proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.95")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::unnecessary_wraps,
114    clippy::unused_self,
115    clippy::used_underscore_binding,
116    clippy::vec_init_then_push
117)]
118
119#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
120compile_error! {"\
121    Something is not right. If you've tried to turn on \
122    procmacro2_semver_exempt, you need to ensure that it \
123    is turned on for the compilation of the proc-macro2 \
124    build script as well.
125"}
126
127#[cfg(all(
128    procmacro2_nightly_testing,
129    feature = "proc-macro",
130    not(proc_macro_span)
131))]
132compile_error! {"\
133    Build script probe failed to compile.
134"}
135
136extern crate alloc;
137
138#[cfg(feature = "proc-macro")]
139extern crate proc_macro;
140
141mod marker;
142mod parse;
143mod rcvec;
144
145#[cfg(wrap_proc_macro)]
146mod detection;
147
148// Public for proc_macro2::fallback::force() and unforce(), but those are quite
149// a niche use case so we omit it from rustdoc.
150#[doc(hidden)]
151pub mod fallback;
152
153pub mod extra;
154
155#[cfg(not(wrap_proc_macro))]
156use crate::fallback as imp;
157#[path = "wrapper.rs"]
158#[cfg(wrap_proc_macro)]
159mod imp;
160
161#[cfg(span_locations)]
162mod location;
163
164use crate::extra::DelimSpan;
165use crate::marker::{ProcMacroAutoTraits, MARKER};
166use core::cmp::Ordering;
167use core::fmt::{self, Debug, Display};
168use core::hash::{Hash, Hasher};
169#[cfg(span_locations)]
170use core::ops::Range;
171use core::ops::RangeBounds;
172use core::str::FromStr;
173use std::error::Error;
174use std::ffi::CStr;
175#[cfg(procmacro2_semver_exempt)]
176use std::path::PathBuf;
177
178#[cfg(span_locations)]
179#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
180pub use crate::location::LineColumn;
181
182/// An abstract stream of tokens, or more concretely a sequence of token trees.
183///
184/// This type provides interfaces for iterating over token trees and for
185/// collecting token trees into one stream.
186///
187/// Token stream is both the input and output of `#[proc_macro]`,
188/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
189#[derive(Clone)]
190pub struct TokenStream {
191    inner: imp::TokenStream,
192    _marker: ProcMacroAutoTraits,
193}
194
195/// Error returned from `TokenStream::from_str`.
196pub struct LexError {
197    inner: imp::LexError,
198    _marker: ProcMacroAutoTraits,
199}
200
201impl TokenStream {
202    fn _new(inner: imp::TokenStream) -> Self {
203        TokenStream {
204            inner,
205            _marker: MARKER,
206        }
207    }
208
209    fn _new_fallback(inner: fallback::TokenStream) -> Self {
210        TokenStream {
211            inner: imp::TokenStream::from(inner),
212            _marker: MARKER,
213        }
214    }
215
216    /// Returns an empty `TokenStream` containing no token trees.
217    pub fn new() -> Self {
218        TokenStream::_new(imp::TokenStream::new())
219    }
220
221    /// Checks if this `TokenStream` is empty.
222    pub fn is_empty(&self) -> bool {
223        self.inner.is_empty()
224    }
225}
226
227/// `TokenStream::default()` returns an empty stream,
228/// i.e. this is equivalent with `TokenStream::new()`.
229impl Default for TokenStream {
230    fn default() -> Self {
231        TokenStream::new()
232    }
233}
234
235/// Attempts to break the string into tokens and parse those tokens into a token
236/// stream.
237///
238/// May fail for a number of reasons, for example, if the string contains
239/// unbalanced delimiters or characters not existing in the language.
240///
241/// NOTE: Some errors may cause panics instead of returning `LexError`. We
242/// reserve the right to change these errors into `LexError`s later.
243impl FromStr for TokenStream {
244    type Err = LexError;
245
246    fn from_str(src: &str) -> Result<TokenStream, LexError> {
247        match imp::TokenStream::from_str_checked(src) {
248            Ok(tokens) => Ok(TokenStream::_new(tokens)),
249            Err(lex) => Err(LexError {
250                inner: lex,
251                _marker: MARKER,
252            }),
253        }
254    }
255}
256
257#[cfg(feature = "proc-macro")]
258#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
259impl From<proc_macro::TokenStream> for TokenStream {
260    fn from(inner: proc_macro::TokenStream) -> Self {
261        TokenStream::_new(imp::TokenStream::from(inner))
262    }
263}
264
265#[cfg(feature = "proc-macro")]
266#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
267impl From<TokenStream> for proc_macro::TokenStream {
268    fn from(inner: TokenStream) -> Self {
269        proc_macro::TokenStream::from(inner.inner)
270    }
271}
272
273impl From<TokenTree> for TokenStream {
274    fn from(token: TokenTree) -> Self {
275        TokenStream::_new(imp::TokenStream::from(token))
276    }
277}
278
279impl Extend<TokenTree> for TokenStream {
280    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
281        self.inner.extend(streams);
282    }
283}
284
285impl Extend<TokenStream> for TokenStream {
286    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
287        self.inner
288            .extend(streams.into_iter().map(|stream| stream.inner));
289    }
290}
291
292/// Collects a number of token trees into a single stream.
293impl FromIterator<TokenTree> for TokenStream {
294    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
295        TokenStream::_new(streams.into_iter().collect())
296    }
297}
298impl FromIterator<TokenStream> for TokenStream {
299    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
300        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
301    }
302}
303
304/// Prints the token stream as a string that is supposed to be losslessly
305/// convertible back into the same token stream (modulo spans), except for
306/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
307/// numeric literals.
308impl Display for TokenStream {
309    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
310        Display::fmt(&self.inner, f)
311    }
312}
313
314/// Prints token in a form convenient for debugging.
315impl Debug for TokenStream {
316    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
317        Debug::fmt(&self.inner, f)
318    }
319}
320
321impl LexError {
322    pub fn span(&self) -> Span {
323        Span::_new(self.inner.span())
324    }
325}
326
327impl Debug for LexError {
328    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
329        Debug::fmt(&self.inner, f)
330    }
331}
332
333impl Display for LexError {
334    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
335        Display::fmt(&self.inner, f)
336    }
337}
338
339impl Error for LexError {}
340
341/// A region of source code, along with macro expansion information.
342#[derive(Copy, Clone)]
343pub struct Span {
344    inner: imp::Span,
345    _marker: ProcMacroAutoTraits,
346}
347
348impl Span {
349    fn _new(inner: imp::Span) -> Self {
350        Span {
351            inner,
352            _marker: MARKER,
353        }
354    }
355
356    fn _new_fallback(inner: fallback::Span) -> Self {
357        Span {
358            inner: imp::Span::from(inner),
359            _marker: MARKER,
360        }
361    }
362
363    /// The span of the invocation of the current procedural macro.
364    ///
365    /// Identifiers created with this span will be resolved as if they were
366    /// written directly at the macro call location (call-site hygiene) and
367    /// other code at the macro call site will be able to refer to them as well.
368    pub fn call_site() -> Self {
369        Span::_new(imp::Span::call_site())
370    }
371
372    /// The span located at the invocation of the procedural macro, but with
373    /// local variables, labels, and `$crate` resolved at the definition site
374    /// of the macro. This is the same hygiene behavior as `macro_rules`.
375    pub fn mixed_site() -> Self {
376        Span::_new(imp::Span::mixed_site())
377    }
378
379    /// A span that resolves at the macro definition site.
380    ///
381    /// This method is semver exempt and not exposed by default.
382    #[cfg(procmacro2_semver_exempt)]
383    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
384    pub fn def_site() -> Self {
385        Span::_new(imp::Span::def_site())
386    }
387
388    /// Creates a new span with the same line/column information as `self` but
389    /// that resolves symbols as though it were at `other`.
390    pub fn resolved_at(&self, other: Span) -> Span {
391        Span::_new(self.inner.resolved_at(other.inner))
392    }
393
394    /// Creates a new span with the same name resolution behavior as `self` but
395    /// with the line/column information of `other`.
396    pub fn located_at(&self, other: Span) -> Span {
397        Span::_new(self.inner.located_at(other.inner))
398    }
399
400    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
401    ///
402    /// This method is available when building with a nightly compiler, or when
403    /// building with rustc 1.29+ *without* semver exempt features.
404    ///
405    /// # Panics
406    ///
407    /// Panics if called from outside of a procedural macro. Unlike
408    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
409    /// the context of a procedural macro invocation.
410    #[cfg(wrap_proc_macro)]
411    pub fn unwrap(self) -> proc_macro::Span {
412        self.inner.unwrap()
413    }
414
415    // Soft deprecated. Please use Span::unwrap.
416    #[cfg(wrap_proc_macro)]
417    #[doc(hidden)]
418    pub fn unstable(self) -> proc_macro::Span {
419        self.unwrap()
420    }
421
422    /// Returns the span's byte position range in the source file.
423    ///
424    /// This method requires the `"span-locations"` feature to be enabled.
425    ///
426    /// When executing in a procedural macro context, the returned range is only
427    /// accurate if compiled with a nightly toolchain. The stable toolchain does
428    /// not have this information available. When executing outside of a
429    /// procedural macro, such as main.rs or build.rs, the byte range is always
430    /// accurate regardless of toolchain.
431    #[cfg(span_locations)]
432    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
433    pub fn byte_range(&self) -> Range<usize> {
434        self.inner.byte_range()
435    }
436
437    /// Get the starting line/column in the source file for this span.
438    ///
439    /// This method requires the `"span-locations"` feature to be enabled.
440    ///
441    /// When executing in a procedural macro context, the returned line/column
442    /// are only meaningful if compiled with a nightly toolchain. The stable
443    /// toolchain does not have this information available. When executing
444    /// outside of a procedural macro, such as main.rs or build.rs, the
445    /// line/column are always meaningful regardless of toolchain.
446    #[cfg(span_locations)]
447    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
448    pub fn start(&self) -> LineColumn {
449        self.inner.start()
450    }
451
452    /// Get the ending line/column in the source file for this span.
453    ///
454    /// This method requires the `"span-locations"` feature to be enabled.
455    ///
456    /// When executing in a procedural macro context, the returned line/column
457    /// are only meaningful if compiled with a nightly toolchain. The stable
458    /// toolchain does not have this information available. When executing
459    /// outside of a procedural macro, such as main.rs or build.rs, the
460    /// line/column are always meaningful regardless of toolchain.
461    #[cfg(span_locations)]
462    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
463    pub fn end(&self) -> LineColumn {
464        self.inner.end()
465    }
466
467    /// The path to the source file in which this span occurs, for display
468    /// purposes.
469    ///
470    /// This might not correspond to a valid file system path. It might be
471    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
472    ///
473    /// This method is semver exempt and not exposed by default.
474    #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
475    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
476    pub fn file(&self) -> String {
477        self.inner.file()
478    }
479
480    /// The path to the source file in which this span occurs on disk.
481    ///
482    /// This is the actual path on disk. It is unaffected by path remapping.
483    ///
484    /// This path should not be embedded in the output of the macro; prefer
485    /// `file()` instead.
486    ///
487    /// This method is semver exempt and not exposed by default.
488    #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
489    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
490    pub fn local_file(&self) -> Option<PathBuf> {
491        self.inner.local_file()
492    }
493
494    /// Create a new span encompassing `self` and `other`.
495    ///
496    /// Returns `None` if `self` and `other` are from different files.
497    ///
498    /// Warning: the underlying [`proc_macro::Span::join`] method is
499    /// nightly-only. When called from within a procedural macro not using a
500    /// nightly compiler, this method will always return `None`.
501    pub fn join(&self, other: Span) -> Option<Span> {
502        self.inner.join(other.inner).map(Span::_new)
503    }
504
505    /// Compares two spans to see if they're equal.
506    ///
507    /// This method is semver exempt and not exposed by default.
508    #[cfg(procmacro2_semver_exempt)]
509    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
510    pub fn eq(&self, other: &Span) -> bool {
511        self.inner.eq(&other.inner)
512    }
513
514    /// Returns the source text behind a span. This preserves the original
515    /// source code, including spaces and comments. It only returns a result if
516    /// the span corresponds to real source code.
517    ///
518    /// Note: The observable result of a macro should only rely on the tokens
519    /// and not on this source text. The result of this function is a best
520    /// effort to be used for diagnostics only.
521    pub fn source_text(&self) -> Option<String> {
522        self.inner.source_text()
523    }
524}
525
526/// Prints a span in a form convenient for debugging.
527impl Debug for Span {
528    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
529        Debug::fmt(&self.inner, f)
530    }
531}
532
533/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
534#[derive(Clone)]
535pub enum TokenTree {
536    /// A token stream surrounded by bracket delimiters.
537    Group(Group),
538    /// An identifier.
539    Ident(Ident),
540    /// A single punctuation character (`+`, `,`, `$`, etc.).
541    Punct(Punct),
542    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
543    Literal(Literal),
544}
545
546impl TokenTree {
547    /// Returns the span of this tree, delegating to the `span` method of
548    /// the contained token or a delimited stream.
549    pub fn span(&self) -> Span {
550        match self {
551            TokenTree::Group(t) => t.span(),
552            TokenTree::Ident(t) => t.span(),
553            TokenTree::Punct(t) => t.span(),
554            TokenTree::Literal(t) => t.span(),
555        }
556    }
557
558    /// Configures the span for *only this token*.
559    ///
560    /// Note that if this token is a `Group` then this method will not configure
561    /// the span of each of the internal tokens, this will simply delegate to
562    /// the `set_span` method of each variant.
563    pub fn set_span(&mut self, span: Span) {
564        match self {
565            TokenTree::Group(t) => t.set_span(span),
566            TokenTree::Ident(t) => t.set_span(span),
567            TokenTree::Punct(t) => t.set_span(span),
568            TokenTree::Literal(t) => t.set_span(span),
569        }
570    }
571}
572
573impl From<Group> for TokenTree {
574    fn from(g: Group) -> Self {
575        TokenTree::Group(g)
576    }
577}
578
579impl From<Ident> for TokenTree {
580    fn from(g: Ident) -> Self {
581        TokenTree::Ident(g)
582    }
583}
584
585impl From<Punct> for TokenTree {
586    fn from(g: Punct) -> Self {
587        TokenTree::Punct(g)
588    }
589}
590
591impl From<Literal> for TokenTree {
592    fn from(g: Literal) -> Self {
593        TokenTree::Literal(g)
594    }
595}
596
597/// Prints the token tree as a string that is supposed to be losslessly
598/// convertible back into the same token tree (modulo spans), except for
599/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
600/// numeric literals.
601impl Display for TokenTree {
602    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
603        match self {
604            TokenTree::Group(t) => Display::fmt(t, f),
605            TokenTree::Ident(t) => Display::fmt(t, f),
606            TokenTree::Punct(t) => Display::fmt(t, f),
607            TokenTree::Literal(t) => Display::fmt(t, f),
608        }
609    }
610}
611
612/// Prints token tree in a form convenient for debugging.
613impl Debug for TokenTree {
614    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
615        // Each of these has the name in the struct type in the derived debug,
616        // so don't bother with an extra layer of indirection
617        match self {
618            TokenTree::Group(t) => Debug::fmt(t, f),
619            TokenTree::Ident(t) => {
620                let mut debug = f.debug_struct("Ident");
621                debug.field("sym", &format_args!("{}", t));
622                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
623                debug.finish()
624            }
625            TokenTree::Punct(t) => Debug::fmt(t, f),
626            TokenTree::Literal(t) => Debug::fmt(t, f),
627        }
628    }
629}
630
631/// A delimited token stream.
632///
633/// A `Group` internally contains a `TokenStream` which is surrounded by
634/// `Delimiter`s.
635#[derive(Clone)]
636pub struct Group {
637    inner: imp::Group,
638}
639
640/// Describes how a sequence of token trees is delimited.
641#[derive(Copy, Clone, Debug, Eq, PartialEq)]
642pub enum Delimiter {
643    /// `( ... )`
644    Parenthesis,
645    /// `{ ... }`
646    Brace,
647    /// `[ ... ]`
648    Bracket,
649    /// `∅ ... ∅`
650    ///
651    /// An invisible delimiter, that may, for example, appear around tokens
652    /// coming from a "macro variable" `$var`. It is important to preserve
653    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
654    /// Invisible delimiters may not survive roundtrip of a token stream through
655    /// a string.
656    ///
657    /// <div class="warning">
658    ///
659    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
660    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
661    /// of a proc_macro macro are preserved, and only in very specific circumstances.
662    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
663    /// operator priorities as indicated above. The other `Delimiter` variants should be used
664    /// instead in this context. This is a rustc bug. For details, see
665    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
666    ///
667    /// </div>
668    None,
669}
670
671impl Group {
672    fn _new(inner: imp::Group) -> Self {
673        Group { inner }
674    }
675
676    fn _new_fallback(inner: fallback::Group) -> Self {
677        Group {
678            inner: imp::Group::from(inner),
679        }
680    }
681
682    /// Creates a new `Group` with the given delimiter and token stream.
683    ///
684    /// This constructor will set the span for this group to
685    /// `Span::call_site()`. To change the span you can use the `set_span`
686    /// method below.
687    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
688        Group {
689            inner: imp::Group::new(delimiter, stream.inner),
690        }
691    }
692
693    /// Returns the punctuation used as the delimiter for this group: a set of
694    /// parentheses, square brackets, or curly braces.
695    pub fn delimiter(&self) -> Delimiter {
696        self.inner.delimiter()
697    }
698
699    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
700    ///
701    /// Note that the returned token stream does not include the delimiter
702    /// returned above.
703    pub fn stream(&self) -> TokenStream {
704        TokenStream::_new(self.inner.stream())
705    }
706
707    /// Returns the span for the delimiters of this token stream, spanning the
708    /// entire `Group`.
709    ///
710    /// ```text
711    /// pub fn span(&self) -> Span {
712    ///            ^^^^^^^
713    /// ```
714    pub fn span(&self) -> Span {
715        Span::_new(self.inner.span())
716    }
717
718    /// Returns the span pointing to the opening delimiter of this group.
719    ///
720    /// ```text
721    /// pub fn span_open(&self) -> Span {
722    ///                 ^
723    /// ```
724    pub fn span_open(&self) -> Span {
725        Span::_new(self.inner.span_open())
726    }
727
728    /// Returns the span pointing to the closing delimiter of this group.
729    ///
730    /// ```text
731    /// pub fn span_close(&self) -> Span {
732    ///                        ^
733    /// ```
734    pub fn span_close(&self) -> Span {
735        Span::_new(self.inner.span_close())
736    }
737
738    /// Returns an object that holds this group's `span_open()` and
739    /// `span_close()` together (in a more compact representation than holding
740    /// those 2 spans individually).
741    pub fn delim_span(&self) -> DelimSpan {
742        DelimSpan::new(&self.inner)
743    }
744
745    /// Configures the span for this `Group`'s delimiters, but not its internal
746    /// tokens.
747    ///
748    /// This method will **not** set the span of all the internal tokens spanned
749    /// by this group, but rather it will only set the span of the delimiter
750    /// tokens at the level of the `Group`.
751    pub fn set_span(&mut self, span: Span) {
752        self.inner.set_span(span.inner);
753    }
754}
755
756/// Prints the group as a string that should be losslessly convertible back
757/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
758/// with `Delimiter::None` delimiters.
759impl Display for Group {
760    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
761        Display::fmt(&self.inner, formatter)
762    }
763}
764
765impl Debug for Group {
766    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
767        Debug::fmt(&self.inner, formatter)
768    }
769}
770
771/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
772///
773/// Multicharacter operators like `+=` are represented as two instances of
774/// `Punct` with different forms of `Spacing` returned.
775#[derive(Clone)]
776pub struct Punct {
777    ch: char,
778    spacing: Spacing,
779    span: Span,
780}
781
782/// Whether a `Punct` is followed immediately by another `Punct` or followed by
783/// another token or whitespace.
784#[derive(Copy, Clone, Debug, Eq, PartialEq)]
785pub enum Spacing {
786    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
787    Alone,
788    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
789    ///
790    /// Additionally, single quote `'` can join with identifiers to form
791    /// lifetimes `'ident`.
792    Joint,
793}
794
795impl Punct {
796    /// Creates a new `Punct` from the given character and spacing.
797    ///
798    /// The `ch` argument must be a valid punctuation character permitted by the
799    /// language, otherwise the function will panic.
800    ///
801    /// The returned `Punct` will have the default span of `Span::call_site()`
802    /// which can be further configured with the `set_span` method below.
803    pub fn new(ch: char, spacing: Spacing) -> Self {
804        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
805        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
806        {
807            Punct {
808                ch,
809                spacing,
810                span: Span::call_site(),
811            }
812        } else {
813            panic!("unsupported proc macro punctuation character {:?}", ch);
814        }
815    }
816
817    /// Returns the value of this punctuation character as `char`.
818    pub fn as_char(&self) -> char {
819        self.ch
820    }
821
822    /// Returns the spacing of this punctuation character, indicating whether
823    /// it's immediately followed by another `Punct` in the token stream, so
824    /// they can potentially be combined into a multicharacter operator
825    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
826    /// so the operator has certainly ended.
827    pub fn spacing(&self) -> Spacing {
828        self.spacing
829    }
830
831    /// Returns the span for this punctuation character.
832    pub fn span(&self) -> Span {
833        self.span
834    }
835
836    /// Configure the span for this punctuation character.
837    pub fn set_span(&mut self, span: Span) {
838        self.span = span;
839    }
840}
841
842/// Prints the punctuation character as a string that should be losslessly
843/// convertible back into the same character.
844impl Display for Punct {
845    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
846        Display::fmt(&self.ch, f)
847    }
848}
849
850impl Debug for Punct {
851    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
852        let mut debug = fmt.debug_struct("Punct");
853        debug.field("char", &self.ch);
854        debug.field("spacing", &self.spacing);
855        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
856        debug.finish()
857    }
858}
859
860/// A word of Rust code, which may be a keyword or legal variable name.
861///
862/// An identifier consists of at least one Unicode code point, the first of
863/// which has the XID_Start property and the rest of which have the XID_Continue
864/// property.
865///
866/// - The empty string is not an identifier. Use `Option<Ident>`.
867/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
868///
869/// An identifier constructed with `Ident::new` is permitted to be a Rust
870/// keyword, though parsing one through its [`Parse`] implementation rejects
871/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
872/// behaviour of `Ident::new`.
873///
874/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
875///
876/// # Examples
877///
878/// A new ident can be created from a string using the `Ident::new` function.
879/// A span must be provided explicitly which governs the name resolution
880/// behavior of the resulting identifier.
881///
882/// ```
883/// use proc_macro2::{Ident, Span};
884///
885/// fn main() {
886///     let call_ident = Ident::new("calligraphy", Span::call_site());
887///
888///     println!("{}", call_ident);
889/// }
890/// ```
891///
892/// An ident can be interpolated into a token stream using the `quote!` macro.
893///
894/// ```
895/// use proc_macro2::{Ident, Span};
896/// use quote::quote;
897///
898/// fn main() {
899///     let ident = Ident::new("demo", Span::call_site());
900///
901///     // Create a variable binding whose name is this ident.
902///     let expanded = quote! { let #ident = 10; };
903///
904///     // Create a variable binding with a slightly different name.
905///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
906///     let expanded = quote! { let #temp_ident = 10; };
907/// }
908/// ```
909///
910/// A string representation of the ident is available through the `to_string()`
911/// method.
912///
913/// ```
914/// # use proc_macro2::{Ident, Span};
915/// #
916/// # let ident = Ident::new("another_identifier", Span::call_site());
917/// #
918/// // Examine the ident as a string.
919/// let ident_string = ident.to_string();
920/// if ident_string.len() > 60 {
921///     println!("Very long identifier: {}", ident_string)
922/// }
923/// ```
924#[derive(Clone)]
925pub struct Ident {
926    inner: imp::Ident,
927    _marker: ProcMacroAutoTraits,
928}
929
930impl Ident {
931    fn _new(inner: imp::Ident) -> Self {
932        Ident {
933            inner,
934            _marker: MARKER,
935        }
936    }
937
938    fn _new_fallback(inner: fallback::Ident) -> Self {
939        Ident {
940            inner: imp::Ident::from(inner),
941            _marker: MARKER,
942        }
943    }
944
945    /// Creates a new `Ident` with the given `string` as well as the specified
946    /// `span`.
947    ///
948    /// The `string` argument must be a valid identifier permitted by the
949    /// language, otherwise the function will panic.
950    ///
951    /// Note that `span`, currently in rustc, configures the hygiene information
952    /// for this identifier.
953    ///
954    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
955    /// hygiene meaning that identifiers created with this span will be resolved
956    /// as if they were written directly at the location of the macro call, and
957    /// other code at the macro call site will be able to refer to them as well.
958    ///
959    /// Later spans like `Span::def_site()` will allow to opt-in to
960    /// "definition-site" hygiene meaning that identifiers created with this
961    /// span will be resolved at the location of the macro definition and other
962    /// code at the macro call site will not be able to refer to them.
963    ///
964    /// Due to the current importance of hygiene this constructor, unlike other
965    /// tokens, requires a `Span` to be specified at construction.
966    ///
967    /// # Panics
968    ///
969    /// Panics if the input string is neither a keyword nor a legal variable
970    /// name. If you are not sure whether the string contains an identifier and
971    /// need to handle an error case, use
972    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
973    ///   style="padding-right:0;">syn::parse_str</code></a><code
974    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
975    /// rather than `Ident::new`.
976    #[track_caller]
977    pub fn new(string: &str, span: Span) -> Self {
978        Ident::_new(imp::Ident::new_checked(string, span.inner))
979    }
980
981    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
982    /// `string` argument must be a valid identifier permitted by the language
983    /// (including keywords, e.g. `fn`). Keywords which are usable in path
984    /// segments (e.g. `self`, `super`) are not supported, and will cause a
985    /// panic.
986    #[track_caller]
987    pub fn new_raw(string: &str, span: Span) -> Self {
988        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
989    }
990
991    /// Returns the span of this `Ident`.
992    pub fn span(&self) -> Span {
993        Span::_new(self.inner.span())
994    }
995
996    /// Configures the span of this `Ident`, possibly changing its hygiene
997    /// context.
998    pub fn set_span(&mut self, span: Span) {
999        self.inner.set_span(span.inner);
1000    }
1001}
1002
1003impl PartialEq for Ident {
1004    fn eq(&self, other: &Ident) -> bool {
1005        self.inner == other.inner
1006    }
1007}
1008
1009impl<T> PartialEq<T> for Ident
1010where
1011    T: ?Sized + AsRef<str>,
1012{
1013    fn eq(&self, other: &T) -> bool {
1014        self.inner == other
1015    }
1016}
1017
1018impl Eq for Ident {}
1019
1020impl PartialOrd for Ident {
1021    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1022        Some(self.cmp(other))
1023    }
1024}
1025
1026impl Ord for Ident {
1027    fn cmp(&self, other: &Ident) -> Ordering {
1028        self.to_string().cmp(&other.to_string())
1029    }
1030}
1031
1032impl Hash for Ident {
1033    fn hash<H: Hasher>(&self, hasher: &mut H) {
1034        self.to_string().hash(hasher);
1035    }
1036}
1037
1038/// Prints the identifier as a string that should be losslessly convertible back
1039/// into the same identifier.
1040impl Display for Ident {
1041    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1042        Display::fmt(&self.inner, f)
1043    }
1044}
1045
1046impl Debug for Ident {
1047    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1048        Debug::fmt(&self.inner, f)
1049    }
1050}
1051
1052/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1053/// byte character (`b'a'`), an integer or floating point number with or without
1054/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1055///
1056/// Boolean literals like `true` and `false` do not belong here, they are
1057/// `Ident`s.
1058#[derive(Clone)]
1059pub struct Literal {
1060    inner: imp::Literal,
1061    _marker: ProcMacroAutoTraits,
1062}
1063
1064macro_rules! suffixed_int_literals {
1065    ($($name:ident => $kind:ident,)*) => ($(
1066        /// Creates a new suffixed integer literal with the specified value.
1067        ///
1068        /// This function will create an integer like `1u32` where the integer
1069        /// value specified is the first part of the token and the integral is
1070        /// also suffixed at the end. Literals created from negative numbers may
1071        /// not survive roundtrips through `TokenStream` or strings and may be
1072        /// broken into two tokens (`-` and positive literal).
1073        ///
1074        /// Literals created through this method have the `Span::call_site()`
1075        /// span by default, which can be configured with the `set_span` method
1076        /// below.
1077        pub fn $name(n: $kind) -> Literal {
1078            Literal::_new(imp::Literal::$name(n))
1079        }
1080    )*)
1081}
1082
1083macro_rules! unsuffixed_int_literals {
1084    ($($name:ident => $kind:ident,)*) => ($(
1085        /// Creates a new unsuffixed integer literal with the specified value.
1086        ///
1087        /// This function will create an integer like `1` where the integer
1088        /// value specified is the first part of the token. No suffix is
1089        /// specified on this token, meaning that invocations like
1090        /// `Literal::i8_unsuffixed(1)` are equivalent to
1091        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1092        /// may not survive roundtrips through `TokenStream` or strings and may
1093        /// be broken into two tokens (`-` and positive literal).
1094        ///
1095        /// Literals created through this method have the `Span::call_site()`
1096        /// span by default, which can be configured with the `set_span` method
1097        /// below.
1098        pub fn $name(n: $kind) -> Literal {
1099            Literal::_new(imp::Literal::$name(n))
1100        }
1101    )*)
1102}
1103
1104impl Literal {
1105    fn _new(inner: imp::Literal) -> Self {
1106        Literal {
1107            inner,
1108            _marker: MARKER,
1109        }
1110    }
1111
1112    fn _new_fallback(inner: fallback::Literal) -> Self {
1113        Literal {
1114            inner: imp::Literal::from(inner),
1115            _marker: MARKER,
1116        }
1117    }
1118
1119    suffixed_int_literals! {
1120        u8_suffixed => u8,
1121        u16_suffixed => u16,
1122        u32_suffixed => u32,
1123        u64_suffixed => u64,
1124        u128_suffixed => u128,
1125        usize_suffixed => usize,
1126        i8_suffixed => i8,
1127        i16_suffixed => i16,
1128        i32_suffixed => i32,
1129        i64_suffixed => i64,
1130        i128_suffixed => i128,
1131        isize_suffixed => isize,
1132    }
1133
1134    unsuffixed_int_literals! {
1135        u8_unsuffixed => u8,
1136        u16_unsuffixed => u16,
1137        u32_unsuffixed => u32,
1138        u64_unsuffixed => u64,
1139        u128_unsuffixed => u128,
1140        usize_unsuffixed => usize,
1141        i8_unsuffixed => i8,
1142        i16_unsuffixed => i16,
1143        i32_unsuffixed => i32,
1144        i64_unsuffixed => i64,
1145        i128_unsuffixed => i128,
1146        isize_unsuffixed => isize,
1147    }
1148
1149    /// Creates a new unsuffixed floating-point literal.
1150    ///
1151    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1152    /// the float's value is emitted directly into the token but no suffix is
1153    /// used, so it may be inferred to be a `f64` later in the compiler.
1154    /// Literals created from negative numbers may not survive round-trips
1155    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1156    /// and positive literal).
1157    ///
1158    /// # Panics
1159    ///
1160    /// This function requires that the specified float is finite, for example
1161    /// if it is infinity or NaN this function will panic.
1162    pub fn f64_unsuffixed(f: f64) -> Literal {
1163        assert!(f.is_finite());
1164        Literal::_new(imp::Literal::f64_unsuffixed(f))
1165    }
1166
1167    /// Creates a new suffixed floating-point literal.
1168    ///
1169    /// This constructor will create a literal like `1.0f64` where the value
1170    /// specified is the preceding part of the token and `f64` is the suffix of
1171    /// the token. This token will always be inferred to be an `f64` in the
1172    /// compiler. Literals created from negative numbers may not survive
1173    /// round-trips through `TokenStream` or strings and may be broken into two
1174    /// tokens (`-` and positive literal).
1175    ///
1176    /// # Panics
1177    ///
1178    /// This function requires that the specified float is finite, for example
1179    /// if it is infinity or NaN this function will panic.
1180    pub fn f64_suffixed(f: f64) -> Literal {
1181        assert!(f.is_finite());
1182        Literal::_new(imp::Literal::f64_suffixed(f))
1183    }
1184
1185    /// Creates a new unsuffixed floating-point literal.
1186    ///
1187    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1188    /// the float's value is emitted directly into the token but no suffix is
1189    /// used, so it may be inferred to be a `f64` later in the compiler.
1190    /// Literals created from negative numbers may not survive round-trips
1191    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1192    /// and positive literal).
1193    ///
1194    /// # Panics
1195    ///
1196    /// This function requires that the specified float is finite, for example
1197    /// if it is infinity or NaN this function will panic.
1198    pub fn f32_unsuffixed(f: f32) -> Literal {
1199        assert!(f.is_finite());
1200        Literal::_new(imp::Literal::f32_unsuffixed(f))
1201    }
1202
1203    /// Creates a new suffixed floating-point literal.
1204    ///
1205    /// This constructor will create a literal like `1.0f32` where the value
1206    /// specified is the preceding part of the token and `f32` is the suffix of
1207    /// the token. This token will always be inferred to be an `f32` in the
1208    /// compiler. Literals created from negative numbers may not survive
1209    /// round-trips through `TokenStream` or strings and may be broken into two
1210    /// tokens (`-` and positive literal).
1211    ///
1212    /// # Panics
1213    ///
1214    /// This function requires that the specified float is finite, for example
1215    /// if it is infinity or NaN this function will panic.
1216    pub fn f32_suffixed(f: f32) -> Literal {
1217        assert!(f.is_finite());
1218        Literal::_new(imp::Literal::f32_suffixed(f))
1219    }
1220
1221    /// String literal.
1222    pub fn string(string: &str) -> Literal {
1223        Literal::_new(imp::Literal::string(string))
1224    }
1225
1226    /// Character literal.
1227    pub fn character(ch: char) -> Literal {
1228        Literal::_new(imp::Literal::character(ch))
1229    }
1230
1231    /// Byte character literal.
1232    pub fn byte_character(byte: u8) -> Literal {
1233        Literal::_new(imp::Literal::byte_character(byte))
1234    }
1235
1236    /// Byte string literal.
1237    pub fn byte_string(bytes: &[u8]) -> Literal {
1238        Literal::_new(imp::Literal::byte_string(bytes))
1239    }
1240
1241    /// C string literal.
1242    pub fn c_string(string: &CStr) -> Literal {
1243        Literal::_new(imp::Literal::c_string(string))
1244    }
1245
1246    /// Returns the span encompassing this literal.
1247    pub fn span(&self) -> Span {
1248        Span::_new(self.inner.span())
1249    }
1250
1251    /// Configures the span associated for this literal.
1252    pub fn set_span(&mut self, span: Span) {
1253        self.inner.set_span(span.inner);
1254    }
1255
1256    /// Returns a `Span` that is a subset of `self.span()` containing only
1257    /// the source bytes in range `range`. Returns `None` if the would-be
1258    /// trimmed span is outside the bounds of `self`.
1259    ///
1260    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1261    /// nightly-only. When called from within a procedural macro not using a
1262    /// nightly compiler, this method will always return `None`.
1263    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1264        self.inner.subspan(range).map(Span::_new)
1265    }
1266
1267    // Intended for the `quote!` macro to use when constructing a proc-macro2
1268    // token out of a macro_rules $:literal token, which is already known to be
1269    // a valid literal. This avoids reparsing/validating the literal's string
1270    // representation. This is not public API other than for quote.
1271    #[doc(hidden)]
1272    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1273        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1274    }
1275}
1276
1277impl FromStr for Literal {
1278    type Err = LexError;
1279
1280    fn from_str(repr: &str) -> Result<Self, LexError> {
1281        match imp::Literal::from_str_checked(repr) {
1282            Ok(lit) => Ok(Literal::_new(lit)),
1283            Err(lex) => Err(LexError {
1284                inner: lex,
1285                _marker: MARKER,
1286            }),
1287        }
1288    }
1289}
1290
1291impl Debug for Literal {
1292    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1293        Debug::fmt(&self.inner, f)
1294    }
1295}
1296
1297impl Display for Literal {
1298    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1299        Display::fmt(&self.inner, f)
1300    }
1301}
1302
1303/// Public implementation details for the `TokenStream` type, such as iterators.
1304pub mod token_stream {
1305    use crate::marker::{ProcMacroAutoTraits, MARKER};
1306    use crate::{imp, TokenTree};
1307    use core::fmt::{self, Debug};
1308
1309    pub use crate::TokenStream;
1310
1311    /// An iterator over `TokenStream`'s `TokenTree`s.
1312    ///
1313    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1314    /// delimited groups, and returns whole groups as token trees.
1315    #[derive(Clone)]
1316    pub struct IntoIter {
1317        inner: imp::TokenTreeIter,
1318        _marker: ProcMacroAutoTraits,
1319    }
1320
1321    impl Iterator for IntoIter {
1322        type Item = TokenTree;
1323
1324        fn next(&mut self) -> Option<TokenTree> {
1325            self.inner.next()
1326        }
1327
1328        fn size_hint(&self) -> (usize, Option<usize>) {
1329            self.inner.size_hint()
1330        }
1331    }
1332
1333    impl Debug for IntoIter {
1334        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1335            f.write_str("TokenStream ")?;
1336            f.debug_list().entries(self.clone()).finish()
1337        }
1338    }
1339
1340    impl IntoIterator for TokenStream {
1341        type Item = TokenTree;
1342        type IntoIter = IntoIter;
1343
1344        fn into_iter(self) -> IntoIter {
1345            IntoIter {
1346                inner: self.inner.into_iter(),
1347                _marker: MARKER,
1348            }
1349        }
1350    }
1351}