probe_rs/flashing/flash_algorithm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
use super::FlashError;
use crate::{
architecture::{arm, riscv},
core::Architecture,
Target,
};
use probe_rs_target::{
FlashProperties, MemoryRegion, PageInfo, RamRegion, RawFlashAlgorithm, RegionMergeIterator,
SectorInfo, TransferEncoding,
};
use std::mem::size_of_val;
/// A flash algorithm, which has been assembled for a specific
/// chip.
///
/// To create a [FlashAlgorithm], call the [`assemble_from_raw`] function.
///
/// [`assemble_from_raw`]: FlashAlgorithm::assemble_from_raw
#[derive(Debug, Default, Clone)]
pub struct FlashAlgorithm {
/// The name of the flash algorithm.
pub name: String,
/// Whether this flash algorithm is the default one or not.
pub default: bool,
/// Memory address where the flash algo instructions will be loaded to.
pub load_address: u64,
/// List of 32-bit words containing the position-independent code for the algo.
pub instructions: Vec<u32>,
/// Address of the `Init()` entry point. Optional.
pub pc_init: Option<u64>,
/// Address of the `UnInit()` entry point. Optional.
pub pc_uninit: Option<u64>,
/// Address of the `ProgramPage()` entry point.
pub pc_program_page: u64,
/// Address of the `EraseSector()` entry point.
pub pc_erase_sector: u64,
/// Address of the `EraseAll()` entry point. Optional.
pub pc_erase_all: Option<u64>,
/// Address of the `Verify()` entry point. Optional.
pub pc_verify: Option<u64>,
/// Address of the (non-standard) `ReadFlash()` entry point. Optional.
pub pc_read: Option<u64>,
/// Initial value of the R9 register for calling flash algo entry points, which
/// determines where the position-independent data resides.
pub static_base: u64,
/// Initial value of the stack pointer when calling any flash algo API.
pub stack_top: u64,
/// The size of the stack in bytes.
pub stack_size: u64,
/// Whether to check for stack overflows.
pub stack_overflow_check: bool,
/// A list of base addresses for page buffers. The buffers must be at
/// least as large as the region's `page_size` attribute. If at least 2 buffers are included in
/// the list, then double buffered programming will be enabled.
pub page_buffers: Vec<u64>,
/// Location of optional RTT control block.
///
/// If this is present, the flash algorithm supports debug output over RTT.
pub rtt_control_block: Option<u64>,
/// The properties of the flash on the device.
pub flash_properties: FlashProperties,
/// The encoding format accepted by the flash algorithm.
pub transfer_encoding: TransferEncoding,
}
impl FlashAlgorithm {
/// Try to retrieve the information about the flash sector
/// which contains `address`.
///
/// If the `address` is not part of the flash, None will
/// be returned.
pub fn sector_info(&self, address: u64) -> Option<SectorInfo> {
if !self.flash_properties.address_range.contains(&address) {
tracing::trace!("Address {:08x} not contained in this flash device", address);
return None;
}
let offset_address = address - self.flash_properties.address_range.start;
let containing_sector = self
.flash_properties
.sectors
.iter()
.rfind(|s| s.address <= offset_address)?;
let sector_index = (offset_address - containing_sector.address) / containing_sector.size;
let sector_address = self.flash_properties.address_range.start
+ containing_sector.address
+ sector_index * containing_sector.size;
Some(SectorInfo {
base_address: sector_address,
size: containing_sector.size,
})
}
/// Returns the necessary information about the page which `address` resides in
/// if the address is inside the flash region.
pub fn page_info(&self, address: u64) -> Option<PageInfo> {
if !self.flash_properties.address_range.contains(&address) {
return None;
}
Some(PageInfo {
base_address: address - (address % self.flash_properties.page_size as u64),
size: self.flash_properties.page_size,
})
}
/// Iterate over all the sectors of the flash.
pub fn iter_sectors(&self) -> impl Iterator<Item = SectorInfo> + '_ {
let props = &self.flash_properties;
assert!(!props.sectors.is_empty());
assert!(props.sectors[0].address == 0);
let mut addr = props.address_range.start;
let mut desc_idx = 0;
std::iter::from_fn(move || {
if addr >= props.address_range.end {
return None;
}
// Advance desc_idx if needed
if let Some(next_desc) = props.sectors.get(desc_idx + 1) {
if props.address_range.start + next_desc.address <= addr {
desc_idx += 1;
}
}
let size = props.sectors[desc_idx].size;
let sector = SectorInfo {
base_address: addr,
size,
};
addr += size;
Some(sector)
})
}
/// Iterate over all the pages of the flash.
pub fn iter_pages(&self) -> impl Iterator<Item = PageInfo> + '_ {
let props = &self.flash_properties;
let mut addr = props.address_range.start;
std::iter::from_fn(move || {
if addr >= props.address_range.end {
return None;
}
let page = PageInfo {
base_address: addr,
size: props.page_size,
};
addr += props.page_size as u64;
Some(page)
})
}
/// Returns true if the entire contents of the argument array equal the erased byte value.
pub fn is_erased(&self, data: &[u8]) -> bool {
for b in data {
if *b != self.flash_properties.erased_byte_value {
return false;
}
}
true
}
const FLASH_ALGO_STACK_SIZE: u32 = 512;
// Header for RISC-V Flash Algorithms
const RISCV_FLASH_BLOB_HEADER: [u32; 2] = [riscv::assembly::EBREAK, riscv::assembly::EBREAK];
const ARM_FLASH_BLOB_HEADER: [u32; 1] = [arm::assembly::BRKPT];
const XTENSA_FLASH_BLOB_HEADER: [u32; 0] = [];
/// When the target architecture is not known, and we need to allocate space for the header,
/// this function returns the maximum size of the header of supported architectures.
pub fn get_max_algorithm_header_size() -> u64 {
let algos = [
Self::algorithm_header(Architecture::Arm),
Self::algorithm_header(Architecture::Riscv),
Self::algorithm_header(Architecture::Xtensa),
];
algos.iter().copied().map(size_of_val).max().unwrap() as u64
}
fn algorithm_header(architecture: Architecture) -> &'static [u32] {
match architecture {
Architecture::Arm => &Self::ARM_FLASH_BLOB_HEADER,
Architecture::Riscv => &Self::RISCV_FLASH_BLOB_HEADER,
Architecture::Xtensa => &Self::XTENSA_FLASH_BLOB_HEADER,
}
}
fn required_stack_alignment(architecture: Architecture) -> u64 {
match architecture {
Architecture::Arm => 8,
Architecture::Riscv => 16,
Architecture::Xtensa => 16,
}
}
/// Constructs a complete flash algorithm, tailored to the flash and RAM sizes given.
pub fn assemble_from_raw(
raw: &RawFlashAlgorithm,
ram_region: &RamRegion,
target: &Target,
) -> Result<Self, FlashError> {
Self::assemble_from_raw_with_data(raw, ram_region, ram_region, target)
}
/// Constructs a complete flash algorithm, tailored to the flash and RAM sizes given.
pub fn assemble_from_raw_with_data(
raw: &RawFlashAlgorithm,
ram_region: &RamRegion,
data_ram_region: &RamRegion,
target: &Target,
) -> Result<Self, FlashError> {
use std::mem::size_of;
let assembled_instructions = raw.instructions.chunks_exact(size_of::<u32>());
let remainder = assembled_instructions.remainder();
let last_elem = if !remainder.is_empty() {
let word = u32::from_le_bytes(
remainder
.iter()
.cloned()
// Pad with up to three bytes
.chain([0u8, 0u8, 0u8])
.take(4)
.collect::<Vec<u8>>()
.try_into()
.unwrap(),
);
Some(word)
} else {
None
};
let header = Self::algorithm_header(target.architecture());
let instructions: Vec<u32> = header
.iter()
.copied()
.chain(
assembled_instructions.map(|bytes| u32::from_le_bytes(bytes.try_into().unwrap())),
)
.chain(last_elem)
.collect();
let header_size = size_of_val(header) as u64;
// The start address where we try to load the flash algorithm.
let addr_load = match raw.load_address {
Some(address) => {
// adjust the raw load address to account for the algo header
address
.checked_sub(header_size)
.ok_or(FlashError::InvalidFlashAlgorithmLoadAddress { address })?
}
None => {
// assume position independent code
ram_region.range.start
}
};
if addr_load < ram_region.range.start {
return Err(FlashError::InvalidFlashAlgorithmLoadAddress { address: addr_load });
}
// Memory layout:
// - Header
// - Code
// - Data
// - Stack
// Stack placement depends on the optional `data_load_address` field. If the stack fits
// between the code and the data, it will be placed there. Otherwise, it will be placed
// after the data.
let code_start = addr_load + header_size;
let code_size_bytes = (instructions.len() * size_of::<u32>()) as u64;
let stack_align = Self::required_stack_alignment(target.architecture());
// Round up to align the stack (possibly placed immediately after the code blob).
let code_end = (code_start + code_size_bytes).next_multiple_of(stack_align);
let buffer_page_size = raw.flash_properties.page_size as u64;
let stack_size = raw.stack_size.unwrap_or(Self::FLASH_ALGO_STACK_SIZE) as u64;
tracing::info!("The flash algorithm will be configured with {stack_size} bytes of stack");
let data_load_addr = if let Some(data_load_addr) = raw.data_load_address {
data_load_addr
} else if ram_region == data_ram_region {
// The data is not placed explicitly. We can place it after the code.
code_end
} else {
// The data is not placed explicitly. We can place it to the start of the memory region.
data_ram_region.range.start
};
// Available memory for data depends on where the stack needs to be placed.
if data_ram_region.range.end < data_load_addr {
return Err(FlashError::InvalidDataAddress {
data_load_addr,
data_ram: data_ram_region.range.clone(),
});
}
let mut ram_for_data = data_ram_region.range.end - data_load_addr;
if code_end + stack_size > data_load_addr && ram_region == data_ram_region {
// Stack can only go after the data, so let's reduce the available size.
if stack_size > ram_for_data {
return Err(FlashError::InvalidFlashAlgorithmStackSize { size: stack_size });
}
ram_for_data -= stack_size;
}
// To determine the stack bottom, we need to know if the data is double buffered.
let double_buffering = if ram_for_data >= 2 * buffer_page_size {
// The data may be double buffered
// TODO: maybe allow disabling in the target description?
true
} else if ram_for_data >= buffer_page_size {
// The data is not double buffered. Place the stack at the end of the RAM region.
false
} else {
// We can't place data and stack.
// TODO: this should probably be done in the target validation.
// TODO: make the errors a bit more meaningful.
return Err(FlashError::InvalidFlashAlgorithmStackSize { size: stack_size });
};
// We need to make sure the blocks don't overlap and we have enough memory.
let stack_bottom =
if code_end + stack_size <= data_load_addr || ram_region != data_ram_region {
// Two cases:
// - The stack fits between the code and the data.
// - The data is in a different region, so we can place
// the stack at the end of the code region.
code_end // already a multiple of stack_align
} else {
// The data and the stack are in the same region. There is not enough space
// for the stack below the data. Place the stack after the data.
let page_count = if double_buffering { 2 } else { 1 };
(data_load_addr + page_count * buffer_page_size).next_multiple_of(stack_align)
};
// Now we can place the stack.
let stack_top = stack_bottom + stack_size;
tracing::info!("Stack top: {:#010x}", stack_top);
if stack_top > ram_region.range.end {
return Err(FlashError::InvalidFlashAlgorithmStackSize { size: stack_size });
}
// Determine whether we can use double buffering or not by the remaining RAM region size.
let page_buffers = if double_buffering {
let second_buffer_start = data_load_addr + buffer_page_size;
vec![data_load_addr, second_buffer_start]
} else {
vec![data_load_addr]
};
tracing::debug!("Page buffers: {:#010x?}", page_buffers);
let name = raw.name.clone();
Ok(FlashAlgorithm {
name,
default: raw.default,
load_address: addr_load,
instructions,
pc_init: raw.pc_init.map(|v| code_start + v),
pc_uninit: raw.pc_uninit.map(|v| code_start + v),
pc_program_page: code_start + raw.pc_program_page,
pc_erase_sector: code_start + raw.pc_erase_sector,
pc_erase_all: raw.pc_erase_all.map(|v| code_start + v),
pc_verify: raw.pc_verify.map(|v| code_start + v),
pc_read: raw.pc_read.map(|v| code_start + v),
static_base: code_start + raw.data_section_offset,
stack_top,
stack_size,
page_buffers,
rtt_control_block: raw.rtt_location,
flash_properties: raw.flash_properties.clone(),
transfer_encoding: raw.transfer_encoding.unwrap_or_default(),
stack_overflow_check: raw.stack_overflow_check(),
})
}
/// Constructs a complete flash algorithm, choosing a suitable RAM region to run the algorithm.
pub(crate) fn assemble_from_raw_with_core(
algo: &RawFlashAlgorithm,
core_name: &str,
target: &Target,
) -> Result<FlashAlgorithm, FlashError> {
// Find a RAM region from which we can run the algo.
let mm = &target.memory_map;
let ram_regions = mm
.iter()
.filter_map(MemoryRegion::as_ram_region)
.filter(|ram| ram.accessible_by(core_name))
.merge_consecutive();
let ram = ram_regions
.clone()
.filter(|ram| is_ram_suitable_for_algo(ram, algo.load_address))
.max_by_key(|region| region.range.end - region.range.start)
.ok_or(FlashError::NoRamDefined {
name: target.name.clone(),
})?;
tracing::info!("Chosen RAM to run the algo: {:x?}", ram);
let data_ram;
let data_ram = if let Some(data_load_address) = algo.data_load_address {
data_ram = ram_regions
.clone()
.find(|ram| is_ram_suitable_for_data(ram, data_load_address))
.ok_or(FlashError::NoRamDefined {
name: target.name.clone(),
})?;
&data_ram
} else {
// If not specified, use the same region as the flash algo.
&ram
};
tracing::info!("Data will be loaded to: {:x?}", data_ram);
Self::assemble_from_raw_with_data(algo, &ram, data_ram, target)
}
}
/// Returns whether the given RAM region is usable for downloading the flash algorithm.
fn is_ram_suitable_for_algo(ram: &RamRegion, load_address: Option<u64>) -> bool {
if !ram.is_executable() {
return false;
}
// If the algorithm has a forced load address, we try to use it.
// If not, then follow the CMSIS-Pack spec and use first available RAM region.
// In theory, it should be the "first listed in the pack", but the process of
// reading from the pack files obfuscates the list order, so we will use the first
// one in the target spec, which is the qualifying region with the lowest start saddress.
// - See https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/pdsc_family_pg.html#element_memory .
if let Some(load_addr) = load_address {
// The RAM must contain the forced load address _and_
// be accessible from the core we're going to run the
// algorithm on.
ram.range.contains(&load_addr)
} else {
true
}
}
/// Returns whether the given RAM region is usable for downloading the flash algorithm data.
fn is_ram_suitable_for_data(ram: &RamRegion, load_address: u64) -> bool {
// The RAM must contain the forced load address _and_
// be accessible from the core we're going to run the
// algorithm on.
ram.range.contains(&load_address)
}
#[cfg(test)]
mod test {
use probe_rs_target::{FlashProperties, SectorDescription, SectorInfo};
use crate::flashing::FlashAlgorithm;
#[test]
fn flash_sector_single_size() {
let config = FlashAlgorithm {
flash_properties: FlashProperties {
sectors: vec![SectorDescription {
size: 0x100,
address: 0x0,
}],
address_range: 0x1000..0x1000 + 0x1000,
page_size: 0x10,
..Default::default()
},
..Default::default()
};
let expected_first = SectorInfo {
base_address: 0x1000,
size: 0x100,
};
assert!(config.sector_info(0x1000 - 1).is_none());
assert_eq!(Some(expected_first), config.sector_info(0x1000));
assert_eq!(Some(expected_first), config.sector_info(0x10ff));
assert_eq!(Some(expected_first), config.sector_info(0x100b));
assert_eq!(Some(expected_first), config.sector_info(0x10ea));
}
#[test]
fn flash_sector_single_size_weird_sector_size() {
let config = FlashAlgorithm {
flash_properties: FlashProperties {
sectors: vec![SectorDescription {
size: 258,
address: 0x0,
}],
address_range: 0x800_0000..0x800_0000 + 258 * 10,
page_size: 0x10,
..Default::default()
},
..Default::default()
};
let expected_first = SectorInfo {
base_address: 0x800_0000,
size: 258,
};
assert!(config.sector_info(0x800_0000 - 1).is_none());
assert_eq!(Some(expected_first), config.sector_info(0x800_0000));
assert_eq!(Some(expected_first), config.sector_info(0x800_0000 + 257));
assert_eq!(Some(expected_first), config.sector_info(0x800_000b));
assert_eq!(Some(expected_first), config.sector_info(0x800_00e0));
}
#[test]
fn flash_sector_multiple_sizes() {
let config = FlashAlgorithm {
flash_properties: FlashProperties {
sectors: vec![
SectorDescription {
size: 0x4000,
address: 0x0,
},
SectorDescription {
size: 0x1_0000,
address: 0x1_0000,
},
SectorDescription {
size: 0x2_0000,
address: 0x2_0000,
},
],
address_range: 0x800_0000..0x800_0000 + 0x10_0000,
page_size: 0x10,
..Default::default()
},
..Default::default()
};
let expected_a = SectorInfo {
base_address: 0x800_4000,
size: 0x4000,
};
let expected_b = SectorInfo {
base_address: 0x801_0000,
size: 0x1_0000,
};
let expected_c = SectorInfo {
base_address: 0x80A_0000,
size: 0x2_0000,
};
assert_eq!(Some(expected_a), config.sector_info(0x800_4000));
assert_eq!(Some(expected_b), config.sector_info(0x801_0000));
assert_eq!(Some(expected_c), config.sector_info(0x80A_0000));
}
#[test]
fn flash_sector_multiple_sizes_iter() {
let config = FlashAlgorithm {
flash_properties: FlashProperties {
sectors: vec![
SectorDescription {
size: 0x4000,
address: 0x0,
},
SectorDescription {
size: 0x1_0000,
address: 0x1_0000,
},
SectorDescription {
size: 0x2_0000,
address: 0x2_0000,
},
],
address_range: 0x800_0000..0x800_0000 + 0x8_0000,
page_size: 0x10,
..Default::default()
},
..Default::default()
};
let got: Vec<SectorInfo> = config.iter_sectors().collect();
let expected = &[
SectorInfo {
base_address: 0x800_0000,
size: 0x4000,
},
SectorInfo {
base_address: 0x800_4000,
size: 0x4000,
},
SectorInfo {
base_address: 0x800_8000,
size: 0x4000,
},
SectorInfo {
base_address: 0x800_c000,
size: 0x4000,
},
SectorInfo {
base_address: 0x801_0000,
size: 0x1_0000,
},
SectorInfo {
base_address: 0x802_0000,
size: 0x2_0000,
},
SectorInfo {
base_address: 0x804_0000,
size: 0x2_0000,
},
SectorInfo {
base_address: 0x806_0000,
size: 0x2_0000,
},
];
assert_eq!(&got, expected);
}
}