc = if let Ok(Some(high_pc_attr)) =
child_node.entry().attr(gimli::DW_AT_high_pc)
{
match high_pc_attr.value() {
gimli::AttributeValue::Addr(addr) => addr,
gimli::AttributeValue::Udata(unsigned_offset) => {
low_pc + unsigned_offset
}
_other => 0_u64,
}
} else {
0_u64
};
if low_pc == u64::MAX || high_pc == 0_u64 {
// These have not been specified correctly ... something went wrong.
parent_variable.set_value(VariableValue::Error("Error: Processing of variables failed because of invalid/unsupported scope information. Please log a bug at 'https://github.com/probe-rs/probe-rs/issues'".to_string()));
}
let block_range = gimli::Range {
begin: low_pc,
end: high_pc,
};
if block_range.contains(program_counter) {
// We have established positive scope, so no need to continue.
in_scope = true;
}
// No scope info yet, so keep looking.
};
// Searching for ranges has a bit more overhead, so ONLY do this if do not have scope confirmed yet.
if !in_scope {
if let Ok(Some(ranges)) = child_node.entry().attr(gimli::DW_AT_ranges) {
match ranges.value() {
gimli::AttributeValue::RangeListsRef(raw_range_lists_offset) => {
let range_lists_offset = debug_info
.dwarf
.ranges_offset_from_raw(&self.unit, raw_range_lists_offset);
if let Ok(mut range_iter) =
debug_info.dwarf.ranges(&self.unit, range_lists_offset)
{
in_scope = range_iter.contains(program_counter);
}
}
other_range_attribute => {
let error = format!(
"Found unexpected scope attribute: {:?} for variable {:?}",
other_range_attribute, parent_variable.name
);
parent_variable.set_value(VariableValue::Error(error));
}
}
}
}
if in_scope {
// This is IN scope.
// Recursively process each child, but pass the parent_variable, so that we don't create
// intermediate nodes for scope identifiers.
self.process_tree(
debug_info,
child_node,
parent_variable,
memory,
cache,
frame_info,
)?;
} else {
// This lexical block is NOT in scope, but other children of this parent may well be in scope,
// so do NOT invalidate the parent_variable.
}
}
gimli::DW_TAG_template_type_parameter => {
// The parent node for Rust generic type parameter
// These show up as a child of structures they belong to and points to the type that matches the
// template.
// They are followed by a sibling of `DW_TAG_member` with name '__0' that has all the attributes
// needed to resolve the value.
// TODO: If there are multiple types supported, then I suspect there will be additional
// `DW_TAG_member` siblings. We will need to match those correctly.
}
// Inlined subroutines are handled at the StackFame level
gimli::DW_TAG_inlined_subroutine
| gimli::DW_TAG_base_type
| gimli::DW_TAG_pointer_type
| gimli::DW_TAG_structure_type
| gimli::DW_TAG_enumeration_type
| gimli::DW_TAG_array_type
| gimli::DW_TAG_subroutine_type
| gimli::DW_TAG_subprogram
| gimli::DW_TAG_union_type
| gimli::DW_TAG_typedef
| gimli::DW_TAG_const_type
| gimli::DW_TAG_volatile_type => {
// These will be processed elsewhere, or not at all, until we discover a use case that needs to be
// implemented.
}
unimplemented => {
tracing::debug!(
"Unimplemented: Encountered unimplemented DwTag {:?} for Variable {:?}",
unimplemented.static_string(),
parent_variable.name
)
}
}
}
parent_variable.extract_value(memory, cache);
cache.update_variable(parent_variable)?;
Ok(())
}
/// Extract the range information for an array.
///
/// This is expected to be contained in an entry with type `DW_TAG_subrange_type`,
/// looking like this:
///
/// ```text
/// 0x00000133: DW_TAG_subrange_type
/// DW_AT_type (0x00000024 "unsigned int")
/// DW_AT_upper_bound (0x44)
/// ```
/// Note that there might be multiple ranges, so this function returns a vector of ranges.
fn extract_array_range(
&self,
array_parent_node: UnitOffset,
) -> Result<Vec<Range<u64>>, DebugError> {
let mut tree = self.unit.entries_tree(Some(array_parent_node))?;
let root = tree.root()?;
let mut children = root.children();
let mut ranges = vec![];
while let Some(child) = children.next()? {
match child.entry().tag() {
gimli::DW_TAG_subrange_type => {
if let Some(range) = self.extract_array_range_attribute(child.entry())? {
ranges.push(range);
}
}
other => tracing::debug!(
"Ignoring unexpected child tag {} while extracting array range",
other
),
}
}
Ok(ranges)
}
/// Extract the array range values
///
/// See [`extract_array_range()`](Self::extract_array_range()) for more information.
fn extract_array_range_attribute(
&self,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
) -> Result<Option<Range<u64>>, DebugError> {
let mut variable_attributes = entry.attrs();
let mut lower_bound = None;
let mut upper_bound = None;
// Now loop through all the unit attributes to extract the remainder of the `Variable` definition.
while let Ok(Some(attr)) = variable_attributes.next() {
match attr.name() {
// Property of variables that are of DW_TAG_subrange_type.
gimli::DW_AT_lower_bound => match attr.value().udata_value() {
Some(bound) => lower_bound = Some(bound),
None => {
return Err(DebugError::Other(format!(
"Unimplemented: Attribute Value for DW_AT_lower_bound: {:?}",
attr.value()
)));
}
},
gimli::DW_AT_count => match attr.value().udata_value() {
Some(count) => upper_bound = Some(count),
None => {
return Err(DebugError::Other(format!(
"Unimplemented: Attribute Value for DW_AT_count: {:?}",
attr.value()
)));
}
},
gimli::DW_AT_upper_bound => {
match attr.value().udata_value() {
// Rust ranges are exclusive, but the DWARF upper bound is inclusive.
Some(bound) => upper_bound = Some(bound + 1),
None => {
return Err(DebugError::Other(format!(
"Unimplemented: Attribute Value for DW_AT_upper_bound: {:?}",
attr.value()
)));
}
}
}
// Some compilers specify the type of the array size, but we don't use this information
// currently.
gimli::DW_AT_type => (),
other_attribute => {
tracing::debug!(
"Unimplemented: Ignoring attribute {} while extracting array range",
other_attribute,
);
}
}
}
if let Some(upper_bound) = upper_bound {
Ok(Some(lower_bound.unwrap_or_default()..upper_bound))
} else {
Ok(None)
}
}
/// Compute the discriminant value of a DW_TAG_variant variable. If it is not explicitly captured in the DWARF,
/// then it is the default value.
pub(crate) fn extract_variant_discriminant(
&self,
node: &gimli::EntriesTreeNode<GimliReader>,
variable: &mut Variable,
) -> Result<(), DebugError> {
variable.role = match node.entry().attr(gimli::DW_AT_discr_value) {
Ok(Some(discr_value_attr)) => {
let attr_value = discr_value_attr.value();
let variant = if let Some(const_value) = attr_value.udata_value() {
const_value
} else {
variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_discr_value: {:.100}",
format!("{attr_value:?}")
)));
u64::MAX
};
VariantRole::Variant(variant)
}
Ok(None) => {
// In the case where the variable is a DW_TAG_variant, but has NO DW_AT_discr_value, then this is the
// "default" to be used.
VariantRole::Variant(u64::MAX)
}
Err(_error) => {
variable.set_value(VariableValue::Error(format!(
"Error: Retrieving DW_AT_discr_value for variable {variable:?}"
)));
VariantRole::NonVariant
}
};
Ok(())
}
/// Compute the type (base to complex) of a variable. Only base types have values.
/// Complex types are references to node trees, that require traversal in similar ways to other DIE's like functions.
/// This means [`extract_type()`][e] will call the recursive [`process_tree()`][p] method to build an integrated
/// `tree` of variables with types and values.
///
/// [e]: Self::extract_type()
/// [p]: Self::process_tree()
#[allow(clippy::too_many_arguments)]
fn extract_type(
&self,
debug_info: &DebugInfo,
node: &gimli::DebuggingInformationEntry<GimliReader>,
parent_variable: &Variable,
child_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
cache: &mut VariableCache,
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
let type_name = match self.extract_type_name(debug_info, node) {
Ok(name) => name,
Err(error) => {
let message = format!("Error: evaluating type name: {error:?}");
child_variable.set_value(VariableValue::Error(message.clone()));
Some(message)
}
};
if !child_variable.is_valid() {
cache.update_variable(child_variable)?;
return Ok(());
}
match node.tag() {
gimli::DW_TAG_base_type => {
child_variable.type_name = VariableType::Base(
type_name.unwrap_or_else(|| "<unnamed base type>".to_string()),
);
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
}
gimli::DW_TAG_pointer_type => {
child_variable.type_name = VariableType::Pointer(type_name);
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
// This needs to resolve the pointer before the regular recursion can continue.
match node.attr_value(gimli::DW_AT_type) {
Ok(Some(gimli::AttributeValue::UnitRef(unit_ref))) => {
// NOTE: surprisingly, as opposed to `void*`, this can be a `const void*`.
if !cache.has_children(child_variable) {
let mut referenced_variable =
cache.create_variable(child_variable.variable_key, Some(self))?;
// TODO: This is langauge specific, and should be moved to the language implementations.
referenced_variable.name = match &child_variable.name {
VariableName::Named(name) if name.starts_with("Some ") => VariableName::Named(name.replacen('&', "*", 1)) ,
VariableName::Named(name) => VariableName::Named(format!("*{name}")),
other => VariableName::Named(format!("Error: Unable to generate name, parent variable does not have a name but is special variable {other:?}")),
};
let referenced_node = self.unit.entry(unit_ref)?;
self.extract_type(
debug_info,
&referenced_node,
child_variable,
&mut referenced_variable,
memory,
cache,
frame_info,
)?;
if matches!(referenced_variable.type_name.inner(), VariableType::Base(name) if name == "()")
{
// Only use this, if it is NOT a unit datatype.
cache.remove_cache_entry(referenced_variable.variable_key)?;
}
}
}
Ok(Some(other_attribute_value)) => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_type {:.100}",
format!("{other_attribute_value:?}")
)));
}
Ok(None) => {
// NOTE: this can be a `void*` pointer. Some C compilers model `void` as
// a type without `DW_AT_type`.
// FIXME: this differs from `const void*` which may be surprising. Should we
// add a dummy child variable?
child_variable.set_value(
self.language.process_tag_with_no_type(
child_variable,
gimli::DW_TAG_pointer_type,
),
);
}
Err(error) => {
child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to decode pointer reference: {error:?}"
)));
}
}
}
gimli::DW_TAG_structure_type => {
let type_name = type_name.unwrap_or_else(|| "<unnamed struct>".to_string());
child_variable.type_name = VariableType::Struct(type_name.clone());
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
if child_variable.memory_location != VariableLocation::Unavailable {
// The default behaviour is to defer the processing of child types.
child_variable.variable_node_type =
VariableNodeType::TypeOffset(self.debug_info_offset()?, node.offset());
// In some cases, it really simplifies the UX if we can auto resolve the
// children and derive a value that is visible at first glance to the user.
if self.language.auto_resolve_children(&type_name) {
let temp_node_type = std::mem::replace(
&mut child_variable.variable_node_type,
VariableNodeType::RecurseToBaseType,
);
let mut tree = self.unit.entries_tree(Some(node.offset()))?;
self.process_tree(
debug_info,
tree.root()?,
child_variable,
memory,
cache,
frame_info,
)?;
child_variable.variable_node_type = temp_node_type;
}
} else {
// If something is already broken, then do nothing ...
child_variable.variable_node_type = VariableNodeType::DoNotRecurse;
}
}
gimli::DW_TAG_enumeration_type => {
self.extract_enumeration_type(
child_variable,
type_name,
debug_info,
node,
parent_variable,
memory,
frame_info,
)?;
}
gimli::DW_TAG_array_type => {
self.extract_array_type(
node,
debug_info,
parent_variable,
child_variable,
memory,
frame_info,
cache,
)?;
}
gimli::DW_TAG_union_type => {
child_variable.type_name =
VariableType::Base(type_name.unwrap_or_else(|| "<unnamed union>".to_string()));
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
let mut tree = self.unit.entries_tree(Some(node.offset()))?;
// Recursively process a child types.
self.process_tree(
debug_info,
tree.root()?,
child_variable,
memory,
cache,
frame_info,
)?;
if child_variable.is_valid() && !cache.has_children(child_variable) {
// Empty structs don't have values.
child_variable.set_value(VariableValue::Valid(child_variable.type_name()));
}
}
gimli::DW_TAG_subroutine_type => {
// The type_name will be found in the DW_AT_TYPE child of this entry.
// NOTE: There might be value in going beyond just getting the name, but also the parameters (children) and return type (extract_type()).
match node.attr(gimli::DW_AT_type) {
Ok(Some(data_type_attribute)) => match data_type_attribute.value() {
gimli::AttributeValue::UnitRef(unit_ref) => {
let subroutine_type_node =
self.unit.header.entry(&self.unit.abbreviations, unit_ref)?;
child_variable.type_name =
match extract_name(debug_info, &subroutine_type_node) {
Ok(Some(name_attr)) => VariableType::Other(name_attr),
Ok(None) => VariableType::Unknown,
Err(error) => VariableType::Other(format!(
"Error: evaluating subroutine type name: {error:?} "
)),
};
}
other_attribute_value => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_type {:.100}",
format!("{other_attribute_value:?}")
)));
}
},
Ok(None) => {
// TODO: Better indication for no return value
child_variable
.set_value(VariableValue::Valid("<No Return Value>".to_string()));
child_variable.type_name = VariableType::Unknown;
}
Err(error) => {
child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to decode subroutine type reference: {error:?}"
)));
}
}
}
other @ (gimli::DW_TAG_typedef
| gimli::DW_TAG_const_type
| gimli::DW_TAG_volatile_type
| gimli::DW_TAG_restrict_type
| gimli::DW_TAG_atomic_type) => match node.attr(gimli::DW_AT_type) {
Ok(Some(attr)) => {
self.process_type_attribute(
&attr,
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
cache,
)?;
let modifier = match other {
gimli::DW_TAG_typedef => {
if child_variable.variable_node_type.is_deferred() {
// Invalidate the value so we can read it again using the resolved
// type information.
child_variable.value = VariableValue::Empty;
}
Modifier::Typedef(
type_name.unwrap_or_else(|| "<unnamed typedef>".to_string()),
)
}
gimli::DW_TAG_const_type => Modifier::Const,
gimli::DW_TAG_volatile_type => Modifier::Volatile,
gimli::DW_TAG_restrict_type => Modifier::Restrict,
gimli::DW_TAG_atomic_type => Modifier::Atomic,
_ => unreachable!(),
};
child_variable.type_name = VariableType::Modified(
modifier,
Box::new(std::mem::replace(
&mut child_variable.type_name,
VariableType::Unknown,
)),
);
}
Ok(None) => child_variable.set_value(
self.language
.process_tag_with_no_type(child_variable, other),
),
Err(error) => child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to decode {other:?} type reference: {error:?}"
))),
},
// Do not expand this type.
other => {
child_variable.set_value(VariableValue::Error(format!(
"<unimplemented: type: {}>",
other
)));
child_variable.type_name = VariableType::Other("unimplemented".to_string());
cache.remove_cache_entry_children(child_variable.variable_key)?;
}
}
child_variable.extract_value(memory, cache);
cache.update_variable(child_variable)?;
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn extract_array_type(
&self,
node: &DebuggingInformationEntry<GimliReader>,
debug_info: &DebugInfo,
parent_variable: &Variable,
child_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
frame_info: StackFrameInfo,
cache: &mut VariableCache,
) -> Result<(), DebugError> {
let subranges = match self.extract_array_range(node.offset()) {
Ok(subranges) => subranges,
Err(error) => {
child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to extract array range: {error:?}"
)));
return Ok(());
}
};
match node.attr_value(gimli::DW_AT_type) {
Ok(Some(gimli::AttributeValue::UnitRef(unit_ref))) => {
// The memory location of array members build on top of the memory location of the child_variable.
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
// Now we can explode the array members.
if let Ok(array_member_type_node) = self.unit.entry(unit_ref) {
// - Next, process this DW_TAG_array_type's DW_AT_type full tree.
// - We have to do this repeatedly, for every array member in the range.
// - We have to do this recursively because some compilers encode nested arrays as multiple subranges on the same node.
self.expand_array_members(
debug_info,
&array_member_type_node,
cache,
child_variable,
memory,
&subranges,
frame_info,
)?;
};
}
Ok(Some(other_attribute_value)) => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_type {other_attribute_value:?}"
)));
}
Ok(None) => {
child_variable.set_value(
self.language
.process_tag_with_no_type(child_variable, gimli::DW_TAG_array_type),
);
}
Err(error) => {
child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to decode pointer reference: {error:?}"
)));
}
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn extract_enumeration_type(
&self,
child_variable: &mut Variable,
type_name: Option<String>,
debug_info: &DebugInfo,
node: &DebuggingInformationEntry<GimliReader>,
parent_variable: &Variable,
memory: &mut dyn MemoryInterface,
frame_info: StackFrameInfo,
) -> Result<(), DebugError> {
child_variable.type_name =
VariableType::Enum(type_name.unwrap_or_else(|| "<unnamed enum>".to_string()));
self.process_memory_location(
debug_info,
node,
parent_variable,
child_variable,
memory,
frame_info,
)?;
let mut tree = self.unit.entries_tree(Some(node.offset()))?;
let enumerator_values = self.process_enumerator(debug_info, tree.root()?)?;
if !(parent_variable.is_valid() && child_variable.is_valid()) {
return Ok(());
}
let value = if let VariableLocation::Address(address) = child_variable.memory_location {
// NOTE: hard-coding value of variable.byte_size to 1 ... replace with code if necessary.
let mut buff = 0u8;
memory.read(address, std::slice::from_mut(&mut buff))?;
let this_enum_const_value = buff.to_string();
let enumumerator_value = match enumerator_values
.iter()
.find(|(_name, value)| value.to_string() == this_enum_const_value)
{
Some((name, _value)) => name,
None => &VariableName::Named("<Error: Unresolved enum value>".to_string()),
};
self.language
.format_enum_value(&child_variable.type_name, enumumerator_value)
} else {
VariableValue::Error(format!(
"Unsupported variable location {:?}",
child_variable.memory_location
))
};
child_variable.set_value(value);
Ok(())
}
/// Extract the different variants of an enumeration
///
/// This is used for C-style enums, where the enum is an integer type,
/// and all the different variants are different integer values.
fn process_enumerator(
&self,
debug_info: &DebugInfo,
parent_node: gimli::EntriesTreeNode<GimliReader>,
) -> Result<Vec<(VariableName, VariableValue)>, DebugError> {
let mut enumerator_values = Vec::new();
let mut child_nodes = parent_node.children();
while let Some(child_node) = child_nodes.next()? {
match child_node.entry().tag() {
gimli::DW_TAG_enumerator => {
let attributes_entry = child_node.entry();
let name_result = extract_name(debug_info, attributes_entry);
let Some(attr_value) = attributes_entry.attr_value(gimli::DW_AT_const_value)?
else {
// Ignore enumerators without a value.
continue;
};
let variable_value = if let Some(const_value) = attr_value.udata_value() {
VariableValue::Valid(const_value.to_string())
} else if let Some(const_value) = attr_value.sdata_value() {
VariableValue::Valid(const_value.to_string())
} else {
VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_const_value: {:?}",
attr_value
))
};
let enumerator_name = if let Ok(Some(ref name)) = name_result {
name.to_string()
} else {
tracing::warn!("Enumerator has no name");
format!("<unknown enumerator {}", enumerator_values.len())
};
enumerator_values.push((VariableName::Named(enumerator_name), variable_value))
}
// Function implemented on the enum type, ignored here.
gimli::DW_TAG_subprogram => (),
other => {
tracing::debug!("Ignoring tag {other} under DW_TAG_enumeration_type");
}
}
}
Ok(enumerator_values)
}
/// Create child variable entries to represent array members and their values.
#[allow(clippy::too_many_arguments)]
fn expand_array_members(
&self,
debug_info: &DebugInfo,
array_member_type_node: &DebuggingInformationEntry<GimliReader>,
cache: &mut VariableCache,
array_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
subranges: &[Range<u64>],
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
let Some((current_range, remaining_ranges)) = subranges.split_first() else {
array_variable.set_value(VariableValue::Error(
"Error processing range for array, unexpected empty range. \
This is a known issue, see https://github.com/probe-rs/probe-rs/issues/2687"
.to_string(),
));
return Ok(());
};
// We need to process at least one element to get the array's type right.
let explode_range = if current_range.is_empty() {
0..1
} else {
current_range.clone()
};
for member_index in explode_range.clone() {
let mut array_member_variable =
cache.create_variable(array_variable.variable_key, Some(self))?;
array_member_variable.name = VariableName::Indexed(member_index);
array_member_variable.source_location = array_variable.source_location.clone();
// Set the byte size and push the element to its correct location.
// This call only sets size if:
// - The parent array's size is known (after processing its first index)
// - Or the member is a leaf member (i.e. not an array)
// The first index of the parent array will receive its binary size after processing
// its children.
self.process_memory_location(
debug_info,
array_member_type_node,
array_variable,
&mut array_member_variable,
memory,
frame_info,
)?;
if !remaining_ranges.is_empty() {
// Recursively process the nested array and place
// its items under the current variable.
self.expand_array_members(
debug_info,
array_member_type_node,
cache,
&mut array_member_variable,
memory,
remaining_ranges,
frame_info,
)?;
} else {
self.extract_type(
debug_info,
array_member_type_node,
array_variable,
&mut array_member_variable,
memory,
cache,
frame_info,
)?;
}
if member_index == explode_range.start {
let item_count = current_range.clone().count();
array_variable.type_name = VariableType::Array {
count: item_count,
item_type_name: Box::new(array_member_variable.type_name.clone()),
};
if let Some(item_byte_size) = array_member_variable.byte_size {
array_variable.byte_size = Some(item_byte_size * item_count as u64);
}
}
array_member_variable.extract_value(memory, cache);
cache.update_variable(&array_member_variable)?;
}
// We want to remove the child entry if the array is empty. It was needed to process the
// array type, but it doesn't actually exist.
if current_range.is_empty() {
cache.remove_cache_entry_children(array_variable.variable_key)?;
}
Ok(())
}
/// Process a memory location for a variable, by first evaluating the `byte_size`, and then calling the `self.extract_location`.
#[allow(clippy::too_many_arguments)]
pub(crate) fn process_memory_location(
&self,
debug_info: &DebugInfo,
node_die: &gimli::DebuggingInformationEntry<GimliReader>,
parent_variable: &Variable,
child_variable: &mut Variable,
memory: &mut dyn MemoryInterface,
frame_info: StackFrameInfo<'_>,
) -> Result<(), DebugError> {
// The `byte_size` is used for arrays, etc. to offset the memory location of the next element.
// For nested arrays, the `byte_size` may need to be calculated as the product of the `byte_size` and array upper bound.
child_variable.byte_size = child_variable
.byte_size
.or_else(|| extract_byte_size(node_die))
.or_else(|| {
if let VariableType::Array { count, .. } = parent_variable.type_name {
parent_variable.byte_size.map(|byte_size| {
let array_member_count = count as u64;
if array_member_count > 0 {
byte_size / array_member_count
} else {
byte_size
}
})
} else {
None
}
});
if child_variable.memory_location == VariableLocation::Unknown {
// Any expected errors should be handled by one of the variants in the Ok() result.
let expression_result = match self.extract_location(
debug_info,
node_die,
&parent_variable.memory_location,
memory,
frame_info,
) {
Ok(expr) => expr,
Err(debug_error) => {
// An Err() result indicates something happened that we have not accounted for. Currently, we support all known location expressions for non-optimized code.
child_variable.memory_location = VariableLocation::Error(
"Unsupported location expression while resolving the location. Please reduce optimization levels in your build profile.".to_string()
);
let variable_name = &child_variable.name;
tracing::debug!("Encountered an unsupported location expression while resolving the location for variable {variable_name:?}: {debug_error:?}. Please reduce optimization levels in your build profile.");
return Ok(());
}
};
match expression_result {
ExpressionResult::Value(value_from_expression @ VariableValue::Valid(_)) => {
// The ELF contained the actual value, not just a location to it.
child_variable.memory_location = VariableLocation::Value;
child_variable.set_value(value_from_expression);
}
ExpressionResult::Value(value_from_expression) => {
child_variable.set_value(value_from_expression);
}
ExpressionResult::Location(VariableLocation::Unavailable) => {
child_variable.set_value(VariableValue::Error(
"<value optimized away by compiler, out of scope, or dropped>".to_string(),
));
}
ExpressionResult::Location(
ref location @ VariableLocation::Error(ref error_message)
| ref location @ VariableLocation::Unsupported(ref error_message),
) => {
child_variable.set_value(VariableValue::Error(error_message.clone()));
child_variable.memory_location = location.clone();
}
ExpressionResult::Location(location_from_expression) => {
child_variable.memory_location = location_from_expression;
}
}
}
self.handle_memory_location_special_cases(
node_die.offset(),
child_variable,
parent_variable,
memory,
);
Ok(())
}
/// - Find the location using either DW_AT_location, DW_AT_data_member_location, or DW_AT_frame_base attribute.
///
/// Return values are implemented as follows:
/// - `Result<_, DebugError>`: This happens when we encounter an error we did not expect, and will propagate upwards until the debugger request is failed. **NOT GRACEFUL**, and should be avoided.
/// - `Result<ExpressionResult::Value(),_>`: The value is statically stored in the binary, and can be returned, and has no relevant memory location.
/// - `Result<ExpressionResult::Location(),_>`: One of the variants of VariableLocation, and needs to be interpreted for handling the 'expected' errors we encounter during evaluation.
pub(crate) fn extract_location(
&self,
debug_info: &DebugInfo,
node_die: &gimli::DebuggingInformationEntry<GimliReader>,
parent_location: &VariableLocation,
memory: &mut dyn MemoryInterface,
frame_info: StackFrameInfo<'_>,
) -> Result<ExpressionResult, DebugError> {
trait ResultExt {
/// Turns UnwindIncompleteResults into Unavailable locations
fn convert_incomplete(self) -> Result<ExpressionResult, DebugError>;
}
impl ResultExt for Result<ExpressionResult, DebugError> {
fn convert_incomplete(self) -> Result<ExpressionResult, DebugError> {
match self {
Ok(result) => Ok(result),
Err(DebugError::WarnAndContinue { message }) => {
tracing::warn!("UnwindIncompleteResults: {:?}", message);
Ok(ExpressionResult::Location(VariableLocation::Unavailable))
}
e => e,
}
}
}
let mut attrs = node_die.attrs();
while let Ok(Some(attr)) = attrs.next() {
let result = match attr.name() {
gimli::DW_AT_location
| gimli::DW_AT_frame_base
| gimli::DW_AT_data_member_location => match attr.value() {
gimli::AttributeValue::Exprloc(expression) => self
.evaluate_expression(memory, expression, frame_info)
.convert_incomplete()?,
gimli::AttributeValue::Udata(offset_from_location) => {
let location = if let VariableLocation::Address(address) = parent_location {
let Some(location) = address.checked_add(offset_from_location) else {
return Err(DebugError::WarnAndContinue {
message: "Overflow calculating variable address"
.to_string(),
});
};
VariableLocation::Address(location)
} else {
parent_location.clone()
};
ExpressionResult::Location(location)
}
gimli::AttributeValue::LocationListsRef(location_list_offset) => self
.evaluate_location_list_ref(
debug_info,
location_list_offset,
frame_info,
memory,
)
.convert_incomplete()?,
other_attribute_value => {
ExpressionResult::Location(VariableLocation::Unsupported(format!(
"Unimplemented: extract_location() Could not extract location from: {:.100}",
format!("{other_attribute_value:?}")
)))
}
},
gimli::DW_AT_address_class => {
let location = match attr.value() {
gimli::AttributeValue::AddressClass(gimli::DwAddr(0)) => {
// We pass on the location of the parent, which will later to be used along with DW_AT_data_member_location to calculate the location of this variable.
parent_location.clone()
}
gimli::AttributeValue::AddressClass(address_class) => {
VariableLocation::Unsupported(format!(
"Unimplemented: extract_location() found unsupported DW_AT_address_class(gimli::DwAddr({address_class:?}))"
))
}
other_attribute_value => {
VariableLocation::Unsupported(format!(
"Unimplemented: extract_location() found invalid DW_AT_address_class: {:.100}",
format!("{other_attribute_value:?}")
))
}
};
ExpressionResult::Location(location)
}
_other_attributes => {
// These will be handled elsewhere.
continue;
}
};
return Ok(result);
}
// If we get here, we did not find a location attribute, then leave the value as Unknown.
Ok(ExpressionResult::Location(VariableLocation::Unknown))
}
fn evaluate_location_list_ref(
&self,
debug_info: &DebugInfo,
location_list_offset: gimli::LocationListsOffset,
frame_info: StackFrameInfo<'_>,
memory: &mut dyn MemoryInterface,
) -> Result<ExpressionResult, DebugError> {
let mut locations = match debug_info.locations_section.locations(
location_list_offset,
self.unit.header.encoding(),
self.unit.low_pc,
&debug_info.address_section,
self.unit.addr_base,
) {
Ok(locations) => locations,
Err(error) => {
return Ok(ExpressionResult::Location(VariableLocation::Error(
format!("Error: Resolving variable Location: {:?}", error),
)))
}
};
let Some(program_counter) = frame_info
.registers
.get_program_counter()
.and_then(|reg| reg.value)
else {
return Ok(ExpressionResult::Location(VariableLocation::Error(
"Cannot determine variable location without a valid program counter.".to_string(),
)));
};
let mut expression = None;
'find_range: loop {
let location = match locations.next() {
Ok(Some(location_lists_entry)) => location_lists_entry,
Ok(None) => break 'find_range,
Err(error) => {
return Ok(ExpressionResult::Location(VariableLocation::Error(
format!("Error while iterating LocationLists for this variable: {error:?}"),
)));
}
};
if let Ok(program_counter) = program_counter.try_into() {
if location.range.contains(program_counter) {
expression = Some(location.data);
break 'find_range;
}
}
}
let Some(valid_expression) = expression else {
return Ok(ExpressionResult::Location(VariableLocation::Unavailable));
};
self.evaluate_expression(memory, valid_expression, frame_info)
}
/// Evaluate a [`gimli::Expression`] as a valid memory location.
/// Return values are implemented as follows:
/// - `Result<_, DebugError>`: This happens when we encounter an error we did not expect, and will propagate upwards until the debugger request is failed. NOT GRACEFUL, and should be avoided.
/// - `Result<ExpressionResult::Value(),_>`: The value is statically stored in the binary, and can be returned, and has no relevant memory location.
/// - `Result<ExpressionResult::Location(),_>`: One of the variants of VariableLocation, and needs to be interpreted for handling the 'expected' errors we encounter during evaluation.
pub(crate) fn evaluate_expression(
&self,
memory: &mut dyn MemoryInterface,
expression: gimli::Expression<GimliReader>,
frame_info: StackFrameInfo<'_>,
) -> Result<ExpressionResult, DebugError> {
fn evaluate_address(address: u64, memory: &mut dyn MemoryInterface) -> ExpressionResult {
let location = if address >= u32::MAX as u64 && !memory.supports_native_64bit_access() {
VariableLocation::Error(format!("The memory location for this variable value ({:#010X}) is invalid. Please report this as a bug.", address))
} else {
VariableLocation::Address(address)
};
ExpressionResult::Location(location)
}
let pieces = self.expression_to_piece(memory, expression, frame_info)?;
if pieces.is_empty() {
return Ok(ExpressionResult::Location(VariableLocation::Error(
"Error: expr_to_piece() returned 0 results".to_string(),
)));
}
if pieces.len() > 1 {
return Ok(ExpressionResult::Location(VariableLocation::Error(
"<unsupported memory implementation>".to_string(),
)));
}
let result = match &pieces[0].location {
Location::Empty => {
// This means the value was optimized away.
ExpressionResult::Location(VariableLocation::Unavailable)
}
Location::Address { address: 0 } => {
let error = "The value of this variable may have been optimized out of the debug info, by the compiler.".to_string();
ExpressionResult::Location(VariableLocation::Error(error))
}
Location::Address { address } => evaluate_address(*address, memory),
Location::Value { value } => {
let value = match value {
gimli::Value::Generic(value) => value.to_string(),
gimli::Value::I8(value) => value.to_string(),
gimli::Value::U8(value) => value.to_string(),
gimli::Value::I16(value) => value.to_string(),
gimli::Value::U16(value) => value.to_string(),
gimli::Value::I32(value) => value.to_string(),
gimli::Value::U32(value) => value.to_string(),
gimli::Value::I64(value) => value.to_string(),
gimli::Value::U64(value) => value.to_string(),
gimli::Value::F32(value) => value.to_string(),
gimli::Value::F64(value) => value.to_string(),
};
ExpressionResult::Value(VariableValue::Valid(value))
}
Location::Register { register } => {
if let Some(address) = frame_info
.registers
.get_register_by_dwarf_id(register.0)
.and_then(|register| register.value)
{
match address.try_into() {
Ok(address) => evaluate_address(address, memory),
Err(error) => ExpressionResult::Location(VariableLocation::Error(format!(
"Error: Cannot convert register value to location address: {error:?}"
))),
}
} else {
ExpressionResult::Location(VariableLocation::Error(format!(
"Error: Cannot resolve register: {register:?}"
)))
}
}
l => ExpressionResult::Location(VariableLocation::Error(format!(
"Unimplemented: extract_location() found a location type: {:.100}",
format!("{l:?}")
))),
};
Ok(result)
}
/// Tries to get the result of a DWARF expression in the form of a Piece.
pub(crate) fn expression_to_piece(
&self,
memory: &mut dyn MemoryInterface,
expression: gimli::Expression<GimliReader>,
frame_info: StackFrameInfo<'_>,
) -> Result<Vec<gimli::Piece<GimliReader, usize>>, DebugError> {
let mut evaluation = expression.evaluation(self.unit.encoding());
let mut result = evaluation.evaluate()?;
loop {
result = match result {
EvaluationResult::Complete => return Ok(evaluation.result()),
EvaluationResult::RequiresMemory { address, size, .. } => {
read_memory(size, memory, address, &mut evaluation)?
}
EvaluationResult::RequiresFrameBase => {
provide_frame_base(frame_info.frame_base, &mut evaluation)?
}
EvaluationResult::RequiresRegister {
register,
base_type,
} => provide_register(frame_info.registers, register, base_type, &mut evaluation)?,
EvaluationResult::RequiresRelocatedAddress(address_index) => {
// The address_index as an offset from 0, so just pass it into the next step.
evaluation.resume_with_relocated_address(address_index)?
}
EvaluationResult::RequiresCallFrameCfa => {
provide_cfa(frame_info.canonical_frame_address, &mut evaluation)?
}
unimplemented_expression => {
return Err(DebugError::WarnAndContinue {
message: format!("Unimplemented: Expressions that include {unimplemented_expression:?} are not currently supported."
)});
}
}
}
}
/// A helper function, to handle memory_location for special cases, such as array members, pointers, and intermediate nodes.
/// Normally, the memory_location is calculated before the type is calculated,
/// but special cases require the type related info of the variable to correctly compute the memory_location.
fn handle_memory_location_special_cases(
&self,
unit_ref: UnitOffset,
child_variable: &mut Variable,
parent_variable: &Variable,
memory: &mut dyn MemoryInterface,
) {
let location = if let VariableName::Indexed(child_member_index) = child_variable.name {
// Push the array member to the proper location according to its index.
if let VariableLocation::Address(address) = parent_variable.memory_location {
if let Some(byte_size) = child_variable.byte_size {
let Some(location) = address.checked_add(child_member_index * byte_size) else {
child_variable.set_value(VariableValue::Error(
"Overflow calculating variable address".to_string(),
));
return;
};
VariableLocation::Address(location)
} else {
// If this array member doesn't have a byte_size, it may be because it is the first member of an array itself.
// In this case, the byte_size will be calculated when the nested array members are resolved.
// The first member of an array will have a memory location of the same as it's parent.
parent_variable.memory_location.clone()
}
} else {
VariableLocation::Unavailable
}
} else if child_variable.memory_location == VariableLocation::Unknown {
// Non-array members can inherit their memory location from their parent, but only if the parent has a valid memory location.
if self.is_pointer(child_variable, parent_variable, unit_ref) {
match &parent_variable.memory_location {
VariableLocation::Address(address) => {
// Now, retrieve the location by reading the adddress pointed to by the parent variable.
match memory.read_word_32(*address) {
Ok(memory_location) => {
VariableLocation::Address(memory_location as u64)
}
Err(error) => {
tracing::debug!("Failed to read referenced variable address from memory location {} : {error}.", parent_variable.memory_location);
VariableLocation::Error(format!("Failed to read referenced variable address from memory location {} : {error}.", parent_variable.memory_location))
}
}
}
other => VariableLocation::Unsupported(format!(
"Location {other:?} not supported for referenced variables."
)),
}
} else {
// If the parent variable is not a pointer, or it is a pointer to the actual data location
// (not the address of the data location) then it can inherit it's memory location from it's parent.
parent_variable.memory_location.clone()
}
} else {
return;
};
child_variable.memory_location = location;
}
/// Returns `true` if the variable is a pointer, `false` otherwise.
fn is_pointer(
&self,
child_variable: &mut Variable,
parent_variable: &Variable,
unit_ref: UnitOffset,
) -> bool {
// Address Pointer Conditions (any of):
// 1. Variable names that start with '*' (e.g '*__0), AND the variable is a variant of the parent.
// 2. Pointer names that start with '*' (e.g. '*const u8')
// 3. Pointers to base types (includes &str types)
// 4. Pointers to variable names that start with `*`
// 5. Pointers to types with refrenced memory addresses (e.g. variants, generics, arrays, etc.)
(matches!(child_variable.name, VariableName::Named(ref var_name) if var_name.starts_with('*'))
&& matches!(parent_variable.role, VariantRole::VariantPart(_)))
|| matches!(&parent_variable.type_name, VariableType::Pointer(Some(pointer_name)) if pointer_name.starts_with('*'))
|| (matches!(&parent_variable.type_name, VariableType::Pointer(_))
&& (matches!(child_variable.type_name, VariableType::Base(_))
|| matches!(child_variable.type_name, VariableType::Struct(ref type_name) if type_name.starts_with("&str"))
|| matches!(child_variable.name, VariableName::Named(ref var_name) if var_name.starts_with('*'))
|| self.has_address_pointer(unit_ref).unwrap_or_else(|error| {
child_variable.set_value(VariableValue::Error(format!("Failed to determine if a struct has variant or generic type fields: {error}")));
false
})))
}
/// A helper function to determine if the type we are referencing requires a pointer to the address of the referenced variable (e.g. variants, generics, arrays, etc.)
fn has_address_pointer(&self, unit_ref: UnitOffset) -> Result<bool, DebugError> {
let mut entries_tree = self.unit.entries_tree(Some(unit_ref))?;
let entry_node = entries_tree.root()?;
if matches!(
entry_node.entry().tag(),
gimli::DW_TAG_array_type | gimli::DW_TAG_enumeration_type | gimli::DW_TAG_union_type
) {
return Ok(true);
}
// If the child node has a variant_part, then the variant will be a pointer to the address of the referenced variable.
let mut child_nodes = entry_node.children();
while let Some(child_node) = child_nodes.next()? {
if child_node.entry().tag() == gimli::DW_TAG_variant_part {
return Ok(true);
}
}
Ok(false)
}
/// Returns the `DW_AT_name` attribute in the subtree of a given node or recurses into the node referenced by the `DW_AT_type` attribute.
fn extract_type_name(
&self,
debug_info: &DebugInfo,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
) -> Result<Option<String>, gimli::Error> {
match entry.attr(gimli::DW_AT_name) {
Ok(Some(attr)) => {
let name = match attr.value() {
gimli::AttributeValue::DebugStrRef(name_ref) => {
if let Ok(name_raw) = debug_info.dwarf.string(name_ref) {
String::from_utf8_lossy(&name_raw).to_string()
} else {
"Invalid DW_AT_name value".to_string()
}
}
gimli::AttributeValue::String(name) => {
String::from_utf8_lossy(&name).to_string()
}
other => format!("Unimplemented: Evaluate name from {other:?}"),
};
Ok(Some(name))
}
Ok(None) => {
let Ok(Some(attr)) = entry.attr(gimli::DW_AT_type) else {
// No type attribute.
return Ok(None);
};
let gimli::AttributeValue::UnitRef(unit_ref) = attr.value() else {
// TODO: should we handle other types of references?
return Ok(None);
};
// Try to read the name of the referenced type node.
let node = self.unit.header.entry(&self.unit.abbreviations, unit_ref)?;
self.extract_type_name(debug_info, &node)
}
Err(error) => Err(error),
}
}
fn process_bitfield_info(
&self,
child_variable: &mut Variable,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
cache: &mut VariableCache,
) -> Result<(), DebugError> {
if !child_variable.is_valid() {
// Only bother with bitfields if we haven't encountered an error yet
return Ok(());
}
match self.extract_bitfield_info(child_variable, entry) {
Ok(Some(bitfield)) => {
if let Some(byte_size) = child_variable.byte_size {
let bitfield = bitfield.normalize(byte_size);
child_variable.type_name = VariableType::Bitfield(
bitfield,
Box::new(std::mem::replace(
&mut child_variable.type_name,
VariableType::Unknown,
)),
);
// Invalidate value that was read before we knew about the bitfield.
child_variable.value = VariableValue::Empty;
cache.update_variable(child_variable)?;
} else {
child_variable.set_value(VariableValue::Error(
"Error: Failed to decode bitfield information: byte_size not found"
.to_string(),
));
}
}
Ok(None) => {}
Err(e) => child_variable.set_value(VariableValue::Error(format!(
"Error: Failed to decode bitfield information: {e:?}"
))),
}
Ok(())
}
fn extract_bitfield_info(
&self,
child_variable: &mut Variable,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
) -> Result<Option<Bitfield>, gimli::Error> {
let offset = if let Some(attr) = entry.attr(gimli::DW_AT_data_bit_offset)? {
// Available since DWARF 4+
match attr.value().udata_value() {
Some(offset) => Some(BitOffset::FromLsb(offset)),
None => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_data_bit_offset: {:?}",
attr.value()
)));
return Ok(None);
}
}
} else if let Some(attr) = entry.attr(gimli::DW_AT_bit_offset)? {
// Deprecated in DWARF 5, but still used by some compilers.
// Specifies offset from MSB. We're handling this as a separate offset variant
// because we haven't yet processed the byte size of the variable.
if let Some(offset) = attr.value().udata_value() {
Some(BitOffset::FromMsb(offset))
} else {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_bit_offset: {:?}",
attr.value()
)));
return Ok(None);
}
} else {
None
};
let size = if let Some(attr) = entry.attr(gimli::DW_AT_bit_size)? {
match attr.value().udata_value() {
Some(length) => Some(length),
None => {
child_variable.set_value(VariableValue::Error(format!(
"Unimplemented: Attribute Value for DW_AT_bit_size: {:?}",
attr.value()
)));
return Ok(None);
}
}
} else {
None
};
if let (None, None) = (size, offset) {
return Ok(None);
}
Ok(Some(Bitfield {
length: size.unwrap_or(0),
offset: offset.unwrap_or(BitOffset::FromLsb(0)),
}))
}
fn extract_source_location(
&self,
debug_info: &DebugInfo,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
) -> Result<Option<SourceLocation>, gimli::Error> {
let Some(file_attr) = entry.attr_value(gimli::DW_AT_decl_file)? else {
return Ok(None);
};
let Some(path) = extract_file(debug_info, &self.unit, file_attr) else {
return Ok(None);
};
let mut source_location = SourceLocation {
path,
line: None,
column: None,
};
let mut variable_attributes = entry.attrs();
// Now loop through all the unit attributes to extract the remainder of the `Variable` definition.
while let Ok(Some(attr)) = variable_attributes.next() {
match attr.name() {
gimli::DW_AT_decl_line => {
if let Some(line_number) = extract_line(attr.value()) {
source_location.line = Some(line_number);
}
}
gimli::DW_AT_decl_column => {
if let Some(column_number) = attr.udata_value() {
// According to the DWARF standard, a value of 0 means no column is specified.
if column_number != 0 {
source_location.column = Some(super::ColumnType::Column(column_number));
}
}
}
// Other attributes are not relevant for extracting source location.
_ => (),
}
}
Ok(Some(source_location))
}
}
fn extract_name(
debug_info: &DebugInfo,
entry: &gimli::DebuggingInformationEntry<GimliReader>,
) -> Result<Option<String>, gimli::Error> {
let Some(attr) = entry.attr_value(gimli::DW_AT_name)? else {
return Ok(None);
};
let name = match attr {
gimli::AttributeValue::DebugStrRef(name_ref) => {
if let Ok(name_raw) = debug_info.dwarf.string(name_ref) {
String::from_utf8_lossy(&name_raw).to_string()
} else {
"Invalid DW_AT_name value".to_string()
}
}
gimli::AttributeValue::String(name) => String::from_utf8_lossy(&name).to_string(),
other => format!("Unimplemented: Evaluate name from {other:?}"),
};
Ok(Some(name))
}
/// Gets necessary register information for the DWARF resolver.
fn provide_register(
stack_frame_registers: &DebugRegisters,
register: gimli::Register,
base_type: UnitOffset,
evaluation: &mut gimli::Evaluation<EndianReader>,
) -> Result<EvaluationResult<EndianReader>, DebugError> {
match stack_frame_registers
.get_register_by_dwarf_id(register.0)
.and_then(|reg| reg.value)
{
Some(raw_value) if base_type == gimli::UnitOffset(0) => {
let register_value = gimli::Value::Generic(raw_value.try_into()?);
Ok(evaluation.resume_with_register(register_value)?)
}
Some(_) => Err(DebugError::WarnAndContinue {
message: format!(
"Unimplemented: Support for type {:?} in `RequiresRegister`",
base_type
),
}),
None => Err(DebugError::WarnAndContinue {
message: format!(
"Error while calculating `Variable::memory_location`. No value for register #:{}.",
register.0
),
}),
}
}
/// Gets necessary framebase information for the DWARF resolver.
fn provide_frame_base(
frame_base: Option<u64>,
evaluation: &mut gimli::Evaluation<EndianReader>,
) -> Result<EvaluationResult<EndianReader>, DebugError> {
let Some(frame_base) = frame_base else {
return Err(DebugError::WarnAndContinue {
message: "Cannot unwind `Variable` location without a valid frame base address.)"
.to_string(),
});
};
match evaluation.resume_with_frame_base(frame_base) {
Ok(evaluation_result) => Ok(evaluation_result),
Err(error) => Err(DebugError::WarnAndContinue {
message: format!("Error while calculating `Variable::memory_location`:{error}."),
}),
}
}
/// Gets necessary CFA information for the DWARF resolver.
fn provide_cfa(
cfa: Option<u64>,
evaluation: &mut gimli::Evaluation<EndianReader>,
) -> Result<EvaluationResult<EndianReader>, DebugError> {
let Some(cfa) = cfa else {
return Err(DebugError::WarnAndContinue {
message: "Cannot unwind `Variable` location without a valid canonical frame address.)"
.to_string(),
});
};
match evaluation.resume_with_call_frame_cfa(cfa) {
Ok(evaluation_result) => Ok(evaluation_result),
Err(error) => Err(DebugError::WarnAndContinue {
message: format!("Error while calculating `Variable::memory_location`:{error}."),
}),
}
}
/// Reads memory requested by the DWARF resolver.
fn read_memory(
size: u8,
memory: &mut dyn MemoryInterface,
address: u64,
evaluation: &mut gimli::Evaluation<EndianReader>,
) -> Result<EvaluationResult<EndianReader>, DebugError> {
/// Reads `SIZE` bytes from the memory.
fn read<const SIZE: usize>(
memory: &mut dyn MemoryInterface,
address: u64,
) -> Result<[u8; SIZE], DebugError> {
let mut buff = [0u8; SIZE];
memory.read(address, &mut buff).map_err(|error| {
DebugError::WarnAndContinue {
message: format!("Unexpected error while reading debug expressions from target memory: {error:?}. Please report this as a bug.")
}
})?;
Ok(buff)
}
let val = match size {
1 => {
let buff = read::<1>(memory, address)?;
gimli::Value::U8(buff[0])
}
2 => {
let buff = read::<2>(memory, address)?;
gimli::Value::U16(u16::from_le_bytes(buff))
}
4 => {
let buff = read::<4>(memory, address)?;
gimli::Value::U32(u32::from_le_bytes(buff))
}
x => {
return Err(DebugError::WarnAndContinue {
message: format!(
"Unimplemented: Requested memory with size {x}, which is not supported yet."
),
});
}
};
Ok(evaluation.resume_with_memory(val)?)
}
pub(crate) trait RangeExt {
fn contains(self, addr: u64) -> bool;
}
impl RangeExt for &mut gimli::RngListIter<GimliReader> {
fn contains(self, addr: u64) -> bool {
while let Ok(Some(range)) = self.next() {
if range.contains(addr) {
return true;
}
}
false
}
}
impl RangeExt for gimli::Range {
fn contains(self, addr: u64) -> bool {
self.begin <= addr && addr < self.end
}
}