probe_rs/memory/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
use crate::error::Error;
use scroll::Pread;
/// {function_name} was called with data length that is not a multiple of {alignment}
#[derive(Debug, thiserror::Error, docsplay::Display)]
pub struct InvalidDataLengthError {
/// Name of the function that caused the error.
pub function_name: &'static str,
/// The alignment required on the data length.
pub alignment: usize,
}
impl InvalidDataLengthError {
pub fn new(function_name: &'static str, alignment: usize) -> Self {
Self {
function_name,
alignment,
}
}
}
/// Memory access to address {address:#X?} was not aligned to {alignment} bytes.
#[derive(Debug, thiserror::Error, docsplay::Display)]
pub struct MemoryNotAlignedError {
/// The address of the register.
pub address: u64,
/// The required alignment in bytes (address increments).
pub alignment: usize,
}
/// An interface to be implemented for drivers that allow target memory access.
pub trait MemoryInterface<ERR = Error>
where
ERR: std::error::Error + From<InvalidDataLengthError> + From<MemoryNotAlignedError>,
{
/// Does this interface support native 64-bit wide accesses
///
/// If false all 64-bit operations may be split into 32 or 8 bit operations.
/// Most callers will not need to pivot on this but it can be useful for
/// picking the fastest bulk data transfer method.
fn supports_native_64bit_access(&mut self) -> bool;
/// Read a 64bit word of at `address`.
///
/// The address where the read should be performed at has to be a multiple of 8.
/// Returns `AccessPortError::MemoryNotAligned` if this does not hold true.
fn read_word_64(&mut self, address: u64) -> Result<u64, ERR> {
let mut word = 0;
self.read_64(address, std::slice::from_mut(&mut word))?;
Ok(word)
}
/// Read a 32bit word of at `address`.
///
/// The address where the read should be performed at has to be a multiple of 4.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_word_32(&mut self, address: u64) -> Result<u32, ERR> {
let mut word = 0;
self.read_32(address, std::slice::from_mut(&mut word))?;
Ok(word)
}
/// Read a 16bit word of at `address`.
///
/// The address where the read should be performed at has to be a multiple of 2.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_word_16(&mut self, address: u64) -> Result<u16, ERR> {
let mut word = 0;
self.read_16(address, std::slice::from_mut(&mut word))?;
Ok(word)
}
/// Read an 8bit word of at `address`.
fn read_word_8(&mut self, address: u64) -> Result<u8, ERR> {
let mut word = 0;
self.read_8(address, std::slice::from_mut(&mut word))?;
Ok(word)
}
/// Read a block of 64bit words at `address`.
///
/// The number of words read is `data.len()`.
/// The address where the read should be performed at has to be a multiple of 8.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), ERR>;
/// Read a block of 32bit words at `address`.
///
/// The number of words read is `data.len()`.
/// The address where the read should be performed at has to be a multiple of 4.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), ERR>;
/// Read a block of 16bit words at `address`.
///
/// The number of words read is `data.len()`.
/// The address where the read should be performed at has to be a multiple of 2.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_16(&mut self, address: u64, data: &mut [u16]) -> Result<(), ERR>;
/// Read a block of 8bit words at `address`.
fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), ERR>;
/// Reads bytes using 64 bit memory access.
///
/// The address where the read should be performed at has to be a multiple of 8.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_mem_64bit(&mut self, address: u64, data: &mut [u8]) -> Result<(), ERR> {
// Default implementation uses `read_64`, then converts u64 values back
// to bytes. Assumes target is little endian. May be overridden to
// provide an implementation that avoids heap allocation and endian
// conversions. Must be overridden for big endian targets.
if data.len() % 8 != 0 {
return Err(InvalidDataLengthError::new("read_mem_64bit", 8).into());
}
let mut buffer = vec![0u64; data.len() / 8];
self.read_64(address, &mut buffer)?;
for (bytes, value) in data.chunks_exact_mut(8).zip(buffer.iter()) {
bytes.copy_from_slice(&u64::to_le_bytes(*value));
}
Ok(())
}
/// Reads bytes using 32 bit memory access.
///
/// The address where the read should be performed at has to be a multiple of 4.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn read_mem_32bit(&mut self, address: u64, data: &mut [u8]) -> Result<(), ERR> {
// Default implementation uses `read_32`, then converts u32 values back
// to bytes. Assumes target is little endian. May be overridden to
// provide an implementation that avoids heap allocation and endian
// conversions. Must be overridden for big endian targets.
if data.len() % 4 != 0 {
return Err(InvalidDataLengthError::new("read_mem_32bit", 4).into());
}
let mut buffer = vec![0u32; data.len() / 4];
self.read_32(address, &mut buffer)?;
for (bytes, value) in data.chunks_exact_mut(4).zip(buffer.iter()) {
bytes.copy_from_slice(&u32::to_le_bytes(*value));
}
Ok(())
}
/// Read data from `address`.
///
/// This function tries to use the fastest way of reading data, so there is no
/// guarantee which kind of memory access is used. The function might also read more
/// data than requested, e.g. when the start address is not aligned to a 32-bit boundary.
///
/// For more control, the `read_x` functions, e.g. [`MemoryInterface::read_32()`], can be
/// used.
///
/// Generally faster than `read_8`.
fn read(&mut self, address: u64, data: &mut [u8]) -> Result<(), ERR> {
if self.supports_native_64bit_access() {
// Avoid heap allocation and copy if we don't need it.
self.read_8(address, data)?;
} else if address % 4 == 0 && data.len() % 4 == 0 {
// Avoid heap allocation and copy if we don't need it.
self.read_mem_32bit(address, data)?;
} else {
let start_extra_count = (address % 4) as usize;
let mut buffer = vec![0u8; (start_extra_count + data.len() + 3) / 4 * 4];
self.read_mem_32bit(address - start_extra_count as u64, &mut buffer)?;
data.copy_from_slice(&buffer[start_extra_count..start_extra_count + data.len()]);
}
Ok(())
}
/// Write a 64bit word at `address`.
///
/// The address where the write should be performed at has to be a multiple of 8.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), ERR> {
self.write_64(address, std::slice::from_ref(&data))
}
/// Write a 32bit word at `address`.
///
/// The address where the write should be performed at has to be a multiple of 4.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), ERR> {
self.write_32(address, std::slice::from_ref(&data))
}
/// Write a 16bit word at `address`.
///
/// The address where the write should be performed at has to be a multiple of 2.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_word_16(&mut self, address: u64, data: u16) -> Result<(), ERR> {
self.write_16(address, std::slice::from_ref(&data))
}
/// Write an 8bit word at `address`.
fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), ERR> {
self.write_8(address, std::slice::from_ref(&data))
}
/// Write a block of 64bit words at `address`.
///
/// The number of words written is `data.len()`.
/// The address where the write should be performed at has to be a multiple of 8.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), ERR>;
/// Write a block of 32bit words at `address`.
///
/// The number of words written is `data.len()`.
/// The address where the write should be performed at has to be a multiple of 4.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), ERR>;
/// Write a block of 16bit words at `address`.
///
/// The number of words written is `data.len()`.
/// The address where the write should be performed at has to be a multiple of 2.
/// Returns [`Error::MemoryNotAligned`] if this does not hold true.
fn write_16(&mut self, address: u64, data: &[u16]) -> Result<(), ERR>;
/// Write a block of 8bit words at `address`.
fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), ERR>;
/// Writes bytes using 64 bit memory access. Address must be 64 bit aligned
/// and data must be an exact multiple of 8.
fn write_mem_64bit(&mut self, address: u64, data: &[u8]) -> Result<(), ERR> {
// Default implementation uses `write_64`, then converts u64 values back
// to bytes. Assumes target is little endian. May be overridden to
// provide an implementation that avoids heap allocation and endian
// conversions. Must be overridden for big endian targets.
if data.len() % 8 != 0 {
return Err(InvalidDataLengthError::new("write_mem_64bit", 8).into());
}
let mut buffer = vec![0u64; data.len() / 8];
for (bytes, value) in data.chunks_exact(8).zip(buffer.iter_mut()) {
*value = bytes
.pread_with(0, scroll::LE)
.expect("an u64 - this is a bug, please report it");
}
self.write_64(address, &buffer)?;
Ok(())
}
/// Writes bytes using 32 bit memory access. Address must be 32 bit aligned
/// and data must be an exact multiple of 8.
fn write_mem_32bit(&mut self, address: u64, data: &[u8]) -> Result<(), ERR> {
// Default implementation uses `write_32`, then converts u32 values back
// to bytes. Assumes target is little endian. May be overridden to
// provide an implementation that avoids heap allocation and endian
// conversions. Must be overridden for big endian targets.
if data.len() % 4 != 0 {
return Err(InvalidDataLengthError::new("write_mem_32bit", 4).into());
}
let mut buffer = vec![0u32; data.len() / 4];
for (bytes, value) in data.chunks_exact(4).zip(buffer.iter_mut()) {
*value = bytes
.pread_with(0, scroll::LE)
.expect("an u32 - this is a bug, please report it");
}
self.write_32(address, &buffer)?;
Ok(())
}
/// Write a block of 8bit words at `address`. May use 64 bit memory access,
/// so should only be used if reading memory locations that don't have side
/// effects. Generally faster than [`MemoryInterface::write_8`].
///
/// If the target does not support 8-bit aligned access, and `address` is not
/// aligned on a 32-bit boundary, this function will return a [`Error::MemoryNotAligned`] error.
fn write(&mut self, mut address: u64, mut data: &[u8]) -> Result<(), ERR> {
let len = data.len();
let start_extra_count = ((4 - (address % 4) as usize) % 4).min(len);
let end_extra_count = (len - start_extra_count) % 4;
let inbetween_count = len - start_extra_count - end_extra_count;
assert!(start_extra_count < 4);
assert!(end_extra_count < 4);
assert!(inbetween_count % 4 == 0);
if start_extra_count != 0 || end_extra_count != 0 {
// If we do not support 8 bit transfers we have to bail
// because we have to do unaligned writes but can only do
// 32 bit word aligned transers.
if !self.supports_8bit_transfers()? {
return Err(MemoryNotAlignedError {
address,
alignment: 4,
}
.into());
}
}
if start_extra_count != 0 {
// We first do an 8 bit write of the first < 4 bytes up until the 4 byte aligned boundary.
self.write_8(address, &data[..start_extra_count])?;
address += start_extra_count as u64;
data = &data[start_extra_count..];
}
// Make sure we don't try to do an empty but potentially unaligned write
if inbetween_count > 0 {
// We do a 32 bit write of the remaining bytes that are 4 byte aligned.
let mut buffer = vec![0u32; inbetween_count / 4];
for (bytes, value) in data.chunks_exact(4).zip(buffer.iter_mut()) {
*value = u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
}
self.write_32(address, &buffer)?;
address += inbetween_count as u64;
data = &data[inbetween_count..];
}
// We write the remaining bytes that we did not write yet which is always n < 4.
if end_extra_count > 0 {
self.write_8(address, &data[..end_extra_count])?;
}
Ok(())
}
/// Returns whether the current platform supports native 8bit transfers.
fn supports_8bit_transfers(&self) -> Result<bool, ERR>;
/// Flush any outstanding operations.
///
/// For performance, debug probe implementations may choose to batch writes;
/// to assure that any such batched writes have in fact been issued, `flush`
/// can be called. Takes no arguments, but may return failure if a batched
/// operation fails.
fn flush(&mut self) -> Result<(), ERR>;
}
// Helper functions to validate address space constraints
/// Validate that an input address is valid for 32-bit only systems
pub(crate) fn valid_32bit_address(address: u64) -> Result<u32, Error> {
let address: u32 = address
.try_into()
.map_err(|_| Error::Other(format!("Address {:#08x} out of range", address)))?;
Ok(address)
}
/// Simplifies delegating MemoryInterface implementations, with additional error type conversion.
pub trait CoreMemoryInterface {
type ErrorType: std::error::Error + From<InvalidDataLengthError> + From<MemoryNotAlignedError>;
/// Returns a reference to the underlying memory interface.
fn memory(&self) -> &dyn MemoryInterface<Self::ErrorType>;
/// Returns a mutable reference to the underlying memory interface.
fn memory_mut(&mut self) -> &mut dyn MemoryInterface<Self::ErrorType>;
}
impl<T> MemoryInterface<Error> for T
where
T: CoreMemoryInterface,
Error: From<<T as CoreMemoryInterface>::ErrorType>,
{
fn supports_native_64bit_access(&mut self) -> bool {
self.memory_mut().supports_native_64bit_access()
}
fn read_word_64(&mut self, address: u64) -> Result<u64, Error> {
self.memory_mut().read_word_64(address).map_err(Error::from)
}
fn read_word_32(&mut self, address: u64) -> Result<u32, Error> {
self.memory_mut().read_word_32(address).map_err(Error::from)
}
fn read_word_16(&mut self, address: u64) -> Result<u16, Error> {
self.memory_mut().read_word_16(address).map_err(Error::from)
}
fn read_word_8(&mut self, address: u64) -> Result<u8, Error> {
self.memory_mut().read_word_8(address).map_err(Error::from)
}
fn read_64(&mut self, address: u64, data: &mut [u64]) -> Result<(), Error> {
self.memory_mut()
.read_64(address, data)
.map_err(Error::from)
}
fn read_32(&mut self, address: u64, data: &mut [u32]) -> Result<(), Error> {
self.memory_mut()
.read_32(address, data)
.map_err(Error::from)
}
fn read_16(&mut self, address: u64, data: &mut [u16]) -> Result<(), Error> {
self.memory_mut()
.read_16(address, data)
.map_err(Error::from)
}
fn read_8(&mut self, address: u64, data: &mut [u8]) -> Result<(), Error> {
self.memory_mut().read_8(address, data).map_err(Error::from)
}
fn write_word_64(&mut self, address: u64, data: u64) -> Result<(), Error> {
self.memory_mut()
.write_word_64(address, data)
.map_err(Error::from)
}
fn write_word_32(&mut self, address: u64, data: u32) -> Result<(), Error> {
self.memory_mut()
.write_word_32(address, data)
.map_err(Error::from)
}
fn write_word_16(&mut self, address: u64, data: u16) -> Result<(), Error> {
self.memory_mut()
.write_word_16(address, data)
.map_err(Error::from)
}
fn write_word_8(&mut self, address: u64, data: u8) -> Result<(), Error> {
self.memory_mut()
.write_word_8(address, data)
.map_err(Error::from)
}
fn write_64(&mut self, address: u64, data: &[u64]) -> Result<(), Error> {
self.memory_mut()
.write_64(address, data)
.map_err(Error::from)
}
fn write_32(&mut self, address: u64, data: &[u32]) -> Result<(), Error> {
self.memory_mut()
.write_32(address, data)
.map_err(Error::from)
}
fn write_16(&mut self, address: u64, data: &[u16]) -> Result<(), Error> {
self.memory_mut()
.write_16(address, data)
.map_err(Error::from)
}
fn write_8(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
self.memory_mut()
.write_8(address, data)
.map_err(Error::from)
}
fn write(&mut self, address: u64, data: &[u8]) -> Result<(), Error> {
self.memory_mut().write(address, data).map_err(Error::from)
}
fn supports_8bit_transfers(&self) -> Result<bool, Error> {
self.memory().supports_8bit_transfers().map_err(Error::from)
}
fn flush(&mut self) -> Result<(), Error> {
self.memory_mut().flush().map_err(Error::from)
}
}