probe_rs/rtt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
//! Host side implementation of the RTT (Real-Time Transfer) I/O protocol over probe-rs
//!
//! RTT implements input and output to/from a microcontroller using in-memory ring buffers and
//! memory polling. This enables debug logging from the microcontroller with minimal delays and no
//! blocking, making it usable even in real-time applications where e.g. semihosting delays cannot
//! be tolerated.
//!
//! This crate enables you to read and write via RTT channels. It's also used as a building-block
//! for probe-rs debugging tools.
//!
//! ## Example
//!
//! ```no_run
//! use probe_rs::probe::list::Lister;
//! use probe_rs::Permissions;
//! use probe_rs::rtt::Rtt;
//!
//! // First obtain a probe-rs session (see probe-rs documentation for details)
//! let lister = Lister::new();
//!
//! let probes = lister.list_all();
//!
//! let probe = probes[0].open()?;
//! let mut session = probe.attach("somechip", Permissions::default())?;
//! // Select a core.
//! let mut core = session.core(0)?;
//!
//! // Attach to RTT
//! let mut rtt = Rtt::attach(&mut core)?;
//!
//! // Read from a channel
//! if let Some(input) = rtt.up_channel(0) {
//! let mut buf = [0u8; 1024];
//! let count = input.read(&mut core, &mut buf[..])?;
//!
//! println!("Read data: {:?}", &buf[..count]);
//! }
//!
//! // Write to a channel
//! if let Some(output) = rtt.down_channel(0) {
//! output.write(&mut core, b"Hello, computer!\n")?;
//! }
//!
//! # Ok::<(), Box<dyn std::error::Error>>(())
//! ```
mod channel;
pub use channel::*;
use crate::Session;
use crate::{config::MemoryRegion, Core, MemoryInterface};
use std::ops::Range;
use std::thread;
use std::time::Instant;
use std::{borrow::Cow, time::Duration};
use zerocopy::FromBytes;
/// The RTT interface.
///
/// Use [`Rtt::attach`] or [`Rtt::attach_region`] to attach to a probe-rs [`Core`] and detect the
/// channels, as they were configured on the target. The timing of when this is called is really
/// important, or else unexpected results can be expected.
///
/// ## Examples of how timing between host and target effects the results
///
/// 1. **Scenario: Ideal configuration**: The host RTT interface is created **AFTER** the target
/// program has successfully executing the RTT initialization, by calling an api such as
/// [`rtt_target::rtt_init_print!()`](https://docs.rs/rtt-target/0.5.0/rtt_target/macro.rtt_init_print.html).
///
/// At this point, both the RTT Control Block and the RTT Channel configurations are present in
/// the target memory, and this RTT interface can be expected to work as expected.
///
/// 2. **Scenario: Failure to detect RTT Control Block**: The target has been configured correctly,
/// **BUT** the host creates this interface **BEFORE** the target program has initialized RTT.
///
/// This most commonly occurs when the target halts processing before initializing RTT. For
/// example, this could happen ...
/// * During debugging, if the user sets a breakpoint in the code before the RTT
/// initialization.
/// * After flashing, if the user has configured `probe-rs` to `reset_after_flashing` AND
/// `halt_after_reset`. On most targets, this will result in the target halting with
/// reason `Exception` and will delay the subsequent RTT initialization.
/// * If RTT initialization on the target is delayed because of time consuming processing or
/// excessive interrupt handling. This can usually be prevented by moving the RTT
/// initialization code to the very beginning of the target program logic.
///
/// The result of such a timing issue is that `probe-rs` will fail to initialize RTT with an
/// [`Error::ControlBlockNotFound`]
///
/// 3. **Scenario: Incorrect Channel names and incorrect Channel buffer sizes**: This scenario
/// usually occurs when two conditions coincide. Firstly, the same timing mismatch as described
/// in point #2 above, and secondly, the target memory has NOT been cleared since a previous
/// version of the binary program has been flashed to the target.
///
/// What happens here is that the RTT Control Block is validated by reading a previously
/// initialized RTT ID from the target memory. The next step in the logic is then to read the
/// Channel configuration from the RTT Control block which is usually contains unreliable data
/// at this point. The symptoms will appear as:
/// * RTT Channel names are incorrect and/or contain unprintable characters.
/// * RTT Channel names are correct, but no data, or corrupted data, will be reported from
/// RTT, because the buffer sizes are incorrect.
#[derive(Debug)]
pub struct Rtt {
/// The location of the control block in target memory.
ptr: u64,
/// The detected up (target to host) channels.
pub up_channels: Vec<UpChannel>,
/// The detected down (host to target) channels.
pub down_channels: Vec<DownChannel>,
}
#[repr(C)]
#[derive(FromBytes)]
struct RttControlBlockHeaderInner<T> {
id: [u8; 16],
max_up_channels: T,
max_down_channels: T,
}
impl From<RttControlBlockHeaderInner<u32>> for RttControlBlockHeaderInner<u64> {
fn from(value: RttControlBlockHeaderInner<u32>) -> Self {
Self {
id: value.id,
max_up_channels: u64::from(value.max_up_channels),
max_down_channels: u64::from(value.max_down_channels),
}
}
}
enum RttControlBlockHeader {
Header32(RttControlBlockHeaderInner<u32>),
Header64(RttControlBlockHeaderInner<u64>),
}
impl RttControlBlockHeader {
pub fn try_from_header(is_64_bit: bool, mem: &[u8]) -> Option<Self> {
if is_64_bit {
RttControlBlockHeaderInner::<u64>::read_from_prefix(mem)
.map(|(header, _)| Self::Header64(header))
.ok()
} else {
RttControlBlockHeaderInner::<u32>::read_from_prefix(mem)
.map(|(header, _)| Self::Header32(header))
.ok()
}
}
pub fn minimal_header_size(is_64_bit: bool) -> usize {
if is_64_bit {
std::mem::size_of::<RttControlBlockHeaderInner<u64>>()
} else {
std::mem::size_of::<RttControlBlockHeaderInner<u32>>()
}
}
pub fn header_size(&self) -> usize {
Self::minimal_header_size(matches!(self, Self::Header64(_)))
}
pub fn id(&self) -> [u8; 16] {
match self {
RttControlBlockHeader::Header32(x) => x.id,
RttControlBlockHeader::Header64(x) => x.id,
}
}
pub fn max_up_channels(&self) -> usize {
match self {
RttControlBlockHeader::Header32(x) => x.max_up_channels as usize,
RttControlBlockHeader::Header64(x) => x.max_up_channels as usize,
}
}
pub fn max_down_channels(&self) -> usize {
match self {
RttControlBlockHeader::Header32(x) => x.max_down_channels as usize,
RttControlBlockHeader::Header64(x) => x.max_down_channels as usize,
}
}
pub fn channel_buffer_size(&self) -> usize {
match self {
RttControlBlockHeader::Header32(_x) => RttChannelBufferInner::<u32>::size(),
RttControlBlockHeader::Header64(_x) => RttChannelBufferInner::<u64>::size(),
}
}
pub fn total_rtt_buffer_size(&self) -> usize {
let total_number_of_channels = self.max_up_channels() + self.max_down_channels();
let channel_size = self.channel_buffer_size();
self.header_size() + channel_size * total_number_of_channels
}
pub fn parse_channel_buffers(&self, mem: &[u8]) -> Result<Vec<RttChannelBuffer>, Error> {
let buffers = match self {
RttControlBlockHeader::Header32(_) => {
<[RttChannelBufferInner<u32>]>::ref_from_bytes(mem)
.map_err(|_| Error::ControlBlockNotFound)?
.iter()
.cloned()
.map(RttChannelBuffer::from)
.collect::<Vec<RttChannelBuffer>>()
}
RttControlBlockHeader::Header64(_) => {
<[RttChannelBufferInner<u64>]>::ref_from_bytes(mem)
.map_err(|_| Error::ControlBlockNotFound)?
.iter()
.cloned()
.map(RttChannelBuffer::from)
.collect::<Vec<RttChannelBuffer>>()
}
};
Ok(buffers)
}
}
// Rtt must follow this data layout when reading/writing memory in order to be compatible with the
// official RTT implementation.
//
// struct ControlBlock {
// char id[16]; // Used to find/validate the control block.
// // Maximum number of up (target to host) channels in following array
// unsigned int max_up_channels;
// // Maximum number of down (host to target) channels in following array.
// unsigned int max_down_channels;
// RttChannel up_channels[max_up_channels]; // Array of up (target to host) channels.
// RttChannel down_channels[max_down_channels]; // array of down (host to target) channels.
// }
impl Rtt {
const RTT_ID: [u8; 16] = *b"SEGGER RTT\0\0\0\0\0\0";
fn from(
core: &mut Core,
// Pointer from which to scan
ptr: u64,
// Memory contents read in advance, starting from ptr
mem_in: Option<&[u8]>,
) -> Result<Option<Rtt>, Error> {
let is_64_bit = core.is_64_bit();
let mut mem = match mem_in {
Some(mem) => Cow::Borrowed(mem),
None => {
// If memory wasn't passed in, read the minimum header size
let new_length = RttControlBlockHeader::minimal_header_size(is_64_bit);
let mut mem = vec![0; new_length];
core.read(ptr, &mut mem)?;
Cow::Owned(mem)
}
};
let rtt_header = RttControlBlockHeader::try_from_header(is_64_bit, &mem)
.ok_or(Error::ControlBlockNotFound)?;
// Validate that the control block starts with the ID bytes
let rtt_id = rtt_header.id();
if rtt_id != Self::RTT_ID {
tracing::trace!(
"Expected control block to start with RTT ID: {:?}\n. Got instead: {:?}",
String::from_utf8_lossy(&Self::RTT_ID),
String::from_utf8_lossy(&rtt_id)
);
return Err(Error::ControlBlockNotFound);
}
let max_up_channels = rtt_header.max_up_channels();
let max_down_channels = rtt_header.max_down_channels();
// *Very* conservative sanity check, most people only use a handful of RTT channels
if max_up_channels > 255 || max_down_channels > 255 {
return Err(Error::ControlBlockCorrupted(format!(
"Unexpected array sizes at {ptr:#010x}: max_up_channels={max_up_channels} max_down_channels={max_down_channels}"
)));
}
let cb_len = rtt_header.total_rtt_buffer_size();
if let Cow::Owned(mem) = &mut mem {
// If memory wasn't passed in, read the rest of the control block
mem.resize(cb_len, 0);
core.read(
ptr + rtt_header.header_size() as u64,
&mut mem[rtt_header.header_size()..cb_len],
)?;
}
// Validate that the entire control block fits within the region
if mem.len() < cb_len {
tracing::debug!("Control block doesn't fit in scanned memory region.");
return Ok(None);
}
let mut up_channels = Vec::new();
let mut down_channels = Vec::new();
let channel_buffer_size = rtt_header.channel_buffer_size();
let up_channels_start = rtt_header.header_size();
let up_channels_len = max_up_channels * channel_buffer_size;
let up_channels_raw_buffer = &mem[up_channels_start..][..up_channels_len];
let up_channels_buffer = rtt_header.parse_channel_buffers(up_channels_raw_buffer)?;
let down_channels_start = up_channels_start + up_channels_len;
let down_channels_len = max_down_channels * channel_buffer_size;
let down_channels_raw_buffer = &mem[down_channels_start..][..down_channels_len];
let down_channels_buffer = rtt_header.parse_channel_buffers(down_channels_raw_buffer)?;
let mut offset = up_channels_start as u64;
for (i, b) in up_channels_buffer.into_iter().enumerate() {
let buffer_size = b.size() as u64;
if let Some(chan) = Channel::from(core, i, ptr + offset, b)? {
up_channels.push(UpChannel(chan));
} else {
tracing::warn!("Buffer for up channel {i} not initialized");
}
offset += buffer_size;
}
for (i, b) in down_channels_buffer.into_iter().enumerate() {
let buffer_size = b.size() as u64;
if let Some(chan) = Channel::from(core, i, ptr + offset, b)? {
down_channels.push(DownChannel(chan));
} else {
tracing::warn!("Buffer for down channel {i} not initialized");
}
offset += buffer_size;
}
Ok(Some(Rtt {
ptr,
up_channels,
down_channels,
}))
}
/// Attempts to detect an RTT control block anywhere in the target RAM and returns an instance
/// if a valid control block was found.
///
/// `core` can be e.g. an owned `Core` or a shared `Rc<Core>`.
pub fn attach(core: &mut Core) -> Result<Rtt, Error> {
Self::attach_region(core, &ScanRegion::default())
}
/// Attempts to detect an RTT control block in the specified RAM region(s) and returns an
/// instance if a valid control block was found.
///
/// `core` can be e.g. an owned `Core` or a shared `Rc<Core>`.
pub fn attach_region(core: &mut Core, region: &ScanRegion) -> Result<Rtt, Error> {
let ranges = match region.clone() {
ScanRegion::Exact(addr) => {
tracing::debug!("Scanning at exact address: {:#010x}", addr);
return Rtt::from(core, addr, None)?.ok_or(Error::ControlBlockNotFound);
}
ScanRegion::Ram => {
tracing::debug!("Scanning whole RAM");
core.memory_regions()
.filter_map(MemoryRegion::as_ram_region)
.map(|r| r.range.clone())
.collect()
}
ScanRegion::Ranges(regions) if regions.is_empty() => {
// We have no regions to scan so we cannot initialize RTT.
tracing::debug!("ELF file has no RTT block symbol, and this target does not support automatic scanning");
return Err(Error::NoControlBlockLocation);
}
ScanRegion::Ranges(regions) => {
tracing::debug!("Scanning regions: {:#010x?}", region);
regions
}
};
let mut instances = ranges
.into_iter()
.filter_map(|range| {
let range_len = range.end.checked_sub(range.start)?;
let Ok(range_len) = usize::try_from(range_len) else {
// FIXME: This is not ideal because it means that we
// won't consider a >4GiB region if probe-rs is running
// on a 32-bit host, but it would be relatively unusual
// to use a 32-bit host to debug a 64-bit target.
tracing::warn!("Region too long ({} bytes), ignoring", range_len);
return None;
};
let mut mem = vec![0; range_len];
core.read(range.start, &mut mem).ok()?;
let offset = mem
.windows(Self::RTT_ID.len())
.position(|w| w == Self::RTT_ID)?;
let target_ptr = range.start + offset as u64;
Rtt::from(core, target_ptr, Some(&mem[offset..])).transpose()
})
.collect::<Result<Vec<_>, _>>()?;
match instances.len() {
0 => Err(Error::ControlBlockNotFound),
1 => Ok(instances.remove(0)),
_ => Err(Error::MultipleControlBlocksFound(instances)),
}
}
/// Returns the memory address of the control block in target memory.
pub fn ptr(&self) -> u64 {
self.ptr
}
/// Returns a reference to the detected up channels.
pub fn up_channels(&mut self) -> &mut [UpChannel] {
&mut self.up_channels
}
/// Returns a reference to the detected down channels.
pub fn down_channels(&mut self) -> &mut [DownChannel] {
&mut self.down_channels
}
/// Returns a particular up channel.
pub fn up_channel(&mut self, channel: usize) -> Option<&mut UpChannel> {
self.up_channels.get_mut(channel)
}
/// Returns a particular down channel.
pub fn down_channel(&mut self, channel: usize) -> Option<&mut DownChannel> {
self.down_channels.get_mut(channel)
}
/// Returns the size of the RTT control block.
pub fn control_block_size(core: &Core) -> usize {
let is_64_bit = core.is_64_bit();
RttControlBlockHeader::minimal_header_size(is_64_bit)
}
}
/// Used to specify which memory regions to scan for the RTT control block.
#[derive(Clone, Debug, Default)]
pub enum ScanRegion {
/// Scans all RAM regions known to probe-rs. This is the default and should always work, however
/// if your device has a lot of RAM, scanning all of it is slow.
#[default]
Ram,
/// Limit scanning to the memory addresses covered by all of the given ranges. It is up to the
/// user to ensure that reading from this range will not read from undefined memory.
Ranges(Vec<Range<u64>>),
/// Tries to find the control block starting at this exact address. It is up to the user to
/// ensure that reading the necessary bytes after the pointer will no read from undefined
/// memory.
Exact(u64),
}
impl ScanRegion {
/// Creates a new `ScanRegion` that scans the given memory range.
///
/// The memory range should be in a single memory block of the target.
pub fn range(range: Range<u64>) -> Self {
Self::Ranges(vec![range])
}
}
/// Error type for RTT operations.
#[derive(thiserror::Error, Debug, docsplay::Display)]
pub enum Error {
/// There is no control block location given. This usually means RTT is not present in the
/// firmware.
NoControlBlockLocation,
/// RTT control block not found in target memory.
/// - Make sure RTT is initialized on the target, AND that there are NO target breakpoints before RTT initialization.
/// - For VSCode and probe-rs-debugger users, using `halt_after_reset:true` in your `launch.json` file will prevent RTT
/// initialization from happening on time.
/// - Depending on the target, sleep modes can interfere with RTT.
ControlBlockNotFound,
/// Multiple control blocks found in target memory: {display_list(_0)}.
MultipleControlBlocksFound(Vec<Rtt>),
/// The control block has been corrupted: {0}
ControlBlockCorrupted(String),
/// Attempted an RTT operation against a Core number that is different from the Core number against which RTT was initialized. Expected {0}, found {1}
IncorrectCoreSpecified(usize, usize),
/// Error communicating with the probe.
Probe(#[from] crate::Error),
/// Unexpected error while reading {0} from target memory. Please report this as a bug.
MemoryRead(String),
/// Some uncategorized error occurred.
Other(#[from] anyhow::Error),
/// The read pointer changed unexpectedly.
ReadPointerChanged,
/// Channel {0} does not exist.
MissingChannel(usize),
}
fn display_list(list: &[Rtt]) -> String {
list.iter()
.map(|rtt| format!("{:#010x}", rtt.ptr))
.collect::<Vec<_>>()
.join(", ")
}
fn try_attach_to_rtt_inner(
mut try_attach_once: impl FnMut() -> Result<Rtt, Error>,
timeout: Duration,
) -> Result<Rtt, Error> {
let t = Instant::now();
let mut attempt = 1;
loop {
tracing::debug!("Initializing RTT (attempt {attempt})...");
match try_attach_once() {
err @ Err(Error::NoControlBlockLocation) => return err,
Err(_) if t.elapsed() < timeout => {
attempt += 1;
tracing::debug!("Failed to initialize RTT. Retrying until timeout.");
thread::sleep(Duration::from_millis(50));
}
other => return other,
}
}
}
/// Try to attach to RTT, with the given timeout.
pub fn try_attach_to_rtt(
core: &mut Core<'_>,
timeout: Duration,
rtt_region: &ScanRegion,
) -> Result<Rtt, Error> {
try_attach_to_rtt_inner(|| Rtt::attach_region(core, rtt_region), timeout)
}
/// Try to attach to RTT, with the given timeout.
pub fn try_attach_to_rtt_shared(
session: &parking_lot::FairMutex<Session>,
core_id: usize,
timeout: Duration,
rtt_region: &ScanRegion,
) -> Result<Rtt, Error> {
try_attach_to_rtt_inner(
|| {
let mut session_handle = session.lock();
let mut core = session_handle.core(core_id)?;
Rtt::attach_region(&mut core, rtt_region)
},
timeout,
)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_how_control_block_list_looks() {
fn rtt(ptr: u32) -> Rtt {
Rtt {
ptr: ptr.into(),
up_channels: Vec::new(),
down_channels: Vec::new(),
}
}
let error = Error::MultipleControlBlocksFound(vec![rtt(0x2000), rtt(0x3000)]);
assert_eq!(
error.to_string(),
"Multiple control blocks found in target memory: 0x00002000, 0x00003000."
);
}
}