probe_rs/
probe.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
//! Probe drivers
pub(crate) mod arm_debug_interface;
pub(crate) mod common;
pub(crate) mod usb_util;

pub mod blackmagic;
pub mod cmsisdap;
pub mod espusbjtag;
pub mod fake_probe;
pub mod ftdi;
pub mod jlink;
pub mod list;
pub mod stlink;
pub mod wlink;

use crate::architecture::arm::sequences::{ArmDebugSequence, DefaultArmSequence};
use crate::architecture::arm::ArmError;
use crate::architecture::arm::{
    communication_interface::{DapProbe, UninitializedArmProbe},
    PortType, SwoAccess,
};
use crate::architecture::riscv::communication_interface::{RiscvError, RiscvInterfaceBuilder};
use crate::architecture::xtensa::communication_interface::{
    XtensaCommunicationInterface, XtensaDebugInterfaceState, XtensaError,
};
use crate::config::TargetSelector;
use crate::probe::common::IdCode;
use crate::{Error, Permissions, Session};
use common::ScanChainError;
use nusb::DeviceInfo;
use probe_rs_target::ScanChainElement;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;

/// Used to log warnings when the measured target voltage is
/// lower than 1.4V, if at all measurable.
const LOW_TARGET_VOLTAGE_WARNING_THRESHOLD: f32 = 1.4;

/// The protocol that is to be used by the probe when communicating with the target.
///
/// For ARM select `Swd` or `Jtag`, for RISC-V select `Jtag`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, serde::Serialize, serde::Deserialize)]
pub enum WireProtocol {
    /// Serial Wire Debug is ARMs proprietary standard for communicating with ARM cores.
    /// You can find specifics in the [`ARM Debug Interface v5.2`](https://developer.arm.com/documentation/ihi0031/f/?lang=en) specification.
    Swd,
    /// JTAG is a standard which is supported by many chips independent of architecture.
    /// See [`Wikipedia`](https://en.wikipedia.org/wiki/JTAG) for more info.
    Jtag,
}

impl fmt::Display for WireProtocol {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            WireProtocol::Swd => f.write_str("SWD"),
            WireProtocol::Jtag => f.write_str("JTAG"),
        }
    }
}

impl std::str::FromStr for WireProtocol {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match &s.to_ascii_lowercase()[..] {
            "swd" => Ok(WireProtocol::Swd),
            "jtag" => Ok(WireProtocol::Jtag),
            _ => Err(format!(
                "'{s}' is not a valid protocol. Choose from [swd, jtag]."
            )),
        }
    }
}

/// A command queued in a batch for later execution
///
/// Mostly used internally but returned in DebugProbeError to indicate
/// which batched command actually encountered the error.
#[derive(Copy, Clone, Debug)]
pub enum BatchCommand {
    /// Read from a port
    Read(PortType, u16),

    /// Write to a port
    Write(PortType, u16, u32),
}

impl fmt::Display for BatchCommand {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            BatchCommand::Read(port, addr) => {
                write!(f, "Read(port={port:?}, addr={addr})")
            }
            BatchCommand::Write(port, addr, data) => {
                write!(f, "Write(port={port:?}, addr={addr}, data={data:#010x})")
            }
        }
    }
}

/// Marker trait for all probe errors.
pub trait ProbeError: std::error::Error + Send + Sync + AnyShim {}

impl std::error::Error for Box<dyn ProbeError> {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        self.as_ref().source()
    }
}

/// Implementation detail to allow downcasting of probe errors.
#[doc(hidden)]
pub trait AnyShim: std::any::Any {
    fn as_any(&self) -> &dyn std::any::Any;
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
}

impl<T> AnyShim for T
where
    T: ProbeError,
{
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }
}

/// A probe-specific error.
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub struct BoxedProbeError(#[from] Box<dyn ProbeError>);

impl BoxedProbeError {
    /// Returns true if the underlying error is of type `T`.
    pub fn is<T: ProbeError>(&self) -> bool {
        self.0.as_ref().as_any().is::<T>()
    }

    /// Attempts to downcast the error to a specific error type.
    pub fn downcast_ref<T: ProbeError>(&self) -> Option<&T> {
        self.0.as_ref().as_any().downcast_ref()
    }

    /// Attempts to downcast the error to a specific error type.
    pub fn downcast_mut<T: ProbeError>(&mut self) -> Option<&mut T> {
        self.0.as_mut().as_any_mut().downcast_mut()
    }
}

impl<T> From<T> for BoxedProbeError
where
    T: ProbeError,
{
    fn from(e: T) -> Self {
        BoxedProbeError(Box::new(e))
    }
}

/// This error occurs whenever the debug probe logic encounters an error while operating the relevant debug probe.
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum DebugProbeError {
    /// USB Communication Error
    Usb(#[source] std::io::Error),

    /// An error which is specific to the debug probe in use occurred.
    ProbeSpecific(#[source] BoxedProbeError),

    /// The debug probe could not be created.
    ProbeCouldNotBeCreated(#[from] ProbeCreationError),

    /// The probe does not support the {0} protocol.
    UnsupportedProtocol(WireProtocol),

    /// The selected probe does not support the '{interface_name}' interface.
    ///
    /// This happens if a probe does not support certain functionality, such as:
    /// - ARM debugging
    /// - RISC-V debugging
    /// - SWO
    #[ignore_extra_doc_attributes]
    InterfaceNotAvailable {
        /// The name of the unsupported interface.
        interface_name: &'static str,
    },

    /// The probe does not support he requested speed setting ({0} kHz).
    UnsupportedSpeed(u32),

    /// You need to be attached to the target to perform this action.
    ///
    /// The debug probe did not yet perform the init sequence.
    /// Try calling [`DebugProbe::attach`] before trying again.
    #[ignore_extra_doc_attributes]
    NotAttached,

    /// You need to be detached from the target to perform this action.
    ///
    /// The debug probe already performed the init sequence.
    /// Try running the failing command before [`DebugProbe::attach`].
    #[ignore_extra_doc_attributes]
    Attached,

    /// Failed to find or attach to the target. Please check the wiring before retrying.
    TargetNotFound,

    /// Error in previous batched command.
    BatchError(BatchCommand),

    /// The '{function_name}' functionality is not implemented yet.
    ///
    /// The variant of the function you called is not yet implemented.
    /// This can happen if some debug probe has some unimplemented functionality for a specific protocol or architecture.
    #[ignore_extra_doc_attributes]
    NotImplemented {
        /// The name of the unsupported functionality.
        function_name: &'static str,
    },

    /// The '{command_name}' functionality is not supported by the selected probe.
    /// This can happen when a probe does not allow for setting speed manually for example.
    CommandNotSupportedByProbe {
        /// The name of the unsupported command.
        command_name: &'static str,
    },

    /// An error occurred handling the JTAG scan chain.
    JtagScanChain(#[from] ScanChainError),

    /// Some other error occurred
    #[display("{0}")]
    Other(String),

    /// A timeout occurred during probe operation.
    Timeout,
}

impl<T: ProbeError> From<T> for DebugProbeError {
    fn from(e: T) -> Self {
        Self::ProbeSpecific(BoxedProbeError::from(e))
    }
}

/// An error during probe creation occurred.
/// This is almost always a sign of a bad USB setup.
/// Check UDEV rules if you are on Linux and try installing Zadig
/// (This will disable vendor specific drivers for your probe!) if you are on Windows.
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum ProbeCreationError {
    /// The selected debug probe was not found.
    /// This can be due to permissions.
    NotFound,

    /// The selected USB device could not be opened.
    CouldNotOpen,

    /// An HID API occurred.
    HidApi(#[from] hidapi::HidError),

    /// A USB error occurred.
    Usb(#[source] std::io::Error),

    /// An error specific with the selected probe occurred.
    ProbeSpecific(#[source] BoxedProbeError),

    /// Something else happened.
    #[display("{0}")]
    Other(&'static str),
}

impl<T: ProbeError> From<T> for ProbeCreationError {
    fn from(e: T) -> Self {
        Self::ProbeSpecific(BoxedProbeError::from(e))
    }
}

/// The Probe struct is a generic wrapper over the different
/// probes supported.
///
/// # Examples
///
/// ## Open the first probe found
///
/// The `list_all` and `from_probe_info` functions can be used
/// to create a new `Probe`:
///
/// ```no_run
/// use probe_rs::probe::{Probe, list::Lister};
///
/// let lister = Lister::new();
///
/// let probe_list = lister.list_all();
/// let probe = probe_list[0].open();
/// ```
#[derive(Debug)]
pub struct Probe {
    inner: Box<dyn DebugProbe>,
    attached: bool,
}

impl Probe {
    /// Create a new probe from a more specific probe driver.
    pub fn new(probe: impl DebugProbe + 'static) -> Self {
        Self {
            inner: Box::new(probe),
            attached: false,
        }
    }

    pub(crate) fn from_attached_probe(probe: Box<dyn DebugProbe>) -> Self {
        Self {
            inner: probe,
            attached: true,
        }
    }

    /// Same as [`Probe::new`] but without automatic boxing in case you already have a box.
    pub fn from_specific_probe(probe: Box<dyn DebugProbe>) -> Self {
        Probe {
            inner: probe,
            attached: false,
        }
    }

    /// Get the human readable name for the probe.
    pub fn get_name(&self) -> String {
        self.inner.get_name().to_string()
    }

    /// Attach to the chip.
    ///
    /// This runs all the necessary protocol init routines.
    ///
    /// If this doesn't work, you might want to try [`Probe::attach_under_reset`]
    pub fn attach(
        self,
        target: impl Into<TargetSelector>,
        permissions: Permissions,
    ) -> Result<Session, Error> {
        Session::new(self, target.into(), AttachMethod::Normal, permissions)
    }

    /// Attach to a target without knowing what target you have at hand.
    /// This can be used for automatic device discovery or performing operations on an unspecified target.
    pub fn attach_to_unspecified(&mut self) -> Result<(), Error> {
        self.inner.attach()?;
        self.attached = true;
        Ok(())
    }

    /// A combination of [`Probe::attach_to_unspecified`] and [`Probe::attach_under_reset`].
    pub fn attach_to_unspecified_under_reset(&mut self) -> Result<(), Error> {
        if let Some(dap_probe) = self.try_as_dap_probe() {
            DefaultArmSequence(()).reset_hardware_assert(dap_probe)?;
        } else {
            tracing::info!(
                "Custom reset sequences are not supported on {}.",
                self.get_name()
            );
            tracing::info!("Falling back to standard probe reset.");
            self.target_reset_assert()?;
        }
        self.attach_to_unspecified()?;
        Ok(())
    }

    /// Attach to the chip under hard-reset.
    ///
    /// This asserts the reset pin via the probe, plays the protocol init routines and deasserts the pin.
    /// This is necessary if the chip is not responding to the SWD reset sequence.
    /// For example this can happen if the chip has the SWDIO pin remapped.
    pub fn attach_under_reset(
        self,
        target: impl Into<TargetSelector>,
        permissions: Permissions,
    ) -> Result<Session, Error> {
        // The session will de-assert reset after connecting to the debug interface.
        Session::new(self, target.into(), AttachMethod::UnderReset, permissions).map_err(
            |e| match e {
                Error::Arm(ArmError::Timeout)
                | Error::Riscv(RiscvError::Timeout)
                | Error::Xtensa(XtensaError::Timeout) => Error::Other(
                    "Timeout while attaching to target under reset. \
                    This can happen if the target is not responding to the reset sequence. \
                    Ensure the chip's reset pin is connected, or try attaching without reset \
                    (`connectUnderReset = false` for DAP Clients, or remove `connect-under-reset` \
                        option from CLI options.)."
                        .to_string(),
                ),
                e => e,
            },
        )
    }

    /// Selects the transport protocol to be used by the debug probe.
    pub fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError> {
        if !self.attached {
            self.inner.select_protocol(protocol)
        } else {
            Err(DebugProbeError::Attached)
        }
    }

    /// Get the currently selected protocol
    ///
    /// Depending on the probe, this might not be available.
    pub fn protocol(&self) -> Option<WireProtocol> {
        self.inner.active_protocol()
    }

    /// Leave debug mode
    pub fn detach(&mut self) -> Result<(), crate::Error> {
        self.attached = false;
        self.inner.detach()?;
        Ok(())
    }

    /// Resets the target device.
    pub fn target_reset(&mut self) -> Result<(), DebugProbeError> {
        self.inner.target_reset()
    }

    /// Asserts the reset of the target.
    /// This is always the hard reset which means the reset wire has to be connected to work.
    ///
    /// This is not supported on all probes.
    pub fn target_reset_assert(&mut self) -> Result<(), DebugProbeError> {
        tracing::debug!("Asserting target reset");
        self.inner.target_reset_assert()
    }

    /// Deasserts the reset of the target.
    /// This is always the hard reset which means the reset wire has to be connected to work.
    ///
    /// This is not supported on all probes.
    pub fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError> {
        tracing::debug!("Deasserting target reset");
        self.inner.target_reset_deassert()
    }

    /// Configure protocol speed to use in kHz
    pub fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError> {
        if !self.attached {
            self.inner.set_speed(speed_khz)
        } else {
            Err(DebugProbeError::Attached)
        }
    }

    /// Configure the scan chain to use for the attached target.
    ///
    /// See [`DebugProbe::set_scan_chain`] for more information and usage
    pub fn set_scan_chain(
        &mut self,
        scan_chain: Vec<ScanChainElement>,
    ) -> Result<(), DebugProbeError> {
        if !self.attached {
            self.inner.set_scan_chain(scan_chain)
        } else {
            Err(DebugProbeError::Attached)
        }
    }

    /// Returns the JTAG scan chain
    pub fn scan_chain(&self) -> Result<&[ScanChainElement], DebugProbeError> {
        self.inner.scan_chain()
    }

    /// Selects the JTAG TAP to be used for communication.
    pub fn select_jtag_tap(&mut self, index: usize) -> Result<(), DebugProbeError> {
        self.inner.select_jtag_tap(index)
    }

    /// Get the currently used maximum speed for the debug protocol in kHz.
    ///
    /// Not all probes report which speed is used, meaning this value is not
    /// always the actual speed used. However, the speed should not be any
    /// higher than this value.
    pub fn speed_khz(&self) -> u32 {
        self.inner.speed_khz()
    }

    /// Check if the probe has an interface to
    /// debug Xtensa chips.
    pub fn has_xtensa_interface(&self) -> bool {
        self.inner.has_xtensa_interface()
    }

    /// Try to get a [`XtensaCommunicationInterface`], which can
    /// can be used to communicate with chips using the Xtensa
    /// architecture.
    ///
    /// The user is responsible for creating and managing the [`XtensaDebugInterfaceState`] state
    /// object.
    ///
    /// If an error occurs while trying to connect, the probe is returned.
    pub fn try_get_xtensa_interface<'probe>(
        &'probe mut self,
        state: &'probe mut XtensaDebugInterfaceState,
    ) -> Result<XtensaCommunicationInterface<'probe>, DebugProbeError> {
        if !self.attached {
            Err(DebugProbeError::NotAttached)
        } else {
            Ok(self.inner.try_get_xtensa_interface(state)?)
        }
    }

    /// Check if the probe has an interface to
    /// debug ARM chips.
    pub fn has_arm_interface(&self) -> bool {
        self.inner.has_arm_interface()
    }

    /// Try to get a trait object implementing `UninitializedArmProbe`, which can
    /// can be used to communicate with chips using the ARM architecture.
    ///
    /// If an error occurs while trying to connect, the probe is returned.
    pub fn try_into_arm_interface<'probe>(
        self,
    ) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Self, DebugProbeError)> {
        if !self.attached {
            Err((self, DebugProbeError::NotAttached))
        } else {
            self.inner
                .try_get_arm_interface()
                .map_err(|(probe, err)| (Probe::from_attached_probe(probe), err))
        }
    }

    /// Check if the probe has an interface to debug RISC-V chips.
    pub fn has_riscv_interface(&self) -> bool {
        self.inner.has_riscv_interface()
    }

    /// Try to get a [`RiscvInterfaceBuilder`] object, which can be used to set up a communication
    /// interface with chips using the RISC-V architecture.
    ///
    /// The returned object can be used to create the interface state, which is required to
    /// attach to the RISC-V target. The user is responsible for managing this state object.
    ///
    /// If an error occurs while trying to connect, the probe is returned.
    pub fn try_get_riscv_interface_builder<'probe>(
        &'probe mut self,
    ) -> Result<Box<dyn RiscvInterfaceBuilder<'probe> + 'probe>, DebugProbeError> {
        if !self.attached {
            Err(DebugProbeError::NotAttached)
        } else {
            self.inner.try_get_riscv_interface_builder()
        }
    }

    /// Gets a SWO interface from the debug probe.
    ///
    /// This does not work on all probes.
    pub fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
        self.inner.get_swo_interface()
    }

    /// Gets a mutable SWO interface from the debug probe.
    ///
    /// This does not work on all probes.
    pub fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
        self.inner.get_swo_interface_mut()
    }

    /// Gets a DAP interface from the debug probe.
    ///
    /// This does not work on all probes.
    pub fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
        self.inner.try_as_dap_probe()
    }

    /// Try reading the target voltage of via the connected voltage pin.
    ///
    /// This does not work on all probes.
    pub fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
        self.inner.get_target_voltage()
    }

    /// Try to get a J-Link interface from the debug probe.
    pub fn try_into_jlink(&mut self) -> Result<&mut jlink::JLink, DebugProbeError> {
        self.inner.try_into_jlink()
    }
}

/// An abstraction over a probe driver type.
///
/// This trait has to be implemented by ever debug probe driver.
///
/// The `std::fmt::Display` implementation will be used to display the probe in the list of available probes,
/// and should return a human-readable name for the probe type.
pub trait ProbeFactory: std::any::Any + std::fmt::Display + std::fmt::Debug + Sync {
    /// Creates a new boxed [`DebugProbe`] from a given [`DebugProbeSelector`].
    /// This will be called for all available debug drivers when discovering probes.
    /// When opening, it will open the first probe which succeeds during this call.
    fn open(&self, selector: &DebugProbeSelector) -> Result<Box<dyn DebugProbe>, DebugProbeError>;

    /// Returns a list of all available debug probes of the current type.
    fn list_probes(&self) -> Vec<DebugProbeInfo>;
}

/// An abstraction over general debug probe.
///
/// This trait has to be implemented by ever debug probe driver.
pub trait DebugProbe: Send + fmt::Debug {
    /// Get human readable name for the probe.
    fn get_name(&self) -> &str;

    /// Get the currently used maximum speed for the debug protocol in kHz.
    ///
    /// Not all probes report which speed is used, meaning this value is not
    /// always the actual speed used. However, the speed should not be any
    /// higher than this value.
    fn speed_khz(&self) -> u32;

    /// Set the speed in kHz used for communication with the target device.
    ///
    /// The desired speed might not be supported by the probe. If the desired
    /// speed is not directly supported, a lower speed will be selected if possible.
    ///
    /// If possible, the actual speed used is returned by the function. Some probes
    /// cannot report this, so the value may be inaccurate.
    ///
    /// If the requested speed is not supported,
    /// `DebugProbeError::UnsupportedSpeed` will be returned.
    ///
    fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError>;

    /// Set the JTAG scan chain information for the target under debug.
    ///
    /// This allows the probe to know which TAPs are in the scan chain and their
    /// position and IR lengths.
    ///
    /// If the scan chain is provided, and the selected protocol is JTAG, the
    /// probe will automatically configure the JTAG interface to match the
    /// scan chain configuration without trying to determine the chain at
    /// runtime.
    ///
    /// This is called by the `Session` when attaching to a target.
    /// So this does not need to be called manually, unless you want to
    /// modify the scan chain. You must be attached to a target to set the
    /// scan_chain since the scan chain only applies to the attached target.
    ///
    fn set_scan_chain(&mut self, scan_chain: Vec<ScanChainElement>) -> Result<(), DebugProbeError>;

    /// Returns the JTAG scan chain
    fn scan_chain(&self) -> Result<&[ScanChainElement], DebugProbeError>;

    /// Attach to the chip.
    ///
    /// This should run all the necessary protocol init routines.
    fn attach(&mut self) -> Result<(), DebugProbeError>;

    /// Selects the JTAG TAP to be used for communication.
    fn select_jtag_tap(&mut self, index: usize) -> Result<(), DebugProbeError> {
        if index != 0 {
            return Err(DebugProbeError::NotImplemented {
                function_name: "select_jtag_tap",
            });
        }

        Ok(())
    }

    /// Detach from the chip.
    ///
    /// This should run all the necessary protocol deinit routines.
    ///
    /// If the probe uses batched commands, this will also cause all
    /// remaining commands to be executed. If an error occurs during
    /// this execution, the probe might remain in the attached state.
    fn detach(&mut self) -> Result<(), crate::Error>;

    /// This should hard reset the target device.
    fn target_reset(&mut self) -> Result<(), DebugProbeError>;

    /// This should assert the reset pin of the target via debug probe.
    fn target_reset_assert(&mut self) -> Result<(), DebugProbeError>;

    /// This should deassert the reset pin of the target via debug probe.
    fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError>;

    /// Selects the transport protocol to be used by the debug probe.
    fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError>;

    /// Get the transport protocol currently in active use by the debug probe.
    fn active_protocol(&self) -> Option<WireProtocol>;

    /// Check if the probe offers an interface to debug ARM chips.
    fn has_arm_interface(&self) -> bool {
        false
    }

    /// Get the dedicated interface to debug ARM chips. To check that the
    /// probe actually supports this, call [DebugProbe::has_arm_interface] first.
    fn try_get_arm_interface<'probe>(
        self: Box<Self>,
    ) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Box<dyn DebugProbe>, DebugProbeError)>
    {
        Err((
            self.into_probe(),
            DebugProbeError::InterfaceNotAvailable {
                interface_name: "ARM",
            },
        ))
    }

    /// Try to get a [`RiscvInterfaceBuilder`] object, which can be used to set up a communication
    /// interface with chips using the RISC-V architecture.
    ///
    /// Ensure that the probe actually supports this by calling
    /// [DebugProbe::has_riscv_interface] first.
    fn try_get_riscv_interface_builder<'probe>(
        &'probe mut self,
    ) -> Result<Box<dyn RiscvInterfaceBuilder<'probe> + 'probe>, DebugProbeError> {
        Err(DebugProbeError::InterfaceNotAvailable {
            interface_name: "RISC-V",
        })
    }

    /// Check if the probe offers an interface to debug RISC-V chips.
    fn has_riscv_interface(&self) -> bool {
        false
    }

    /// Get the dedicated interface to debug Xtensa chips. Ensure that the
    /// probe actually supports this by calling [DebugProbe::has_xtensa_interface] first.
    fn try_get_xtensa_interface<'probe>(
        &'probe mut self,
        _state: &'probe mut XtensaDebugInterfaceState,
    ) -> Result<XtensaCommunicationInterface<'probe>, DebugProbeError> {
        Err(DebugProbeError::InterfaceNotAvailable {
            interface_name: "Xtensa",
        })
    }

    /// Check if the probe offers an interface to debug Xtensa chips.
    fn has_xtensa_interface(&self) -> bool {
        false
    }

    /// Get a SWO interface from the debug probe.
    ///
    /// This is not available on all debug probes.
    fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
        None
    }

    /// Get a mutable SWO interface from the debug probe.
    ///
    /// This is not available on all debug probes.
    fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
        None
    }

    /// Boxes itself.
    fn into_probe(self: Box<Self>) -> Box<dyn DebugProbe>;

    /// Try creating a DAP interface for the given probe.
    ///
    /// This is not available on all probes.
    fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
        None
    }

    /// Reads the target voltage in Volts, if possible. Returns `Ok(None)`
    /// if the probe doesn’t support reading the target voltage.
    fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
        Ok(None)
    }

    /// Try to get a J-Link interface from the debug probe.
    fn try_into_jlink(&mut self) -> Result<&mut jlink::JLink, DebugProbeError> {
        Err(DebugProbeError::Other(
            "This probe is not a J-Link.".to_string(),
        ))
    }
}

impl PartialEq for dyn ProbeFactory {
    fn eq(&self, other: &Self) -> bool {
        // Consider ProbeFactory objects equal when their types and data pointers are equal.
        // Pointer equality is insufficient, because ZST objects may have the same dangling pointer
        // as their address.
        self.type_id() == other.type_id()
            && std::ptr::eq(
                self as *const _ as *const (),
                other as *const _ as *const (),
            )
    }
}

/// Gathers some information about a debug probe which was found during a scan.
#[derive(Debug, Clone, PartialEq)]
pub struct DebugProbeInfo {
    /// The name of the debug probe.
    pub identifier: String,
    /// The USB vendor ID of the debug probe.
    pub vendor_id: u16,
    /// The USB product ID of the debug probe.
    pub product_id: u16,
    /// The serial number of the debug probe.
    pub serial_number: Option<String>,

    /// The USB HID interface which should be used.
    /// This is necessary for composite HID devices.
    pub hid_interface: Option<u8>,

    /// A reference to the [`ProbeFactory`] that created this info object.
    probe_factory: &'static dyn ProbeFactory,
}

impl std::fmt::Display for DebugProbeInfo {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "{} -- {:04x}:{:04x}:{} ({})",
            self.identifier,
            self.vendor_id,
            self.product_id,
            self.serial_number.as_deref().unwrap_or(""),
            self.probe_factory,
        )
    }
}

impl DebugProbeInfo {
    /// Creates a new info struct that uniquely identifies a probe.
    pub fn new<S: Into<String>>(
        identifier: S,
        vendor_id: u16,
        product_id: u16,
        serial_number: Option<String>,
        probe_factory: &'static dyn ProbeFactory,
        hid_interface: Option<u8>,
    ) -> Self {
        Self {
            identifier: identifier.into(),
            vendor_id,
            product_id,
            serial_number,
            probe_factory,
            hid_interface,
        }
    }

    /// Open the probe described by this `DebugProbeInfo`.
    pub fn open(&self) -> Result<Probe, DebugProbeError> {
        let selector = DebugProbeSelector::from(self);
        self.probe_factory
            .open(&selector)
            .map(Probe::from_specific_probe)
    }

    /// Returns whether this info was returned by a particular probe factory.
    pub fn is_probe_type<F: ProbeFactory>(&self) -> bool {
        self.probe_factory.type_id() == std::any::TypeId::of::<F>()
    }

    /// Returns a human-readable string describing the probe type.
    ///
    /// The exact contents of the string are unstable, this is intended for human consumption only.
    pub fn probe_type(&self) -> String {
        self.probe_factory.to_string()
    }
}

/// An error which can occur while parsing a [`DebugProbeSelector`].
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum DebugProbeSelectorParseError {
    /// Could not parse VID or PID: {0}
    ParseInt(#[from] std::num::ParseIntError),

    /// The format of the selector is invalid. Please use a string in the form `VID:PID:<Serial>`, where Serial is optional.
    Format,
}

/// A struct to describe the way a probe should be selected.
///
/// Construct this from a set of info or from a string. The
/// string has to be in the format "VID:PID:SERIALNUMBER",
/// where the serial number is optional, and VID and PID are
/// parsed as hexadecimal numbers.
///
/// ## Example:
///
/// ```
/// use std::convert::TryInto;
/// let selector: probe_rs::probe::DebugProbeSelector = "1942:1337:SERIAL".try_into().unwrap();
///
/// assert_eq!(selector.vendor_id, 0x1942);
/// assert_eq!(selector.product_id, 0x1337);
/// ```
#[derive(Debug, Clone, Serialize, Deserialize)]
// We need this so that serde will first convert from the string `VID:PID:<Serial>` to a struct before deserializing.
#[serde(try_from = "String")]
pub struct DebugProbeSelector {
    /// The the USB vendor id of the debug probe to be used.
    pub vendor_id: u16,
    /// The the USB product id of the debug probe to be used.
    pub product_id: u16,
    /// The the serial number of the debug probe to be used.
    pub serial_number: Option<String>,
}

impl DebugProbeSelector {
    pub(crate) fn matches(&self, info: &DeviceInfo) -> bool {
        info.vendor_id() == self.vendor_id
            && info.product_id() == self.product_id
            && self
                .serial_number
                .as_ref()
                .map(|s| info.serial_number() == Some(s))
                .unwrap_or(true)
    }
}

impl TryFrom<&str> for DebugProbeSelector {
    type Error = DebugProbeSelectorParseError;
    fn try_from(value: &str) -> Result<Self, Self::Error> {
        // Split into at most 3 parts: VID, PID, Serial.
        // We limit the number of splits to allow for colons in the
        // serial number (EspJtag uses MAC address)
        let mut split = value.splitn(3, ':');

        let vendor_id = split.next().unwrap(); // First split is always successful
        let product_id = split.next().ok_or(DebugProbeSelectorParseError::Format)?;
        let serial_number = split.next().map(|s| s.to_string());

        Ok(DebugProbeSelector {
            vendor_id: u16::from_str_radix(vendor_id, 16)?,
            product_id: u16::from_str_radix(product_id, 16)?,
            serial_number,
        })
    }
}

impl TryFrom<String> for DebugProbeSelector {
    type Error = DebugProbeSelectorParseError;
    fn try_from(value: String) -> Result<Self, Self::Error> {
        TryFrom::<&str>::try_from(&value)
    }
}

impl std::str::FromStr for DebugProbeSelector {
    type Err = DebugProbeSelectorParseError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Self::try_from(s)
    }
}

impl From<DebugProbeInfo> for DebugProbeSelector {
    fn from(selector: DebugProbeInfo) -> Self {
        DebugProbeSelector {
            vendor_id: selector.vendor_id,
            product_id: selector.product_id,
            serial_number: selector.serial_number,
        }
    }
}

impl From<&DebugProbeInfo> for DebugProbeSelector {
    fn from(selector: &DebugProbeInfo) -> Self {
        DebugProbeSelector {
            vendor_id: selector.vendor_id,
            product_id: selector.product_id,
            serial_number: selector.serial_number.clone(),
        }
    }
}

impl From<&DebugProbeSelector> for DebugProbeSelector {
    fn from(selector: &DebugProbeSelector) -> Self {
        selector.clone()
    }
}

impl fmt::Display for DebugProbeSelector {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:04x}:{:04x}", self.vendor_id, self.product_id)?;
        if let Some(ref sn) = self.serial_number {
            write!(f, ":{sn}")?;
        }
        Ok(())
    }
}

/// Low-Level Access to the JTAG protocol
///
/// This trait should be implemented by all probes which offer low-level access to
/// the JTAG protocol, i.e. direction control over the bytes sent and received.
pub trait JTAGAccess: DebugProbe {
    /// Scans `IDCODE` and `IR` length information about the devices on the JTAG chain.
    ///
    /// If configured, this will use the data from [`DebugProbe::set_scan_chain`]. Otherwise, it
    /// will try to measure and extract `IR` lengths by driving the JTAG interface.
    ///
    /// The measured scan chain will be stored in the probe's internal state.
    fn scan_chain(&mut self) -> Result<(), DebugProbeError>;

    /// Executes a TAP reset.
    fn tap_reset(&mut self) -> Result<(), DebugProbeError>;

    /// Read a JTAG register.
    ///
    /// This function emulates a read by performing a write with all zeros to the DR.
    fn read_register(&mut self, address: u32, len: u32) -> Result<Vec<u8>, DebugProbeError> {
        let data = vec![0u8; len.div_ceil(8) as usize];

        self.write_register(address, &data, len)
    }

    /// For RISC-V, and possibly other interfaces, the JTAG interface has to remain in
    /// the idle state for several cycles between consecutive accesses to the DR register.
    ///
    /// This function configures the number of idle cycles which are inserted after each access.
    fn set_idle_cycles(&mut self, idle_cycles: u8);

    /// Return the currently configured idle cycles.
    fn idle_cycles(&self) -> u8;

    /// Write to a JTAG register
    ///
    /// This function will perform a write to the IR register, if necessary,
    /// to select the correct register, and then to the DR register, to transmit the
    /// data. The data shifted out of the DR register will be returned.
    fn write_register(
        &mut self,
        address: u32,
        data: &[u8],
        len: u32,
    ) -> Result<Vec<u8>, DebugProbeError>;

    /// Shift a value into the DR JTAG register
    ///
    /// The data shifted out of the DR register will be returned.
    fn write_dr(&mut self, data: &[u8], len: u32) -> Result<Vec<u8>, DebugProbeError>;

    /// Executes a sequence of JTAG commands.
    fn write_register_batch(
        &mut self,
        writes: &JtagCommandQueue,
    ) -> Result<DeferredResultSet, BatchExecutionError> {
        tracing::debug!("Using default `JTAGAccess::write_register_batch` this will hurt performance. Please implement proper batching for this probe.");
        let mut results = DeferredResultSet::new();

        for (idx, write) in writes.iter() {
            match write {
                JtagCommand::WriteRegister(write) => {
                    match self
                        .write_register(write.address, &write.data, write.len)
                        .map_err(crate::Error::Probe)
                        .and_then(|response| (write.transform)(write, response))
                    {
                        Ok(res) => results.push(idx, res),
                        Err(e) => return Err(BatchExecutionError::new(e, results)),
                    }
                }

                JtagCommand::ShiftDr(write) => {
                    match self
                        .write_dr(&write.data, write.len)
                        .map_err(crate::Error::Probe)
                        .and_then(|response| (write.transform)(write, response))
                    {
                        Ok(res) => results.push(idx, res),
                        Err(e) => return Err(BatchExecutionError::new(e, results)),
                    }
                }
            }
        }

        Ok(results)
    }
}

/// A low-level JTAG register write command.
#[derive(Debug, Clone)]
pub struct JtagWriteCommand {
    /// The IR register to write to.
    pub address: u32,

    /// The data to be written to DR.
    pub data: Vec<u8>,

    /// The number of bits in `data`
    pub len: u32,

    /// A function to transform the raw response into a [`CommandResult`]
    pub transform: fn(&JtagWriteCommand, Vec<u8>) -> Result<CommandResult, crate::Error>,
}

/// A low-level JTAG register write command.
#[derive(Debug, Clone)]
pub struct ShiftDrCommand {
    /// The data to be written to DR.
    pub data: Vec<u8>,

    /// The number of bits in `data`
    pub len: u32,

    /// A function to transform the raw response into a [`CommandResult`]
    pub transform: fn(&ShiftDrCommand, Vec<u8>) -> Result<CommandResult, crate::Error>,
}

/// A low-level JTAG command.
#[derive(Debug, Clone)]
pub enum JtagCommand {
    /// Write a register.
    WriteRegister(JtagWriteCommand),
    /// Shift a value into the DR register.
    ShiftDr(ShiftDrCommand),
}

impl From<JtagWriteCommand> for JtagCommand {
    fn from(cmd: JtagWriteCommand) -> Self {
        JtagCommand::WriteRegister(cmd)
    }
}

impl From<ShiftDrCommand> for JtagCommand {
    fn from(cmd: ShiftDrCommand) -> Self {
        JtagCommand::ShiftDr(cmd)
    }
}

/// Represents a Jtag Tap within the chain.
#[derive(Debug)]
pub struct JtagChainItem {
    /// The IDCODE of the device.
    pub idcode: Option<IdCode>,

    /// The length of the instruction register.
    pub irlen: usize,
}

/// Chain parameters to select a target tap within the chain.
#[derive(Clone, Copy, Debug, Default)]
pub(crate) struct ChainParams {
    pub irpre: usize,
    pub irpost: usize,
    pub drpre: usize,
    pub drpost: usize,
    pub irlen: usize,
}

impl ChainParams {
    fn from_jtag_chain(chain: &[JtagChainItem], selected: usize) -> Option<Self> {
        let mut params = Self::default();

        let mut found = false;
        for (index, tap) in chain.iter().enumerate() {
            if index == selected {
                params.irlen = tap.irlen;
                found = true;
            } else if found {
                params.irpost += tap.irlen;
                params.drpost += 1;
            } else {
                params.irpre += tap.irlen;
                params.drpre += 1;
            }
        }

        found.then_some(params)
    }
}

/// An error that occurred during batched command execution.
#[derive(thiserror::Error, Debug)]
pub struct BatchExecutionError {
    /// The error that occurred during execution.
    #[source]
    pub error: crate::Error,

    /// The results of the commands that were executed before the error occurred.
    pub results: DeferredResultSet,
}

impl BatchExecutionError {
    pub(crate) fn new(error: crate::Error, results: DeferredResultSet) -> BatchExecutionError {
        BatchExecutionError { error, results }
    }
}

impl std::fmt::Display for BatchExecutionError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Error cause was {}. Successful command count {}",
            self.error,
            self.results.len()
        )
    }
}

/// Results generated by `JtagCommand`s
#[derive(Debug, Clone)]
pub enum CommandResult {
    /// No result
    None,

    /// A single byte
    U8(u8),

    /// A single 16-bit word
    U16(u16),

    /// A single 32-bit word
    U32(u32),

    /// Multiple bytes
    VecU8(Vec<u8>),
}

impl CommandResult {
    /// Returns the result as a `u32` if possible.
    ///
    /// # Panics
    ///
    /// Panics if the result is not a `u32`.
    pub fn into_u32(self) -> u32 {
        match self {
            CommandResult::U32(val) => val,
            _ => panic!("CommandResult is not a u32"),
        }
    }

    /// Returns the result as a `u8` if possible.
    ///
    /// # Panics
    ///
    /// Panics if the result is not a `u8`.
    pub fn into_u8(self) -> u8 {
        match self {
            CommandResult::U8(val) => val,
            _ => panic!("CommandResult is not a u8"),
        }
    }
}

/// A set of batched commands that will be executed all at once.
///
/// This list maintains which commands' results can be read by the issuing code, which then
/// can be used to skip capturing or processing certain parts of the response.
#[derive(Default, Debug)]
pub struct JtagCommandQueue {
    commands: Vec<(DeferredResultIndex, JtagCommand)>,
}

impl JtagCommandQueue {
    /// Creates a new empty queue.
    pub fn new() -> Self {
        Self::default()
    }

    /// Schedules a command for later execution.
    ///
    /// Returns a token value that can be used to retrieve the result of the command.
    pub fn schedule(&mut self, command: impl Into<JtagCommand>) -> DeferredResultIndex {
        let index = DeferredResultIndex::new();
        self.commands.push((index.clone(), command.into()));
        index
    }

    /// Returns the number of commands in the queue.
    pub fn len(&self) -> usize {
        self.commands.len()
    }

    /// Returns whether the queue is empty.
    pub fn is_empty(&self) -> bool {
        self.commands.is_empty()
    }

    pub(crate) fn iter(&self) -> impl Iterator<Item = &(DeferredResultIndex, JtagCommand)> {
        self.commands.iter()
    }

    /// Removes the first `len` number of commands from the batch.
    pub(crate) fn consume(&mut self, len: usize) {
        self.commands.drain(..len);
    }
}

/// The set of results returned by executing a batched command.
#[derive(Debug, Default)]
pub struct DeferredResultSet(HashMap<DeferredResultIndex, CommandResult>);

impl DeferredResultSet {
    /// Creates a new empty result set.
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates a new empty result set with the given capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self(HashMap::with_capacity(capacity))
    }

    pub(crate) fn push(&mut self, idx: &DeferredResultIndex, result: CommandResult) {
        self.0.insert(idx.clone(), result);
    }

    /// Returns the number of results in the set.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns whether the set is empty.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    pub(crate) fn merge_from(&mut self, other: DeferredResultSet) {
        self.0.extend(other.0);
        self.0.retain(|k, _| k.should_capture());
    }

    /// Takes a result from the set.
    pub fn take(
        &mut self,
        index: DeferredResultIndex,
    ) -> Result<CommandResult, DeferredResultIndex> {
        self.0.remove(&index).ok_or(index)
    }
}

/// An index type used to retrieve the result of a deferred command.
///
/// This type can detect if the result of a command is not used.
#[derive(Eq)]
pub struct DeferredResultIndex(Arc<()>);

impl PartialEq for DeferredResultIndex {
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.0, &other.0)
    }
}

impl fmt::Debug for DeferredResultIndex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("DeferredResultIndex")
            .field(&self.id())
            .finish()
    }
}

impl DeferredResultIndex {
    // Intentionally private. User code must not be able to create these.
    fn new() -> Self {
        Self(Arc::new(()))
    }

    fn id(&self) -> usize {
        Arc::as_ptr(&self.0) as usize
    }

    pub(crate) fn should_capture(&self) -> bool {
        // Both the queue and the user code may hold on to at most one of the references. The queue
        // execution will be able to detect if the user dropped their read reference, meaning
        // the read data would be inaccessible.
        Arc::strong_count(&self.0) > 1
    }

    // Intentionally private. User code must not be able to clone these.
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl std::hash::Hash for DeferredResultIndex {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.id().hash(state)
    }
}

/// The method that should be used for attaching.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum AttachMethod {
    /// Attach normally with no special behavior.
    Normal,
    /// Attach to the target while it is in reset.
    ///
    /// This is required on targets that can remap SWD pins or disable the SWD interface in sleep.
    UnderReset,
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_is_probe_factory() {
        let probe_info = DebugProbeInfo::new(
            "Mock probe",
            0x12,
            0x23,
            Some("mock_serial".to_owned()),
            &ftdi::FtdiProbeFactory,
            None,
        );

        assert!(probe_info.is_probe_type::<ftdi::FtdiProbeFactory>());
        assert!(!probe_info.is_probe_type::<espusbjtag::EspUsbJtagFactory>());
    }

    #[test]
    fn test_parsing_many_colons() {
        let selector: DebugProbeSelector = "303a:1001:DC:DA:0C:D3:FE:D8".try_into().unwrap();

        assert_eq!(selector.vendor_id, 0x303a);
        assert_eq!(selector.product_id, 0x1001);
        assert_eq!(
            selector.serial_number,
            Some("DC:DA:0C:D3:FE:D8".to_string())
        );
    }
}