probe_rs/vendor/microchip/sequences/atsam.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
//! Sequences for ATSAM D1x/D2x/DAx/D5x/E5x target families
use crate::{
architecture::arm::{
armv7m::Dhcsr,
communication_interface::{DapProbe, SwdSequence},
memory::ArmMemoryInterface,
sequences::{ArmDebugSequence, ArmDebugSequenceError, DebugEraseSequence},
ArmError, ArmProbeInterface, FullyQualifiedApAddress, Pins,
},
probe::DebugProbeError,
session::MissingPermissions,
MemoryMappedRegister, Permissions,
};
use bitfield::bitfield;
use probe_rs_target::CoreType;
use std::{
sync::Arc,
thread,
time::{Duration, Instant},
};
bitfield! {
/// Device Service Unit Control Register, DSU - CTRL
#[derive(Copy, Clone)]
pub struct DsuCtrl(u8);
impl Debug;
/// Chip-Erase
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit starts the Chip-Erase operation.
pub _, set_ce: 4;
/// Memory Built-In Self-Test
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit starts the memory BIST algorithm.
pub _, set_mbist: 3;
/// 32-bit Cyclic Redundancy Check
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit starts the cyclic redundancy check algorithm.
pub _, set_crc: 2;
/// Software Reset
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit resets the module.
pub _, set_swrst: 0;
}
impl DsuCtrl {
/// The DSU CTRL register address
pub const ADDRESS: u64 = 0x4100_2100;
}
impl From<u8> for DsuCtrl {
fn from(value: u8) -> Self {
Self(value)
}
}
impl From<DsuCtrl> for u8 {
fn from(value: DsuCtrl) -> Self {
value.0
}
}
bitfield! {
/// Device Service Unit Status A Register, DSU - STATUSA
#[derive(Copy, Clone)]
pub struct DsuStatusA(u8);
impl Debug;
/// Protection Error
///
/// This bit is set when a command that is not allowed in Protected state is issued.
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit clears the Protection Error bit.
pub perr, set_perr: 4;
/// Failure
///
/// This bit is set when a DSU operation failure is detected.
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit clears the Failure bit.
pub fail, set_fail: 3;
/// Bus Error
///
/// This bit is set when a bus error is detected.
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit clears the Bus Error bit.
pub berr, set_berr: 2;
/// CPU Reset Phase Extension
///
/// This bit is set when a debug adapter Cold-Plugging is detected, which extends the CPU Reset phase.
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit clears the CPU Reset Phase Extension bit.
pub crstext, set_crstext: 1;
/// Done
///
/// This bit is set when a DSU operation is completed.
///
/// Writing a '0' to this bit has no effect.\
/// Writing a '1' to this bit clears the Done bit.
pub done, set_done: 0;
}
impl From<u8> for DsuStatusA {
fn from(value: u8) -> Self {
Self(value)
}
}
impl From<DsuStatusA> for u8 {
fn from(value: DsuStatusA) -> Self {
value.0
}
}
impl DsuStatusA {
/// The DSU STATUSA register address
pub const ADDRESS: u64 = 0x4100_2101;
}
bitfield! {
/// Device Service Unit Status B Register, DSU - STATUSB
#[derive(Copy, Clone)]
pub struct DsuStatusB(u8);
impl Debug;
/// Chip Erase Locked
///
/// This feature is not available on SAMD1x, SAMD2x, SAMDAx
///
/// This bit is set when Chip Erase is locked.\
/// This bit is cleared when Chip Erase is unlocked.
pub celck, _: 5;
/// Hot-Plugging Enable
///
/// This bit is set when Hot-Plugging is enabled.\
/// This bit is cleared when Hot-Plugging is disabled. This is the case when
/// the SWCLK function is changed. Only a power-reset or a external reset
/// can set it again.
pub hpe, _: 4;
/// Debug Communication Channel 1 Dirty
///
/// This bit is set when DCC is written.\
/// This bit is cleared when DCC is read.
pub dccd1, _: 3;
/// Debug Communication Channel 0 Dirty
///
/// This bit is set when DCC is written.\
/// This bit is cleared when DCC is read.
pub dccd0, _: 2;
/// Debugger Present
///
/// This bit is set when a debugger probe is detected.\
/// This bit is never cleared.
pub dbgpres, _: 1;
/// Protected
///
/// This bit is set at power-up when the device is protected.\
/// This bit is never cleared.
pub prot, _: 0;
}
impl From<u8> for DsuStatusB {
fn from(value: u8) -> Self {
Self(value)
}
}
impl From<DsuStatusB> for u8 {
fn from(value: DsuStatusB) -> Self {
value.0
}
}
impl DsuStatusB {
/// The DSU STATUSB register address
pub const ADDRESS: u64 = 0x4100_2102;
}
bitfield! {
/// Device Identification, DSU - DID
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct DsuDid(u32);
impl Debug;
/// The value of this field defines the processor used on the device.
pub processor, _ : 31, 28;
/// The value of this field corresponds to the Product Family part of the ordering code.
pub family, _ : 27, 23;
/// The value of this field corresponds to the Product Series part of the ordering code.
pub series, _ : 21, 16;
/// Identifies the die family.
pub die, _ : 15, 12;
/// Identifies the die revision number. 0x0=rev.A, 0x1=rev.B etc.
///
/// Note: The device variant (last letter of the ordering number) is independent of the die
/// revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas
/// the die revision marks evolution of the die.
pub revision, _ : 11, 8;
/// This bit field identifies a device within a product family and product series.
pub devsel, _ : 7, 0;
}
impl DsuDid {
/// The DSU DID register address
pub const ADDRESS: u64 = 0x4100_2118;
}
impl From<u32> for DsuDid {
fn from(value: u32) -> Self {
Self(value)
}
}
impl From<DsuDid> for u32 {
fn from(value: DsuDid) -> Self {
value.0
}
}
/// A wrapper for different types that can perform SWD Commands (SWJ_Pins SWJ_Sequence)
struct SwdSequenceShim<'a>(&'a mut dyn DapProbe);
impl<'a> From<&'a mut dyn DapProbe> for SwdSequenceShim<'a> {
fn from(p: &'a mut dyn DapProbe) -> Self {
Self(p)
}
}
impl SwdSequence for SwdSequenceShim<'_> {
fn swj_sequence(&mut self, bit_len: u8, bits: u64) -> Result<(), DebugProbeError> {
self.0.swj_sequence(bit_len, bits)
}
fn swj_pins(
&mut self,
pin_out: u32,
pin_select: u32,
pin_wait: u32,
) -> Result<u32, DebugProbeError> {
self.0.swj_pins(pin_out, pin_select, pin_wait)
}
}
/// Marker struct indicating initialization sequencing for Atmel/Microchip ATSAM family parts.
#[derive(Debug)]
pub struct AtSAM {}
impl AtSAM {
/// Create the sequencer for the ATSAM family of parts.
pub fn create() -> Arc<Self> {
Arc::new(Self {})
}
/// Perform a Chip-Erase operation
///
/// Issue a Chip-Erase command to the device provided that `permission` grants `erase-all`.
///
/// # Errors
/// This operation can fail due to insufficient permissions, or if Chip-Erase Lock is
/// enabled (this lock can only be released from within the device firmware).
/// After a successful Chip-Erase a `DebugProbeError::ReAttachRequired` is returned
/// to signal that a re-connect is needed for the DSU to start operating in unlocked mode.
pub fn erase_all(
&self,
memory: &mut dyn ArmMemoryInterface,
permissions: &Permissions,
) -> Result<(), ArmError> {
let dsu_status_a = DsuStatusA::from(memory.read_word_8(DsuStatusA::ADDRESS)?);
let dsu_status_b = DsuStatusB::from(memory.read_word_8(DsuStatusB::ADDRESS)?);
match (dsu_status_b.celck(), dsu_status_b.prot(), permissions.erase_all()) {
(true, _, _) => Err(ArmError::MissingPermissions(
"Chip-Erase is locked. This can only be unlocked from within the device firmware by performing \
a Chip-Erase Unlock (CEULCK) command."
.into(),
)),
(false, true, Err(MissingPermissions(permission))) => Err(ArmError::MissingPermissions(
format!("Device is locked. A Chip-Erase operation is required to unlock. \
Re-run with granting the '{permission}' permission and connecting under reset"
),
)),
// TODO: This seems wrong? Currently preserves the bevaiour before the change of the error type.
(false, false,Err(MissingPermissions(permission))) => Err(ArmError::MissingPermissions(permission)),
(false, _, Ok(())) => Ok(()),
}?;
// Start the chip-erase process
let mut dsu_ctrl = DsuCtrl(0);
dsu_ctrl.set_ce(true);
memory.write_word_8(DsuCtrl::ADDRESS, dsu_ctrl.0)?;
tracing::info!("Chip-Erase started...");
// Wait for it to finish
let start = Instant::now();
loop {
let current_dsu_statusa = DsuStatusA::from(memory.read_word_8(DsuStatusA::ADDRESS)?);
if current_dsu_statusa.done() {
tracing::info!("Chip-Erase complete");
let interface = memory.get_arm_communication_interface()?;
// If the device was in Reset Extension when we started put it back into Reset Extension
let result = if dsu_status_a.crstext() {
self.reset_hardware_with_extension(interface)
} else {
self.reset_hardware(interface)
};
self.ensure_target_reset(result, interface)?;
// We need to reconnect to target to finalize the unlock.
// Signal ReAttachRequired so that the session will try to re-connect
return Err(ArmError::ReAttachRequired);
} else if current_dsu_statusa.fail() {
return Err(ArmError::ChipEraseFailed);
}
if start.elapsed() >= Duration::from_secs(8) {
tracing::error!("Chip-Erase failed to complete within 8 seconds");
return Err(ArmError::Timeout);
}
thread::sleep(Duration::from_millis(250));
}
}
/// Perform a hardware reset in a way that puts the core into CPU Reset Extension
///
/// CPU Reset Extension is a vendor specific feature that allows the CPU core to remain
/// in reset while the rest of the debugging subsystem can run and initialize itself.
///
/// For more details see: 12.6.2 CPU Reset Extension in the SAM D5/E5 Family Data Sheet
///
/// # Errors
/// Subject to probe communication errors
pub fn reset_hardware_with_extension(
&self,
interface: &mut dyn SwdSequence,
) -> Result<(), ArmError> {
let mut pins = Pins(0);
pins.set_nreset(true);
pins.set_swdio_tms(true);
pins.set_swclk_tck(true);
// First set nReset, SWDIO and SWCLK to low.
let mut pin_values = Pins(0);
interface.swj_pins(pin_values.0 as u32, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(10));
// Next release nReset, but keep SWDIO and SWCLK low. This should put the device into
// reset extension.
pin_values.set_nreset(true);
interface.swj_pins(pin_values.0 as u32, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(20));
Ok(())
}
/// Release the CPU core from Reset Extension
///
/// Clear the DSU Reset Extension bit, which releases the core from reset extension.
///
/// # Errors
/// Subject to probe communication errors
pub fn release_reset_extension(
&self,
memory: &mut dyn ArmMemoryInterface,
) -> Result<(), ArmError> {
// Enable debug mode if it is not already enabled
let mut dhcsr = Dhcsr(0);
dhcsr.enable_write();
dhcsr.set_c_debugen(true);
memory.write_word_32(Dhcsr::ADDRESS_OFFSET, dhcsr.0)?;
// clear the reset extension bit
let mut dsu_statusa = DsuStatusA(0);
dsu_statusa.set_crstext(true);
memory.write_8(DsuStatusA::ADDRESS, &[dsu_statusa.0])?;
let start = Instant::now();
loop {
let current_dsu_statusa = DsuStatusA::from(memory.read_word_8(DsuStatusA::ADDRESS)?);
if !current_dsu_statusa.crstext() {
return Ok(());
}
if start.elapsed() >= Duration::from_millis(100) {
return Err(ArmError::Timeout);
}
}
}
/// Perform a normal hardware reset without triggering a Reset extension
///
/// # Errors
/// Subject to probe communication errors
pub fn reset_hardware(&self, interface: &mut dyn SwdSequence) -> Result<(), ArmError> {
let mut pins = Pins(0);
pins.set_nreset(true);
pins.set_swdio_tms(true);
pins.set_swclk_tck(true);
let mut pin_values = pins;
pin_values.set_nreset(false);
interface.swj_pins(pin_values.0 as u32, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(10));
pin_values.set_nreset(true);
interface.swj_pins(pin_values.0 as u32, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(10));
Ok(())
}
/// Some probes only support setting `nRESET` directly, but not the SWDIO/SWCLK pins. For those,
/// we can use this fallback method.
fn ensure_target_reset(
&self,
result: Result<(), ArmError>,
interface: &mut dyn SwdSequence,
) -> Result<(), ArmError> {
// Fall back if the probe's swj_pins does not support the full set of pins
match result {
Err(ArmError::Probe(DebugProbeError::CommandNotSupportedByProbe {
command_name: "swj_pins",
})) => {
tracing::warn!("Using fallback reset method");
let mut pins = Pins(0);
pins.set_nreset(true);
interface.swj_pins(0, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(10));
interface.swj_pins(pins.0 as u32, pins.0 as u32, 0)?;
thread::sleep(Duration::from_millis(10));
Ok(())
}
other => other,
}
}
}
impl ArmDebugSequence for AtSAM {
fn debug_core_start(
&self,
interface: &mut dyn ArmProbeInterface,
core_ap: &FullyQualifiedApAddress,
_core_type: CoreType,
_debug_base: Option<u64>,
_cti_base: Option<u64>,
) -> Result<(), ArmError> {
let mut core = interface.memory_interface(core_ap)?;
self.release_reset_extension(&mut *core)
}
/// `reset_hardware_assert` for ATSAM devices
///
/// Instead of keeping `nReset` asserted, the device is instead put into CPU Reset Extension
/// which will keep the CPU Core in reset until manually released by the debugger probe.
fn reset_hardware_assert(&self, interface: &mut dyn DapProbe) -> Result<(), ArmError> {
let mut shim = SwdSequenceShim::from(interface);
let result = self.reset_hardware_with_extension(&mut shim);
self.ensure_target_reset(result, &mut shim)
}
/// `reset_hardware_deassert` for ATSAM devices
///
/// Instead of de-asserting `nReset` here (this was already done during the CPU Reset Extension process),
/// the device is released from Reset Extension.
fn reset_hardware_deassert(&self, memory: &mut dyn ArmMemoryInterface) -> Result<(), ArmError> {
let mut pins = Pins(0);
pins.set_nreset(true);
let current_pins = Pins(memory.swj_pins(pins.0 as u32, pins.0 as u32, 0)? as u8);
if !current_pins.nreset() {
return Err(ArmDebugSequenceError::SequenceSpecific(
"Expected nReset to already be de-asserted".into(),
)
.into());
}
self.release_reset_extension(memory)
}
/// `debug_device_unlock` for ATSAM devices
///
/// First check the device lock status by querying its Device Service Unit (DSU).
/// If the device is already unlocked then return `Ok` directly.
/// If the device is locked the following happens:
/// * If the `erase_all` permission is missing return the appropriate error
/// * If the Chip-Erase command is also locked then return an error since Chip-Erase Unlock can only be
/// done from within the device firmware.
/// * Perform a Chip-Erase to unlock the device and if successful return a `DebugProbeError::ReAttachRequired`
/// to signal that a probe re-attach is required before the new `unlocked` status takes effect.
fn debug_device_unlock(
&self,
interface: &mut dyn ArmProbeInterface,
default_ap: &FullyQualifiedApAddress,
permissions: &Permissions,
) -> Result<(), ArmError> {
// First check if the device is locked
let mut memory = interface.memory_interface(default_ap)?;
let dsu_status_b = DsuStatusB::from(memory.read_word_8(DsuStatusB::ADDRESS)?);
if dsu_status_b.prot() {
tracing::warn!("The Device is locked, unlocking..");
self.erase_all(&mut *memory, permissions)
} else {
Ok(())
}
}
fn debug_erase_sequence(&self) -> Option<Arc<dyn DebugEraseSequence>> {
Some(Self::create())
}
}
impl DebugEraseSequence for AtSAM {
fn erase_all(&self, interface: &mut dyn ArmProbeInterface) -> Result<(), ArmError> {
let mem_ap = &FullyQualifiedApAddress::v1_with_default_dp(0);
let mut memory = interface.memory_interface(mem_ap)?;
AtSAM::erase_all(self, &mut *memory, &Permissions::new().allow_erase_all())
}
}