probe_rs/probe.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
//! Probe drivers
pub(crate) mod arm_debug_interface;
pub(crate) mod common;
pub(crate) mod usb_util;
pub mod blackmagic;
pub mod cmsisdap;
pub mod espusbjtag;
pub mod fake_probe;
pub mod ftdi;
pub mod jlink;
pub mod list;
pub mod stlink;
pub mod wlink;
use crate::architecture::arm::sequences::{ArmDebugSequence, DefaultArmSequence};
use crate::architecture::arm::ArmError;
use crate::architecture::arm::{
communication_interface::{DapProbe, UninitializedArmProbe},
PortType, SwoAccess,
};
use crate::architecture::riscv::communication_interface::{RiscvError, RiscvInterfaceBuilder};
use crate::architecture::xtensa::communication_interface::{
XtensaCommunicationInterface, XtensaDebugInterfaceState, XtensaError,
};
use crate::config::TargetSelector;
use crate::probe::common::IdCode;
use crate::{Error, Permissions, Session};
use common::ScanChainError;
use nusb::DeviceInfo;
use probe_rs_target::ScanChainElement;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::fmt;
use std::sync::Arc;
/// Used to log warnings when the measured target voltage is
/// lower than 1.4V, if at all measurable.
const LOW_TARGET_VOLTAGE_WARNING_THRESHOLD: f32 = 1.4;
/// The protocol that is to be used by the probe when communicating with the target.
///
/// For ARM select `Swd` or `Jtag`, for RISC-V select `Jtag`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, serde::Serialize, serde::Deserialize)]
pub enum WireProtocol {
/// Serial Wire Debug is ARMs proprietary standard for communicating with ARM cores.
/// You can find specifics in the [`ARM Debug Interface v5.2`](https://developer.arm.com/documentation/ihi0031/f/?lang=en) specification.
Swd,
/// JTAG is a standard which is supported by many chips independent of architecture.
/// See [`Wikipedia`](https://en.wikipedia.org/wiki/JTAG) for more info.
Jtag,
}
impl fmt::Display for WireProtocol {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
WireProtocol::Swd => f.write_str("SWD"),
WireProtocol::Jtag => f.write_str("JTAG"),
}
}
}
impl std::str::FromStr for WireProtocol {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match &s.to_ascii_lowercase()[..] {
"swd" => Ok(WireProtocol::Swd),
"jtag" => Ok(WireProtocol::Jtag),
_ => Err(format!(
"'{s}' is not a valid protocol. Choose from [swd, jtag]."
)),
}
}
}
/// A command queued in a batch for later execution
///
/// Mostly used internally but returned in DebugProbeError to indicate
/// which batched command actually encountered the error.
#[derive(Copy, Clone, Debug)]
pub enum BatchCommand {
/// Read from a port
Read(PortType, u16),
/// Write to a port
Write(PortType, u16, u32),
}
impl fmt::Display for BatchCommand {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
BatchCommand::Read(port, addr) => {
write!(f, "Read(port={port:?}, addr={addr})")
}
BatchCommand::Write(port, addr, data) => {
write!(f, "Write(port={port:?}, addr={addr}, data={data:#010x})")
}
}
}
}
/// Marker trait for all probe errors.
pub trait ProbeError: std::error::Error + Send + Sync + AnyShim {}
impl std::error::Error for Box<dyn ProbeError> {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
self.as_ref().source()
}
}
/// Implementation detail to allow downcasting of probe errors.
#[doc(hidden)]
pub trait AnyShim: std::any::Any {
fn as_any(&self) -> &dyn std::any::Any;
fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
}
impl<T> AnyShim for T
where
T: ProbeError,
{
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
/// A probe-specific error.
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub struct BoxedProbeError(#[from] Box<dyn ProbeError>);
impl BoxedProbeError {
/// Returns true if the underlying error is of type `T`.
pub fn is<T: ProbeError>(&self) -> bool {
self.0.as_ref().as_any().is::<T>()
}
/// Attempts to downcast the error to a specific error type.
pub fn downcast_ref<T: ProbeError>(&self) -> Option<&T> {
self.0.as_ref().as_any().downcast_ref()
}
/// Attempts to downcast the error to a specific error type.
pub fn downcast_mut<T: ProbeError>(&mut self) -> Option<&mut T> {
self.0.as_mut().as_any_mut().downcast_mut()
}
}
impl<T> From<T> for BoxedProbeError
where
T: ProbeError,
{
fn from(e: T) -> Self {
BoxedProbeError(Box::new(e))
}
}
/// This error occurs whenever the debug probe logic encounters an error while operating the relevant debug probe.
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum DebugProbeError {
/// USB Communication Error
Usb(#[source] std::io::Error),
/// An error which is specific to the debug probe in use occurred.
ProbeSpecific(#[source] BoxedProbeError),
/// The debug probe could not be created.
ProbeCouldNotBeCreated(#[from] ProbeCreationError),
/// The probe does not support the {0} protocol.
UnsupportedProtocol(WireProtocol),
/// The selected probe does not support the '{interface_name}' interface.
///
/// This happens if a probe does not support certain functionality, such as:
/// - ARM debugging
/// - RISC-V debugging
/// - SWO
#[ignore_extra_doc_attributes]
InterfaceNotAvailable {
/// The name of the unsupported interface.
interface_name: &'static str,
},
/// The probe does not support he requested speed setting ({0} kHz).
UnsupportedSpeed(u32),
/// You need to be attached to the target to perform this action.
///
/// The debug probe did not yet perform the init sequence.
/// Try calling [`DebugProbe::attach`] before trying again.
#[ignore_extra_doc_attributes]
NotAttached,
/// You need to be detached from the target to perform this action.
///
/// The debug probe already performed the init sequence.
/// Try running the failing command before [`DebugProbe::attach`].
#[ignore_extra_doc_attributes]
Attached,
/// Failed to find or attach to the target. Please check the wiring before retrying.
TargetNotFound,
/// Error in previous batched command.
BatchError(BatchCommand),
/// The '{function_name}' functionality is not implemented yet.
///
/// The variant of the function you called is not yet implemented.
/// This can happen if some debug probe has some unimplemented functionality for a specific protocol or architecture.
#[ignore_extra_doc_attributes]
NotImplemented {
/// The name of the unsupported functionality.
function_name: &'static str,
},
/// The '{command_name}' functionality is not supported by the selected probe.
/// This can happen when a probe does not allow for setting speed manually for example.
CommandNotSupportedByProbe {
/// The name of the unsupported command.
command_name: &'static str,
},
/// An error occurred handling the JTAG scan chain.
JtagScanChain(#[from] ScanChainError),
/// Some other error occurred
#[display("{0}")]
Other(String),
/// A timeout occurred during probe operation.
Timeout,
}
impl<T: ProbeError> From<T> for DebugProbeError {
fn from(e: T) -> Self {
Self::ProbeSpecific(BoxedProbeError::from(e))
}
}
/// An error during probe creation occurred.
/// This is almost always a sign of a bad USB setup.
/// Check UDEV rules if you are on Linux and try installing Zadig
/// (This will disable vendor specific drivers for your probe!) if you are on Windows.
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum ProbeCreationError {
/// The selected debug probe was not found.
/// This can be due to permissions.
NotFound,
/// The selected USB device could not be opened.
CouldNotOpen,
/// An HID API occurred.
HidApi(#[from] hidapi::HidError),
/// A USB error occurred.
Usb(#[source] std::io::Error),
/// An error specific with the selected probe occurred.
ProbeSpecific(#[source] BoxedProbeError),
/// Something else happened.
#[display("{0}")]
Other(&'static str),
}
impl<T: ProbeError> From<T> for ProbeCreationError {
fn from(e: T) -> Self {
Self::ProbeSpecific(BoxedProbeError::from(e))
}
}
/// The Probe struct is a generic wrapper over the different
/// probes supported.
///
/// # Examples
///
/// ## Open the first probe found
///
/// The `list_all` and `from_probe_info` functions can be used
/// to create a new `Probe`:
///
/// ```no_run
/// use probe_rs::probe::{Probe, list::Lister};
///
/// let lister = Lister::new();
///
/// let probe_list = lister.list_all();
/// let probe = probe_list[0].open();
/// ```
#[derive(Debug)]
pub struct Probe {
inner: Box<dyn DebugProbe>,
attached: bool,
}
impl Probe {
/// Create a new probe from a more specific probe driver.
pub fn new(probe: impl DebugProbe + 'static) -> Self {
Self {
inner: Box::new(probe),
attached: false,
}
}
pub(crate) fn from_attached_probe(probe: Box<dyn DebugProbe>) -> Self {
Self {
inner: probe,
attached: true,
}
}
/// Same as [`Probe::new`] but without automatic boxing in case you already have a box.
pub fn from_specific_probe(probe: Box<dyn DebugProbe>) -> Self {
Probe {
inner: probe,
attached: false,
}
}
/// Get the human readable name for the probe.
pub fn get_name(&self) -> String {
self.inner.get_name().to_string()
}
/// Attach to the chip.
///
/// This runs all the necessary protocol init routines.
///
/// If this doesn't work, you might want to try [`Probe::attach_under_reset`]
pub fn attach(
self,
target: impl Into<TargetSelector>,
permissions: Permissions,
) -> Result<Session, Error> {
Session::new(self, target.into(), AttachMethod::Normal, permissions)
}
/// Attach to a target without knowing what target you have at hand.
/// This can be used for automatic device discovery or performing operations on an unspecified target.
pub fn attach_to_unspecified(&mut self) -> Result<(), Error> {
self.inner.attach()?;
self.attached = true;
Ok(())
}
/// A combination of [`Probe::attach_to_unspecified`] and [`Probe::attach_under_reset`].
pub fn attach_to_unspecified_under_reset(&mut self) -> Result<(), Error> {
if let Some(dap_probe) = self.try_as_dap_probe() {
DefaultArmSequence(()).reset_hardware_assert(dap_probe)?;
} else {
tracing::info!(
"Custom reset sequences are not supported on {}.",
self.get_name()
);
tracing::info!("Falling back to standard probe reset.");
self.target_reset_assert()?;
}
self.attach_to_unspecified()?;
Ok(())
}
/// Attach to the chip under hard-reset.
///
/// This asserts the reset pin via the probe, plays the protocol init routines and deasserts the pin.
/// This is necessary if the chip is not responding to the SWD reset sequence.
/// For example this can happen if the chip has the SWDIO pin remapped.
pub fn attach_under_reset(
self,
target: impl Into<TargetSelector>,
permissions: Permissions,
) -> Result<Session, Error> {
// The session will de-assert reset after connecting to the debug interface.
Session::new(self, target.into(), AttachMethod::UnderReset, permissions).map_err(
|e| match e {
Error::Arm(ArmError::Timeout)
| Error::Riscv(RiscvError::Timeout)
| Error::Xtensa(XtensaError::Timeout) => Error::Other(
"Timeout while attaching to target under reset. \
This can happen if the target is not responding to the reset sequence. \
Ensure the chip's reset pin is connected, or try attaching without reset \
(`connectUnderReset = false` for DAP Clients, or remove `connect-under-reset` \
option from CLI options.)."
.to_string(),
),
e => e,
},
)
}
/// Selects the transport protocol to be used by the debug probe.
pub fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError> {
if !self.attached {
self.inner.select_protocol(protocol)
} else {
Err(DebugProbeError::Attached)
}
}
/// Get the currently selected protocol
///
/// Depending on the probe, this might not be available.
pub fn protocol(&self) -> Option<WireProtocol> {
self.inner.active_protocol()
}
/// Leave debug mode
pub fn detach(&mut self) -> Result<(), crate::Error> {
self.attached = false;
self.inner.detach()?;
Ok(())
}
/// Resets the target device.
pub fn target_reset(&mut self) -> Result<(), DebugProbeError> {
self.inner.target_reset()
}
/// Asserts the reset of the target.
/// This is always the hard reset which means the reset wire has to be connected to work.
///
/// This is not supported on all probes.
pub fn target_reset_assert(&mut self) -> Result<(), DebugProbeError> {
tracing::debug!("Asserting target reset");
self.inner.target_reset_assert()
}
/// Deasserts the reset of the target.
/// This is always the hard reset which means the reset wire has to be connected to work.
///
/// This is not supported on all probes.
pub fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError> {
tracing::debug!("Deasserting target reset");
self.inner.target_reset_deassert()
}
/// Configure protocol speed to use in kHz
pub fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError> {
if !self.attached {
self.inner.set_speed(speed_khz)
} else {
Err(DebugProbeError::Attached)
}
}
/// Configure the scan chain to use for the attached target.
///
/// See [`DebugProbe::set_scan_chain`] for more information and usage
pub fn set_scan_chain(
&mut self,
scan_chain: Vec<ScanChainElement>,
) -> Result<(), DebugProbeError> {
if !self.attached {
self.inner.set_scan_chain(scan_chain)
} else {
Err(DebugProbeError::Attached)
}
}
/// Returns the JTAG scan chain
pub fn scan_chain(&self) -> Result<&[ScanChainElement], DebugProbeError> {
self.inner.scan_chain()
}
/// Selects the JTAG TAP to be used for communication.
pub fn select_jtag_tap(&mut self, index: usize) -> Result<(), DebugProbeError> {
self.inner.select_jtag_tap(index)
}
/// Get the currently used maximum speed for the debug protocol in kHz.
///
/// Not all probes report which speed is used, meaning this value is not
/// always the actual speed used. However, the speed should not be any
/// higher than this value.
pub fn speed_khz(&self) -> u32 {
self.inner.speed_khz()
}
/// Check if the probe has an interface to
/// debug Xtensa chips.
pub fn has_xtensa_interface(&self) -> bool {
self.inner.has_xtensa_interface()
}
/// Try to get a [`XtensaCommunicationInterface`], which can
/// can be used to communicate with chips using the Xtensa
/// architecture.
///
/// The user is responsible for creating and managing the [`XtensaDebugInterfaceState`] state
/// object.
///
/// If an error occurs while trying to connect, the probe is returned.
pub fn try_get_xtensa_interface<'probe>(
&'probe mut self,
state: &'probe mut XtensaDebugInterfaceState,
) -> Result<XtensaCommunicationInterface<'probe>, DebugProbeError> {
if !self.attached {
Err(DebugProbeError::NotAttached)
} else {
Ok(self.inner.try_get_xtensa_interface(state)?)
}
}
/// Check if the probe has an interface to
/// debug ARM chips.
pub fn has_arm_interface(&self) -> bool {
self.inner.has_arm_interface()
}
/// Try to get a trait object implementing `UninitializedArmProbe`, which can
/// can be used to communicate with chips using the ARM architecture.
///
/// If an error occurs while trying to connect, the probe is returned.
pub fn try_into_arm_interface<'probe>(
self,
) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Self, DebugProbeError)> {
if !self.attached {
Err((self, DebugProbeError::NotAttached))
} else {
self.inner
.try_get_arm_interface()
.map_err(|(probe, err)| (Probe::from_attached_probe(probe), err))
}
}
/// Check if the probe has an interface to debug RISC-V chips.
pub fn has_riscv_interface(&self) -> bool {
self.inner.has_riscv_interface()
}
/// Try to get a [`RiscvInterfaceBuilder`] object, which can be used to set up a communication
/// interface with chips using the RISC-V architecture.
///
/// The returned object can be used to create the interface state, which is required to
/// attach to the RISC-V target. The user is responsible for managing this state object.
///
/// If an error occurs while trying to connect, the probe is returned.
pub fn try_get_riscv_interface_builder<'probe>(
&'probe mut self,
) -> Result<Box<dyn RiscvInterfaceBuilder<'probe> + 'probe>, DebugProbeError> {
if !self.attached {
Err(DebugProbeError::NotAttached)
} else {
self.inner.try_get_riscv_interface_builder()
}
}
/// Gets a SWO interface from the debug probe.
///
/// This does not work on all probes.
pub fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
self.inner.get_swo_interface()
}
/// Gets a mutable SWO interface from the debug probe.
///
/// This does not work on all probes.
pub fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
self.inner.get_swo_interface_mut()
}
/// Gets a DAP interface from the debug probe.
///
/// This does not work on all probes.
pub fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
self.inner.try_as_dap_probe()
}
/// Try reading the target voltage of via the connected voltage pin.
///
/// This does not work on all probes.
pub fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
self.inner.get_target_voltage()
}
/// Try to get a J-Link interface from the debug probe.
pub fn try_into_jlink(&mut self) -> Result<&mut jlink::JLink, DebugProbeError> {
self.inner.try_into_jlink()
}
}
/// An abstraction over a probe driver type.
///
/// This trait has to be implemented by ever debug probe driver.
///
/// The `std::fmt::Display` implementation will be used to display the probe in the list of available probes,
/// and should return a human-readable name for the probe type.
pub trait ProbeFactory: std::any::Any + std::fmt::Display + std::fmt::Debug + Sync {
/// Creates a new boxed [`DebugProbe`] from a given [`DebugProbeSelector`].
/// This will be called for all available debug drivers when discovering probes.
/// When opening, it will open the first probe which succeeds during this call.
fn open(&self, selector: &DebugProbeSelector) -> Result<Box<dyn DebugProbe>, DebugProbeError>;
/// Returns a list of all available debug probes of the current type.
fn list_probes(&self) -> Vec<DebugProbeInfo>;
}
/// An abstraction over general debug probe.
///
/// This trait has to be implemented by ever debug probe driver.
pub trait DebugProbe: Send + fmt::Debug {
/// Get human readable name for the probe.
fn get_name(&self) -> &str;
/// Get the currently used maximum speed for the debug protocol in kHz.
///
/// Not all probes report which speed is used, meaning this value is not
/// always the actual speed used. However, the speed should not be any
/// higher than this value.
fn speed_khz(&self) -> u32;
/// Set the speed in kHz used for communication with the target device.
///
/// The desired speed might not be supported by the probe. If the desired
/// speed is not directly supported, a lower speed will be selected if possible.
///
/// If possible, the actual speed used is returned by the function. Some probes
/// cannot report this, so the value may be inaccurate.
///
/// If the requested speed is not supported,
/// `DebugProbeError::UnsupportedSpeed` will be returned.
///
fn set_speed(&mut self, speed_khz: u32) -> Result<u32, DebugProbeError>;
/// Set the JTAG scan chain information for the target under debug.
///
/// This allows the probe to know which TAPs are in the scan chain and their
/// position and IR lengths.
///
/// If the scan chain is provided, and the selected protocol is JTAG, the
/// probe will automatically configure the JTAG interface to match the
/// scan chain configuration without trying to determine the chain at
/// runtime.
///
/// This is called by the `Session` when attaching to a target.
/// So this does not need to be called manually, unless you want to
/// modify the scan chain. You must be attached to a target to set the
/// scan_chain since the scan chain only applies to the attached target.
///
fn set_scan_chain(&mut self, scan_chain: Vec<ScanChainElement>) -> Result<(), DebugProbeError>;
/// Returns the JTAG scan chain
fn scan_chain(&self) -> Result<&[ScanChainElement], DebugProbeError>;
/// Attach to the chip.
///
/// This should run all the necessary protocol init routines.
fn attach(&mut self) -> Result<(), DebugProbeError>;
/// Selects the JTAG TAP to be used for communication.
fn select_jtag_tap(&mut self, index: usize) -> Result<(), DebugProbeError> {
if index != 0 {
return Err(DebugProbeError::NotImplemented {
function_name: "select_jtag_tap",
});
}
Ok(())
}
/// Detach from the chip.
///
/// This should run all the necessary protocol deinit routines.
///
/// If the probe uses batched commands, this will also cause all
/// remaining commands to be executed. If an error occurs during
/// this execution, the probe might remain in the attached state.
fn detach(&mut self) -> Result<(), crate::Error>;
/// This should hard reset the target device.
fn target_reset(&mut self) -> Result<(), DebugProbeError>;
/// This should assert the reset pin of the target via debug probe.
fn target_reset_assert(&mut self) -> Result<(), DebugProbeError>;
/// This should deassert the reset pin of the target via debug probe.
fn target_reset_deassert(&mut self) -> Result<(), DebugProbeError>;
/// Selects the transport protocol to be used by the debug probe.
fn select_protocol(&mut self, protocol: WireProtocol) -> Result<(), DebugProbeError>;
/// Get the transport protocol currently in active use by the debug probe.
fn active_protocol(&self) -> Option<WireProtocol>;
/// Check if the probe offers an interface to debug ARM chips.
fn has_arm_interface(&self) -> bool {
false
}
/// Get the dedicated interface to debug ARM chips. To check that the
/// probe actually supports this, call [DebugProbe::has_arm_interface] first.
fn try_get_arm_interface<'probe>(
self: Box<Self>,
) -> Result<Box<dyn UninitializedArmProbe + 'probe>, (Box<dyn DebugProbe>, DebugProbeError)>
{
Err((
self.into_probe(),
DebugProbeError::InterfaceNotAvailable {
interface_name: "ARM",
},
))
}
/// Try to get a [`RiscvInterfaceBuilder`] object, which can be used to set up a communication
/// interface with chips using the RISC-V architecture.
///
/// Ensure that the probe actually supports this by calling
/// [DebugProbe::has_riscv_interface] first.
fn try_get_riscv_interface_builder<'probe>(
&'probe mut self,
) -> Result<Box<dyn RiscvInterfaceBuilder<'probe> + 'probe>, DebugProbeError> {
Err(DebugProbeError::InterfaceNotAvailable {
interface_name: "RISC-V",
})
}
/// Check if the probe offers an interface to debug RISC-V chips.
fn has_riscv_interface(&self) -> bool {
false
}
/// Get the dedicated interface to debug Xtensa chips. Ensure that the
/// probe actually supports this by calling [DebugProbe::has_xtensa_interface] first.
fn try_get_xtensa_interface<'probe>(
&'probe mut self,
_state: &'probe mut XtensaDebugInterfaceState,
) -> Result<XtensaCommunicationInterface<'probe>, DebugProbeError> {
Err(DebugProbeError::InterfaceNotAvailable {
interface_name: "Xtensa",
})
}
/// Check if the probe offers an interface to debug Xtensa chips.
fn has_xtensa_interface(&self) -> bool {
false
}
/// Get a SWO interface from the debug probe.
///
/// This is not available on all debug probes.
fn get_swo_interface(&self) -> Option<&dyn SwoAccess> {
None
}
/// Get a mutable SWO interface from the debug probe.
///
/// This is not available on all debug probes.
fn get_swo_interface_mut(&mut self) -> Option<&mut dyn SwoAccess> {
None
}
/// Boxes itself.
fn into_probe(self: Box<Self>) -> Box<dyn DebugProbe>;
/// Try creating a DAP interface for the given probe.
///
/// This is not available on all probes.
fn try_as_dap_probe(&mut self) -> Option<&mut dyn DapProbe> {
None
}
/// Reads the target voltage in Volts, if possible. Returns `Ok(None)`
/// if the probe doesn’t support reading the target voltage.
fn get_target_voltage(&mut self) -> Result<Option<f32>, DebugProbeError> {
Ok(None)
}
/// Try to get a J-Link interface from the debug probe.
fn try_into_jlink(&mut self) -> Result<&mut jlink::JLink, DebugProbeError> {
Err(DebugProbeError::Other(
"This probe is not a J-Link.".to_string(),
))
}
}
impl PartialEq for dyn ProbeFactory {
fn eq(&self, other: &Self) -> bool {
// Consider ProbeFactory objects equal when their types and data pointers are equal.
// Pointer equality is insufficient, because ZST objects may have the same dangling pointer
// as their address.
self.type_id() == other.type_id()
&& std::ptr::eq(
self as *const _ as *const (),
other as *const _ as *const (),
)
}
}
/// Gathers some information about a debug probe which was found during a scan.
#[derive(Debug, Clone, PartialEq)]
pub struct DebugProbeInfo {
/// The name of the debug probe.
pub identifier: String,
/// The USB vendor ID of the debug probe.
pub vendor_id: u16,
/// The USB product ID of the debug probe.
pub product_id: u16,
/// The serial number of the debug probe.
pub serial_number: Option<String>,
/// The USB HID interface which should be used.
/// This is necessary for composite HID devices.
pub hid_interface: Option<u8>,
/// A reference to the [`ProbeFactory`] that created this info object.
probe_factory: &'static dyn ProbeFactory,
}
impl std::fmt::Display for DebugProbeInfo {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"{} -- {:04x}:{:04x}:{} ({})",
self.identifier,
self.vendor_id,
self.product_id,
self.serial_number.as_deref().unwrap_or(""),
self.probe_factory,
)
}
}
impl DebugProbeInfo {
/// Creates a new info struct that uniquely identifies a probe.
pub fn new<S: Into<String>>(
identifier: S,
vendor_id: u16,
product_id: u16,
serial_number: Option<String>,
probe_factory: &'static dyn ProbeFactory,
hid_interface: Option<u8>,
) -> Self {
Self {
identifier: identifier.into(),
vendor_id,
product_id,
serial_number,
probe_factory,
hid_interface,
}
}
/// Open the probe described by this `DebugProbeInfo`.
pub fn open(&self) -> Result<Probe, DebugProbeError> {
let selector = DebugProbeSelector::from(self);
self.probe_factory
.open(&selector)
.map(Probe::from_specific_probe)
}
/// Returns whether this info was returned by a particular probe factory.
pub fn is_probe_type<F: ProbeFactory>(&self) -> bool {
self.probe_factory.type_id() == std::any::TypeId::of::<F>()
}
/// Returns a human-readable string describing the probe type.
///
/// The exact contents of the string are unstable, this is intended for human consumption only.
pub fn probe_type(&self) -> String {
self.probe_factory.to_string()
}
}
/// An error which can occur while parsing a [`DebugProbeSelector`].
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum DebugProbeSelectorParseError {
/// Could not parse VID or PID: {0}
ParseInt(#[from] std::num::ParseIntError),
/// The format of the selector is invalid. Please use a string in the form `VID:PID:<Serial>`, where Serial is optional.
Format,
}
/// A struct to describe the way a probe should be selected.
///
/// Construct this from a set of info or from a string. The
/// string has to be in the format "VID:PID:SERIALNUMBER",
/// where the serial number is optional, and VID and PID are
/// parsed as hexadecimal numbers.
///
/// ## Example:
///
/// ```
/// use std::convert::TryInto;
/// let selector: probe_rs::probe::DebugProbeSelector = "1942:1337:SERIAL".try_into().unwrap();
///
/// assert_eq!(selector.vendor_id, 0x1942);
/// assert_eq!(selector.product_id, 0x1337);
/// ```
#[derive(Debug, Clone, Serialize, Deserialize)]
// We need this so that serde will first convert from the string `VID:PID:<Serial>` to a struct before deserializing.
#[serde(try_from = "String")]
pub struct DebugProbeSelector {
/// The the USB vendor id of the debug probe to be used.
pub vendor_id: u16,
/// The the USB product id of the debug probe to be used.
pub product_id: u16,
/// The the serial number of the debug probe to be used.
pub serial_number: Option<String>,
}
impl DebugProbeSelector {
pub(crate) fn matches(&self, info: &DeviceInfo) -> bool {
info.vendor_id() == self.vendor_id
&& info.product_id() == self.product_id
&& self
.serial_number
.as_ref()
.map(|s| info.serial_number() == Some(s))
.unwrap_or(true)
}
}
impl TryFrom<&str> for DebugProbeSelector {
type Error = DebugProbeSelectorParseError;
fn try_from(value: &str) -> Result<Self, Self::Error> {
// Split into at most 3 parts: VID, PID, Serial.
// We limit the number of splits to allow for colons in the
// serial number (EspJtag uses MAC address)
let mut split = value.splitn(3, ':');
let vendor_id = split.next().unwrap(); // First split is always successful
let product_id = split.next().ok_or(DebugProbeSelectorParseError::Format)?;
let serial_number = split.next().map(|s| s.to_string());
Ok(DebugProbeSelector {
vendor_id: u16::from_str_radix(vendor_id, 16)?,
product_id: u16::from_str_radix(product_id, 16)?,
serial_number,
})
}
}
impl TryFrom<String> for DebugProbeSelector {
type Error = DebugProbeSelectorParseError;
fn try_from(value: String) -> Result<Self, Self::Error> {
TryFrom::<&str>::try_from(&value)
}
}
impl std::str::FromStr for DebugProbeSelector {
type Err = DebugProbeSelectorParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::try_from(s)
}
}
impl From<DebugProbeInfo> for DebugProbeSelector {
fn from(selector: DebugProbeInfo) -> Self {
DebugProbeSelector {
vendor_id: selector.vendor_id,
product_id: selector.product_id,
serial_number: selector.serial_number,
}
}
}
impl From<&DebugProbeInfo> for DebugProbeSelector {
fn from(selector: &DebugProbeInfo) -> Self {
DebugProbeSelector {
vendor_id: selector.vendor_id,
product_id: selector.product_id,
serial_number: selector.serial_number.clone(),
}
}
}
impl From<&DebugProbeSelector> for DebugProbeSelector {
fn from(selector: &DebugProbeSelector) -> Self {
selector.clone()
}
}
impl fmt::Display for DebugProbeSelector {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:04x}:{:04x}", self.vendor_id, self.product_id)?;
if let Some(ref sn) = self.serial_number {
write!(f, ":{sn}")?;
}
Ok(())
}
}
/// Low-Level Access to the JTAG protocol
///
/// This trait should be implemented by all probes which offer low-level access to
/// the JTAG protocol, i.e. direction control over the bytes sent and received.
pub trait JTAGAccess: DebugProbe {
/// Scans `IDCODE` and `IR` length information about the devices on the JTAG chain.
///
/// If configured, this will use the data from [`DebugProbe::set_scan_chain`]. Otherwise, it
/// will try to measure and extract `IR` lengths by driving the JTAG interface.
///
/// The measured scan chain will be stored in the probe's internal state.
fn scan_chain(&mut self) -> Result<(), DebugProbeError>;
/// Executes a TAP reset.
fn tap_reset(&mut self) -> Result<(), DebugProbeError>;
/// Read a JTAG register.
///
/// This function emulates a read by performing a write with all zeros to the DR.
fn read_register(&mut self, address: u32, len: u32) -> Result<Vec<u8>, DebugProbeError> {
let data = vec![0u8; len.div_ceil(8) as usize];
self.write_register(address, &data, len)
}
/// For RISC-V, and possibly other interfaces, the JTAG interface has to remain in
/// the idle state for several cycles between consecutive accesses to the DR register.
///
/// This function configures the number of idle cycles which are inserted after each access.
fn set_idle_cycles(&mut self, idle_cycles: u8);
/// Return the currently configured idle cycles.
fn idle_cycles(&self) -> u8;
/// Write to a JTAG register
///
/// This function will perform a write to the IR register, if necessary,
/// to select the correct register, and then to the DR register, to transmit the
/// data. The data shifted out of the DR register will be returned.
fn write_register(
&mut self,
address: u32,
data: &[u8],
len: u32,
) -> Result<Vec<u8>, DebugProbeError>;
/// Shift a value into the DR JTAG register
///
/// The data shifted out of the DR register will be returned.
fn write_dr(&mut self, data: &[u8], len: u32) -> Result<Vec<u8>, DebugProbeError>;
/// Executes a sequence of JTAG commands.
fn write_register_batch(
&mut self,
writes: &JtagCommandQueue,
) -> Result<DeferredResultSet, BatchExecutionError> {
tracing::debug!("Using default `JTAGAccess::write_register_batch` this will hurt performance. Please implement proper batching for this probe.");
let mut results = DeferredResultSet::new();
for (idx, write) in writes.iter() {
match write {
JtagCommand::WriteRegister(write) => {
match self
.write_register(write.address, &write.data, write.len)
.map_err(crate::Error::Probe)
.and_then(|response| (write.transform)(write, response))
{
Ok(res) => results.push(idx, res),
Err(e) => return Err(BatchExecutionError::new(e, results)),
}
}
JtagCommand::ShiftDr(write) => {
match self
.write_dr(&write.data, write.len)
.map_err(crate::Error::Probe)
.and_then(|response| (write.transform)(write, response))
{
Ok(res) => results.push(idx, res),
Err(e) => return Err(BatchExecutionError::new(e, results)),
}
}
}
}
Ok(results)
}
}
/// A low-level JTAG register write command.
#[derive(Debug, Clone)]
pub struct JtagWriteCommand {
/// The IR register to write to.
pub address: u32,
/// The data to be written to DR.
pub data: Vec<u8>,
/// The number of bits in `data`
pub len: u32,
/// A function to transform the raw response into a [`CommandResult`]
pub transform: fn(&JtagWriteCommand, Vec<u8>) -> Result<CommandResult, crate::Error>,
}
/// A low-level JTAG register write command.
#[derive(Debug, Clone)]
pub struct ShiftDrCommand {
/// The data to be written to DR.
pub data: Vec<u8>,
/// The number of bits in `data`
pub len: u32,
/// A function to transform the raw response into a [`CommandResult`]
pub transform: fn(&ShiftDrCommand, Vec<u8>) -> Result<CommandResult, crate::Error>,
}
/// A low-level JTAG command.
#[derive(Debug, Clone)]
pub enum JtagCommand {
/// Write a register.
WriteRegister(JtagWriteCommand),
/// Shift a value into the DR register.
ShiftDr(ShiftDrCommand),
}
impl From<JtagWriteCommand> for JtagCommand {
fn from(cmd: JtagWriteCommand) -> Self {
JtagCommand::WriteRegister(cmd)
}
}
impl From<ShiftDrCommand> for JtagCommand {
fn from(cmd: ShiftDrCommand) -> Self {
JtagCommand::ShiftDr(cmd)
}
}
/// Represents a Jtag Tap within the chain.
#[derive(Debug)]
pub struct JtagChainItem {
/// The IDCODE of the device.
pub idcode: Option<IdCode>,
/// The length of the instruction register.
pub irlen: usize,
}
/// Chain parameters to select a target tap within the chain.
#[derive(Clone, Copy, Debug, Default)]
pub(crate) struct ChainParams {
pub irpre: usize,
pub irpost: usize,
pub drpre: usize,
pub drpost: usize,
pub irlen: usize,
}
impl ChainParams {
fn from_jtag_chain(chain: &[JtagChainItem], selected: usize) -> Option<Self> {
let mut params = Self::default();
let mut found = false;
for (index, tap) in chain.iter().enumerate() {
if index == selected {
params.irlen = tap.irlen;
found = true;
} else if found {
params.irpost += tap.irlen;
params.drpost += 1;
} else {
params.irpre += tap.irlen;
params.drpre += 1;
}
}
found.then_some(params)
}
}
/// An error that occurred during batched command execution.
#[derive(thiserror::Error, Debug)]
pub struct BatchExecutionError {
/// The error that occurred during execution.
#[source]
pub error: crate::Error,
/// The results of the commands that were executed before the error occurred.
pub results: DeferredResultSet,
}
impl BatchExecutionError {
pub(crate) fn new(error: crate::Error, results: DeferredResultSet) -> BatchExecutionError {
BatchExecutionError { error, results }
}
}
impl std::fmt::Display for BatchExecutionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Error cause was {}. Successful command count {}",
self.error,
self.results.len()
)
}
}
/// Results generated by `JtagCommand`s
#[derive(Debug, Clone)]
pub enum CommandResult {
/// No result
None,
/// A single byte
U8(u8),
/// A single 16-bit word
U16(u16),
/// A single 32-bit word
U32(u32),
/// Multiple bytes
VecU8(Vec<u8>),
}
impl CommandResult {
/// Returns the result as a `u32` if possible.
///
/// # Panics
///
/// Panics if the result is not a `u32`.
pub fn into_u32(self) -> u32 {
match self {
CommandResult::U32(val) => val,
_ => panic!("CommandResult is not a u32"),
}
}
/// Returns the result as a `u8` if possible.
///
/// # Panics
///
/// Panics if the result is not a `u8`.
pub fn into_u8(self) -> u8 {
match self {
CommandResult::U8(val) => val,
_ => panic!("CommandResult is not a u8"),
}
}
}
/// A set of batched commands that will be executed all at once.
///
/// This list maintains which commands' results can be read by the issuing code, which then
/// can be used to skip capturing or processing certain parts of the response.
#[derive(Default, Debug)]
pub struct JtagCommandQueue {
commands: Vec<(DeferredResultIndex, JtagCommand)>,
}
impl JtagCommandQueue {
/// Creates a new empty queue.
pub fn new() -> Self {
Self::default()
}
/// Schedules a command for later execution.
///
/// Returns a token value that can be used to retrieve the result of the command.
pub fn schedule(&mut self, command: impl Into<JtagCommand>) -> DeferredResultIndex {
let index = DeferredResultIndex::new();
self.commands.push((index.clone(), command.into()));
index
}
/// Returns the number of commands in the queue.
pub fn len(&self) -> usize {
self.commands.len()
}
/// Returns whether the queue is empty.
pub fn is_empty(&self) -> bool {
self.commands.is_empty()
}
pub(crate) fn iter(&self) -> impl Iterator<Item = &(DeferredResultIndex, JtagCommand)> {
self.commands.iter()
}
/// Removes the first `len` number of commands from the batch.
pub(crate) fn consume(&mut self, len: usize) {
self.commands.drain(..len);
}
}
/// The set of results returned by executing a batched command.
#[derive(Debug, Default)]
pub struct DeferredResultSet(HashMap<DeferredResultIndex, CommandResult>);
impl DeferredResultSet {
/// Creates a new empty result set.
pub fn new() -> Self {
Self::default()
}
/// Creates a new empty result set with the given capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self(HashMap::with_capacity(capacity))
}
pub(crate) fn push(&mut self, idx: &DeferredResultIndex, result: CommandResult) {
self.0.insert(idx.clone(), result);
}
/// Returns the number of results in the set.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns whether the set is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub(crate) fn merge_from(&mut self, other: DeferredResultSet) {
self.0.extend(other.0);
self.0.retain(|k, _| k.should_capture());
}
/// Takes a result from the set.
pub fn take(
&mut self,
index: DeferredResultIndex,
) -> Result<CommandResult, DeferredResultIndex> {
self.0.remove(&index).ok_or(index)
}
}
/// An index type used to retrieve the result of a deferred command.
///
/// This type can detect if the result of a command is not used.
#[derive(Eq)]
pub struct DeferredResultIndex(Arc<()>);
impl PartialEq for DeferredResultIndex {
fn eq(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.0, &other.0)
}
}
impl fmt::Debug for DeferredResultIndex {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("DeferredResultIndex")
.field(&self.id())
.finish()
}
}
impl DeferredResultIndex {
// Intentionally private. User code must not be able to create these.
fn new() -> Self {
Self(Arc::new(()))
}
fn id(&self) -> usize {
Arc::as_ptr(&self.0) as usize
}
pub(crate) fn should_capture(&self) -> bool {
// Both the queue and the user code may hold on to at most one of the references. The queue
// execution will be able to detect if the user dropped their read reference, meaning
// the read data would be inaccessible.
Arc::strong_count(&self.0) > 1
}
// Intentionally private. User code must not be able to clone these.
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl std::hash::Hash for DeferredResultIndex {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.id().hash(state)
}
}
/// The method that should be used for attaching.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum AttachMethod {
/// Attach normally with no special behavior.
Normal,
/// Attach to the target while it is in reset.
///
/// This is required on targets that can remap SWD pins or disable the SWD interface in sleep.
UnderReset,
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_is_probe_factory() {
let probe_info = DebugProbeInfo::new(
"Mock probe",
0x12,
0x23,
Some("mock_serial".to_owned()),
&ftdi::FtdiProbeFactory,
None,
);
assert!(probe_info.is_probe_type::<ftdi::FtdiProbeFactory>());
assert!(!probe_info.is_probe_type::<espusbjtag::EspUsbJtagFactory>());
}
#[test]
fn test_parsing_many_colons() {
let selector: DebugProbeSelector = "303a:1001:DC:DA:0C:D3:FE:D8".try_into().unwrap();
assert_eq!(selector.vendor_id, 0x303a);
assert_eq!(selector.product_id, 0x1001);
assert_eq!(
selector.serial_number,
Some("DC:DA:0C:D3:FE:D8".to_string())
);
}
}