procfs_core/process/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
//! Functions and structs related to process information
//!
//! The primary source of data for functions in this module is the files in a `/proc/<pid>/`
//! directory.
use super::*;
use crate::from_iter;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::io::Read;
use std::path::PathBuf;
use std::str::FromStr;
mod limit;
pub use limit::*;
mod stat;
pub use stat::*;
mod mount;
pub use mount::*;
mod namespaces;
pub use namespaces::*;
mod status;
pub use status::*;
mod schedstat;
pub use schedstat::*;
mod smaps_rollup;
pub use smaps_rollup::*;
mod pagemap;
pub use pagemap::*;
mod clear_refs;
pub use clear_refs::*;
bitflags! {
/// Kernel flags for a process
///
/// See also the [Stat::flags()] method.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct StatFlags: u32 {
/// I am an IDLE thread
const PF_IDLE = 0x0000_0002;
/// Getting shut down
const PF_EXITING = 0x0000_0004;
/// PI exit done on shut down
const PF_EXITPIDONE = 0x0000_0008;
/// I'm a virtual CPU
const PF_VCPU = 0x0000_0010;
/// I'm a workqueue worker
const PF_WQ_WORKER = 0x0000_0020;
/// Forked but didn't exec
const PF_FORKNOEXEC = 0x0000_0040;
/// Process policy on mce errors;
const PF_MCE_PROCESS = 0x0000_0080;
/// Used super-user privileges
const PF_SUPERPRIV = 0x0000_0100;
/// Dumped core
const PF_DUMPCORE = 0x0000_0200;
/// Killed by a signal
const PF_SIGNALED = 0x0000_0400;
///Allocating memory
const PF_MEMALLOC = 0x0000_0800;
/// set_user() noticed that RLIMIT_NPROC was exceeded
const PF_NPROC_EXCEEDED = 0x0000_1000;
/// If unset the fpu must be initialized before use
const PF_USED_MATH = 0x0000_2000;
/// Used async_schedule*(), used by module init
const PF_USED_ASYNC = 0x0000_4000;
/// This thread should not be frozen
const PF_NOFREEZE = 0x0000_8000;
/// Frozen for system suspend
const PF_FROZEN = 0x0001_0000;
/// I am kswapd
const PF_KSWAPD = 0x0002_0000;
/// All allocation requests will inherit GFP_NOFS
const PF_MEMALLOC_NOFS = 0x0004_0000;
/// All allocation requests will inherit GFP_NOIO
const PF_MEMALLOC_NOIO = 0x0008_0000;
/// Throttle me less: I clean memory
const PF_LESS_THROTTLE = 0x0010_0000;
/// I am a kernel thread
const PF_KTHREAD = 0x0020_0000;
/// Randomize virtual address space
const PF_RANDOMIZE = 0x0040_0000;
/// Allowed to write to swap
const PF_SWAPWRITE = 0x0080_0000;
/// Stalled due to lack of memory
const PF_MEMSTALL = 0x0100_0000;
/// I'm an Usermodehelper process
const PF_UMH = 0x0200_0000;
/// Userland is not allowed to meddle with cpus_allowed
const PF_NO_SETAFFINITY = 0x0400_0000;
/// Early kill for mce process policy
const PF_MCE_EARLY = 0x0800_0000;
/// All allocation request will have _GFP_MOVABLE cleared
const PF_MEMALLOC_NOCMA = 0x1000_0000;
/// Thread belongs to the rt mutex tester
const PF_MUTEX_TESTER = 0x2000_0000;
/// Freezer should not count it as freezable
const PF_FREEZER_SKIP = 0x4000_0000;
/// This thread called freeze_processes() and should not be frozen
const PF_SUSPEND_TASK = 0x8000_0000;
}
}
bitflags! {
/// See the [coredump_filter()](struct.Process.html#method.coredump_filter) method.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct CoredumpFlags: u32 {
const ANONYMOUS_PRIVATE_MAPPINGS = 0x01;
const ANONYMOUS_SHARED_MAPPINGS = 0x02;
const FILEBACKED_PRIVATE_MAPPINGS = 0x04;
const FILEBACKED_SHARED_MAPPINGS = 0x08;
const ELF_HEADERS = 0x10;
const PROVATE_HUGEPAGES = 0x20;
const SHARED_HUGEPAGES = 0x40;
const PRIVATE_DAX_PAGES = 0x80;
const SHARED_DAX_PAGES = 0x100;
}
}
bitflags! {
/// The permissions a process has on memory map entries.
///
/// Note that the `SHARED` and `PRIVATE` are mutually exclusive, so while you can
/// use `MMPermissions::all()` to construct an instance that has all bits set,
/// this particular value would never been seen in procfs.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord, Default)]
pub struct MMPermissions: u8 {
/// No permissions
const NONE = 0;
/// Read permission
const READ = 1 << 0;
/// Write permission
const WRITE = 1 << 1;
/// Execute permission
const EXECUTE = 1 << 2;
/// Memory is shared with another process.
///
/// Mutually exclusive with PRIVATE.
const SHARED = 1 << 3;
/// Memory is private (and copy-on-write)
///
/// Mutually exclusive with SHARED.
const PRIVATE = 1 << 4;
}
}
impl MMPermissions {
fn from_ascii_char(b: u8) -> Self {
match b {
b'r' => Self::READ,
b'w' => Self::WRITE,
b'x' => Self::EXECUTE,
b's' => Self::SHARED,
b'p' => Self::PRIVATE,
_ => Self::NONE,
}
}
/// Returns this permission map as a 4-character string, similar to what you
/// might see in `/proc/\<pid\>/maps`.
///
/// Note that the SHARED and PRIVATE bits are mutually exclusive, so this
/// string is 4 characters long, not 5.
pub fn as_str(&self) -> String {
let mut s = String::with_capacity(4);
s.push(if self.contains(Self::READ) { 'r' } else { '-' });
s.push(if self.contains(Self::WRITE) { 'w' } else { '-' });
s.push(if self.contains(Self::EXECUTE) { 'x' } else { '-' });
s.push(if self.contains(Self::SHARED) {
's'
} else if self.contains(Self::PRIVATE) {
'p'
} else {
'-'
});
s
}
}
impl FromStr for MMPermissions {
type Err = std::convert::Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// Only operate on ASCII (byte) values
Ok(s.bytes()
.map(Self::from_ascii_char)
.fold(Self::default(), std::ops::BitOr::bitor))
}
}
bitflags! {
/// Represents the kernel flags associated with the virtual memory area.
/// The names of these flags are just those you'll find in the man page, but in upper case.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord, Default)]
pub struct VmFlags: u32 {
/// No flags
const NONE = 0;
/// Readable
const RD = 1 << 0;
/// Writable
const WR = 1 << 1;
/// Executable
const EX = 1 << 2;
/// Shared
const SH = 1 << 3;
/// May read
const MR = 1 << 4;
/// May write
const MW = 1 << 5;
/// May execute
const ME = 1 << 6;
/// May share
const MS = 1 << 7;
/// Stack segment grows down
const GD = 1 << 8;
/// Pure PFN range
const PF = 1 << 9;
/// Disable write to the mapped file
const DW = 1 << 10;
/// Pages are locked in memory
const LO = 1 << 11;
/// Memory mapped I/O area
const IO = 1 << 12;
/// Sequential read advise provided
const SR = 1 << 13;
/// Random read provided
const RR = 1 << 14;
/// Do not copy area on fork
const DC = 1 << 15;
/// Do not expand area on remapping
const DE = 1 << 16;
/// Area is accountable
const AC = 1 << 17;
/// Swap space is not reserved for the area
const NR = 1 << 18;
/// Area uses huge TLB pages
const HT = 1 << 19;
/// Perform synchronous page faults (since Linux 4.15)
const SF = 1 << 20;
/// Non-linear mapping (removed in Linux 4.0)
const NL = 1 << 21;
/// Architecture specific flag
const AR = 1 << 22;
/// Wipe on fork (since Linux 4.14)
const WF = 1 << 23;
/// Do not include area into core dump
const DD = 1 << 24;
/// Soft-dirty flag (since Linux 3.13)
const SD = 1 << 25;
/// Mixed map area
const MM = 1 << 26;
/// Huge page advise flag
const HG = 1 << 27;
/// No-huge page advise flag
const NH = 1 << 28;
/// Mergeable advise flag
const MG = 1 << 29;
/// Userfaultfd missing pages tracking (since Linux 4.3)
const UM = 1 << 30;
/// Userfaultfd wprotect pages tracking (since Linux 4.3)
const UW = 1 << 31;
}
}
impl VmFlags {
fn from_str(flag: &str) -> Self {
if flag.len() != 2 {
return VmFlags::NONE;
}
match flag {
"rd" => VmFlags::RD,
"wr" => VmFlags::WR,
"ex" => VmFlags::EX,
"sh" => VmFlags::SH,
"mr" => VmFlags::MR,
"mw" => VmFlags::MW,
"me" => VmFlags::ME,
"ms" => VmFlags::MS,
"gd" => VmFlags::GD,
"pf" => VmFlags::PF,
"dw" => VmFlags::DW,
"lo" => VmFlags::LO,
"io" => VmFlags::IO,
"sr" => VmFlags::SR,
"rr" => VmFlags::RR,
"dc" => VmFlags::DC,
"de" => VmFlags::DE,
"ac" => VmFlags::AC,
"nr" => VmFlags::NR,
"ht" => VmFlags::HT,
"sf" => VmFlags::SF,
"nl" => VmFlags::NL,
"ar" => VmFlags::AR,
"wf" => VmFlags::WF,
"dd" => VmFlags::DD,
"sd" => VmFlags::SD,
"mm" => VmFlags::MM,
"hg" => VmFlags::HG,
"nh" => VmFlags::NH,
"mg" => VmFlags::MG,
"um" => VmFlags::UM,
"uw" => VmFlags::UW,
_ => VmFlags::NONE,
}
}
}
/// Represents the state of a process.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum ProcState {
/// Running (R)
Running,
/// Sleeping in an interruptible wait (S)
Sleeping,
/// Waiting in uninterruptible disk sleep (D)
Waiting,
/// Zombie (Z)
Zombie,
/// Stopped (on a signal) (T)
///
/// Or before Linux 2.6.33, trace stopped
Stopped,
/// Tracing stop (t) (Linux 2.6.33 onward)
Tracing,
/// Dead (X)
Dead,
/// Wakekill (K) (Linux 2.6.33 to 3.13 only)
Wakekill,
/// Waking (W) (Linux 2.6.33 to 3.13 only)
Waking,
/// Parked (P) (Linux 3.9 to 3.13 only)
Parked,
/// Idle (I)
Idle,
}
impl ProcState {
pub fn from_char(c: char) -> Option<ProcState> {
match c {
'R' => Some(ProcState::Running),
'S' => Some(ProcState::Sleeping),
'D' => Some(ProcState::Waiting),
'Z' => Some(ProcState::Zombie),
'T' => Some(ProcState::Stopped),
't' => Some(ProcState::Tracing),
'X' | 'x' => Some(ProcState::Dead),
'K' => Some(ProcState::Wakekill),
'W' => Some(ProcState::Waking),
'P' => Some(ProcState::Parked),
'I' => Some(ProcState::Idle),
_ => None,
}
}
}
impl FromStr for ProcState {
type Err = ProcError;
fn from_str(s: &str) -> Result<ProcState, ProcError> {
ProcState::from_char(expect!(s.chars().next(), "empty string"))
.ok_or_else(|| build_internal_error!("failed to convert"))
}
}
/// This struct contains I/O statistics for the process, built from `/proc/<pid>/io`
///
/// # Note
///
/// In the current implementation, things are a bit racy on 32-bit systems: if process A
/// reads process B's `/proc/<pid>/io` while process B is updating one of these 64-bit
/// counters, process A could see an intermediate result.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Io {
/// Characters read
///
/// The number of bytes which this task has caused to be read from storage. This is simply the
/// sum of bytes which this process passed to read(2) and similar system calls. It includes
/// things such as terminal I/O and is unaffected by whether or not actual physical disk I/O
/// was required (the read might have been satisfied from pagecache).
pub rchar: u64,
/// characters written
///
/// The number of bytes which this task has caused, or shall cause to be written to disk.
/// Similar caveats apply here as with rchar.
pub wchar: u64,
/// read syscalls
///
/// Attempt to count the number of write I/O operations—that is, system calls such as write(2)
/// and pwrite(2).
pub syscr: u64,
/// write syscalls
///
/// Attempt to count the number of write I/O operations—that is, system calls such as write(2)
/// and pwrite(2).
pub syscw: u64,
/// bytes read
///
/// Attempt to count the number of bytes which this process really did cause to be fetched from
/// the storage layer. This is accurate for block-backed filesystems.
pub read_bytes: u64,
/// bytes written
///
/// Attempt to count the number of bytes which this process caused to be sent to the storage layer.
pub write_bytes: u64,
/// Cancelled write bytes.
///
/// The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes
/// the file, it will in fact perform no write‐ out. But it will have been accounted as having
/// caused 1MB of write. In other words: this field represents the number of bytes which this
/// process caused to not happen, by truncating pagecache. A task can cause "negative" I/O too.
/// If this task truncates some dirty pagecache, some I/O which another task has been accounted
/// for (in its write_bytes) will not be happening.
pub cancelled_write_bytes: u64,
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum MMapPath {
/// The file that is backing the mapping.
Path(PathBuf),
/// The process's heap.
Heap,
/// The initial process's (also known as the main thread's) stack.
Stack,
/// A thread's stack (where the `<tid>` is a thread ID). It corresponds to the
/// `/proc/<pid>/task/<tid>/` path.
///
/// (since Linux 3.4)
TStack(u32),
/// The virtual dynamically linked shared object.
Vdso,
/// Shared kernel variables
Vvar,
/// obsolete virtual syscalls, succeeded by vdso
Vsyscall,
/// rollup memory mappings, from `/proc/<pid>/smaps_rollup`
Rollup,
/// An anonymous mapping as obtained via mmap(2).
Anonymous,
/// Shared memory segment. The i32 value corresponds to [Shm.key](Shm::key), while [MemoryMap.inode](MemoryMap::inode) corresponds to [Shm.shmid](Shm::shmid)
Vsys(i32),
/// Some other pseudo-path
Other(String),
}
impl MMapPath {
pub fn from(path: &str) -> ProcResult<MMapPath> {
Ok(match path.trim() {
"" => MMapPath::Anonymous,
"[heap]" => MMapPath::Heap,
"[stack]" => MMapPath::Stack,
"[vdso]" => MMapPath::Vdso,
"[vvar]" => MMapPath::Vvar,
"[vsyscall]" => MMapPath::Vsyscall,
"[rollup]" => MMapPath::Rollup,
x if x.starts_with("[stack:") => {
let mut s = x[1..x.len() - 1].split(':');
let tid = from_str!(u32, expect!(s.nth(1)));
MMapPath::TStack(tid)
}
x if x.starts_with('[') && x.ends_with(']') => MMapPath::Other(x[1..x.len() - 1].to_string()),
x if x.starts_with("/SYSV") => MMapPath::Vsys(u32::from_str_radix(&x[5..13], 16)? as i32), // 32bits signed hex. /SYSVaabbccdd (deleted)
x => MMapPath::Path(PathBuf::from(x)),
})
}
}
/// Represents all entries in a `/proc/<pid>/maps` or `/proc/<pid>/smaps` file.
#[derive(Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[non_exhaustive]
pub struct MemoryMaps(pub Vec<MemoryMap>);
impl crate::FromBufRead for MemoryMaps {
/// The data should be formatted according to procfs /proc/pid/{maps,smaps,smaps_rollup}.
fn from_buf_read<R: BufRead>(reader: R) -> ProcResult<Self> {
let mut memory_maps = Vec::new();
let mut line_iter = reader.lines().map(|r| r.map_err(|_| ProcError::Incomplete(None)));
let mut current_memory_map: Option<MemoryMap> = None;
while let Some(line) = line_iter.next().transpose()? {
// Assumes all extension fields (in `/proc/<pid>/smaps`) start with a capital letter,
// which seems to be the case.
if line.starts_with(|c: char| c.is_ascii_uppercase()) {
match current_memory_map.as_mut() {
None => return Err(ProcError::Incomplete(None)),
Some(mm) => {
// This is probably an attribute
if line.starts_with("VmFlags") {
let flags = line.split_ascii_whitespace();
let flags = flags.skip(1); // Skips the `VmFlags:` part since we don't need it.
let flags = flags
.map(VmFlags::from_str)
// FUTURE: use `Iterator::reduce`
.fold(VmFlags::NONE, std::ops::BitOr::bitor);
mm.extension.vm_flags = flags;
} else {
let mut parts = line.split_ascii_whitespace();
let key = parts.next();
let value = parts.next();
if let (Some(k), Some(v)) = (key, value) {
// While most entries do have one, not all of them do.
let size_suffix = parts.next();
// Limited poking at /proc/<pid>/smaps and then checking if "MB", "GB", and "TB" appear in the C file that is
// supposedly responsible for creating smaps, has lead me to believe that the only size suffixes we'll ever encounter
// "kB", which is most likely kibibytes. Actually checking if the size suffix is any of the above is a way to
// future-proof the code, but I am not sure it is worth doing so.
let size_multiplier = if size_suffix.is_some() { 1024 } else { 1 };
let v = v.parse::<u64>().map_err(|_| {
ProcError::Other("Value in `Key: Value` pair was not actually a number".into())
})?;
// This ignores the case when our Key: Value pairs are really Key Value pairs. Is this a good idea?
let k = k.trim_end_matches(':');
mm.extension.map.insert(k.into(), v * size_multiplier);
}
}
}
}
} else {
if let Some(mm) = current_memory_map.take() {
memory_maps.push(mm);
}
current_memory_map = Some(MemoryMap::from_line(&line)?);
}
}
if let Some(mm) = current_memory_map.take() {
memory_maps.push(mm);
}
Ok(MemoryMaps(memory_maps))
}
}
impl MemoryMaps {
/// Return an iterator over [MemoryMap].
pub fn iter(&self) -> std::slice::Iter<MemoryMap> {
self.0.iter()
}
pub fn len(&self) -> usize {
self.0.len()
}
}
impl<'a> IntoIterator for &'a MemoryMaps {
type IntoIter = std::slice::Iter<'a, MemoryMap>;
type Item = &'a MemoryMap;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl IntoIterator for MemoryMaps {
type IntoIter = std::vec::IntoIter<MemoryMap>;
type Item = MemoryMap;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
/// Represents an entry in a `/proc/<pid>/maps` or `/proc/<pid>/smaps` file.
#[derive(Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct MemoryMap {
/// The address space in the process that the mapping occupies.
pub address: (u64, u64),
pub perms: MMPermissions,
/// The offset into the file/whatever
pub offset: u64,
/// The device (major, minor)
pub dev: (i32, i32),
/// The inode on that device
///
/// 0 indicates that no inode is associated with the memory region, as would be the case with
/// BSS (uninitialized data).
pub inode: u64,
pub pathname: MMapPath,
/// Memory mapping extension information, populated when parsing `/proc/<pid>/smaps`.
///
/// The members will be `Default::default()` (empty/none) when the information isn't available.
pub extension: MMapExtension,
}
impl MemoryMap {
fn from_line(line: &str) -> ProcResult<MemoryMap> {
let mut s = line.splitn(6, ' ');
let address = expect!(s.next());
let perms = expect!(s.next());
let offset = expect!(s.next());
let dev = expect!(s.next());
let inode = expect!(s.next());
let path = expect!(s.next());
Ok(MemoryMap {
address: split_into_num(address, '-', 16)?,
perms: perms.parse()?,
offset: from_str!(u64, offset, 16),
dev: split_into_num(dev, ':', 16)?,
inode: from_str!(u64, inode),
pathname: MMapPath::from(path)?,
extension: Default::default(),
})
}
}
/// Represents the information about a specific mapping as presented in /proc/\<pid\>/smaps
#[derive(Default, Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct MMapExtension {
/// Key-value pairs that may represent statistics about memory usage, or other interesting things,
/// such a "ProtectionKey" (if you're on X86 and that kernel config option was specified).
///
/// Note that should a key-value pair represent a memory usage statistic, it will be in bytes.
///
/// Check your manpage for more information
pub map: HashMap<String, u64>,
/// Kernel flags associated with the virtual memory area
///
/// (since Linux 3.8)
pub vm_flags: VmFlags,
}
impl MMapExtension {
/// Return whether the extension information is empty.
pub fn is_empty(&self) -> bool {
self.map.is_empty() && self.vm_flags == VmFlags::NONE
}
}
impl crate::FromBufRead for Io {
fn from_buf_read<R: BufRead>(reader: R) -> ProcResult<Self> {
let mut map = HashMap::new();
for line in reader.lines() {
let line = line?;
if line.is_empty() || !line.contains(' ') {
continue;
}
let mut s = line.split_whitespace();
let field = expect!(s.next());
let value = expect!(s.next());
let value = from_str!(u64, value);
map.insert(field[..field.len() - 1].to_string(), value);
}
let io = Io {
rchar: expect!(map.remove("rchar")),
wchar: expect!(map.remove("wchar")),
syscr: expect!(map.remove("syscr")),
syscw: expect!(map.remove("syscw")),
read_bytes: expect!(map.remove("read_bytes")),
write_bytes: expect!(map.remove("write_bytes")),
cancelled_write_bytes: expect!(map.remove("cancelled_write_bytes")),
};
assert!(!cfg!(test) || map.is_empty(), "io map is not empty: {:#?}", map);
Ok(io)
}
}
/// Describes a file descriptor opened by a process.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum FDTarget {
/// A file or device
Path(PathBuf),
/// A socket type, with an inode
Socket(u64),
Net(u64),
Pipe(u64),
/// A file descriptor that have no corresponding inode.
AnonInode(String),
/// A memfd file descriptor with a name.
MemFD(String),
/// Some other file descriptor type, with an inode.
Other(String, u64),
}
impl FromStr for FDTarget {
type Err = ProcError;
fn from_str(s: &str) -> Result<FDTarget, ProcError> {
// helper function that removes the first and last character
fn strip_first_last(s: &str) -> ProcResult<&str> {
if s.len() > 2 {
let mut c = s.chars();
// remove the first and last characters
let _ = c.next();
let _ = c.next_back();
Ok(c.as_str())
} else {
Err(ProcError::Incomplete(None))
}
}
if !s.starts_with('/') && s.contains(':') {
let mut s = s.split(':');
let fd_type = expect!(s.next());
match fd_type {
"socket" => {
let inode = expect!(s.next(), "socket inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Socket(inode))
}
"net" => {
let inode = expect!(s.next(), "net inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Net(inode))
}
"pipe" => {
let inode = expect!(s.next(), "pipe inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Pipe(inode))
}
"anon_inode" => Ok(FDTarget::AnonInode(expect!(s.next(), "anon inode").to_string())),
"" => Err(ProcError::Incomplete(None)),
x => {
let inode = expect!(s.next(), "other inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Other(x.to_string(), inode))
}
}
} else if let Some(s) = s.strip_prefix("/memfd:") {
Ok(FDTarget::MemFD(s.to_string()))
} else {
Ok(FDTarget::Path(PathBuf::from(s)))
}
}
}
/// Provides information about memory usage, measured in pages.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct StatM {
/// Total program size, measured in pages
///
/// (same as VmSize in /proc/\<pid\>/status)
pub size: u64,
/// Resident set size, measured in pages
///
/// (same as VmRSS in /proc/\<pid\>/status)
pub resident: u64,
/// number of resident shared pages (i.e., backed by a file)
///
/// (same as RssFile+RssShmem in /proc/\<pid\>/status)
pub shared: u64,
/// Text (code)
pub text: u64,
/// library (unused since Linux 2.6; always 0)
pub lib: u64,
/// data + stack
pub data: u64,
/// dirty pages (unused since Linux 2.6; always 0)
pub dt: u64,
}
impl crate::FromRead for StatM {
fn from_read<R: Read>(mut r: R) -> ProcResult<Self> {
let mut line = String::new();
r.read_to_string(&mut line)?;
let mut s = line.split_whitespace();
let size = expect!(from_iter(&mut s));
let resident = expect!(from_iter(&mut s));
let shared = expect!(from_iter(&mut s));
let text = expect!(from_iter(&mut s));
let lib = expect!(from_iter(&mut s));
let data = expect!(from_iter(&mut s));
let dt = expect!(from_iter(&mut s));
if cfg!(test) {
assert!(s.next().is_none());
}
Ok(StatM {
size,
resident,
shared,
text,
lib,
data,
dt,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parse_memory_map_permissions() {
use MMPermissions as P;
assert_eq!("rw-p".parse(), Ok(P::READ | P::WRITE | P::PRIVATE));
assert_eq!("r-xs".parse(), Ok(P::READ | P::EXECUTE | P::SHARED));
assert_eq!("----".parse(), Ok(P::NONE));
assert_eq!((P::READ | P::WRITE | P::PRIVATE).as_str(), "rw-p");
assert_eq!((P::READ | P::EXECUTE | P::SHARED).as_str(), "r-xs");
assert_eq!(P::NONE.as_str(), "----");
}
}