procfs_core/keyring.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
//! Functions related to the in-kernel key management and retention facility
//!
//! For more details on this facility, see the `keyrings(7)` man page.
use crate::{build_internal_error, expect, from_str, ProcResult};
use bitflags::bitflags;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::{collections::HashMap, io::BufRead, time::Duration};
bitflags! {
/// Various key flags
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct KeyFlags: u32 {
/// The key has been instantiated
const INSTANTIATED = 0x01;
/// THe key has been revoked
const REVOKED = 0x02;
/// The key is dead
///
/// I.e. the key type has been unregistered. A key may be briefly in this state during garbage collection.
const DEAD = 0x04;
/// The key contributes to the user's quota
const QUOTA = 0x08;
/// The key is under construction via a callback to user space
const UNDER_CONSTRUCTION = 0x10;
/// The key is negatively instantiated
const NEGATIVE = 0x20;
/// The key has been invalidated
const INVALID = 0x40;
}
}
bitflags! {
/// Bitflags that represent the permissions for a key
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct PermissionFlags: u32 {
/// The attributes of the key may be read
///
/// This includes the type, description, and access rights (excluding the security label)
const VIEW = 0x01;
/// For a key: the payload of the key may be read. For a keyring: the list of serial numbers (keys) to which the keyring has links may be read.
const READ = 0x02;
/// The payload of the key may be updated and the key may be revoked.
///
/// For a keyring, links may be added to or removed from the keyring, and the keyring
/// may be cleared completely (all links are removed).
const WRITE = 0x04;
/// The key may be found by a search.
///
/// For keyrings: keys and keyrings that are linked to by the keyring may be searched.
const SEARCH = 0x08;
/// Links may be created from keyrings to the key.
///
/// The initial link to a key that is established when the key is created doesn't require this permission.
const LINK = 0x10;
/// The ownership details and security label of the key may be changed, the key's expiration
/// time may be set, and the key may be revoked.
const SETATTR = 0x20;
const ALL = Self::VIEW.bits() | Self::READ.bits() | Self::WRITE.bits() | Self::SEARCH.bits() | Self::LINK.bits() | Self::SETATTR.bits();
}
}
impl KeyFlags {
fn from_str(s: &str) -> KeyFlags {
let mut me = KeyFlags::empty();
let mut chars = s.chars();
match chars.next() {
Some(c) if c == 'I' => me.insert(KeyFlags::INSTANTIATED),
_ => {}
}
match chars.next() {
Some(c) if c == 'R' => me.insert(KeyFlags::REVOKED),
_ => {}
}
match chars.next() {
Some(c) if c == 'D' => me.insert(KeyFlags::DEAD),
_ => {}
}
match chars.next() {
Some(c) if c == 'Q' => me.insert(KeyFlags::QUOTA),
_ => {}
}
match chars.next() {
Some(c) if c == 'U' => me.insert(KeyFlags::UNDER_CONSTRUCTION),
_ => {}
}
match chars.next() {
Some(c) if c == 'N' => me.insert(KeyFlags::NEGATIVE),
_ => {}
}
match chars.next() {
Some(c) if c == 'i' => me.insert(KeyFlags::INVALID),
_ => {}
}
me
}
}
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Permissions {
pub possessor: PermissionFlags,
pub user: PermissionFlags,
pub group: PermissionFlags,
pub other: PermissionFlags,
}
impl Permissions {
fn from_str(s: &str) -> ProcResult<Permissions> {
let possessor = PermissionFlags::from_bits(from_str!(u32, &s[0..2], 16))
.ok_or_else(|| build_internal_error!(format!("Unable to parse {:?} as PermissionFlags", s)))?;
let user = PermissionFlags::from_bits(from_str!(u32, &s[2..4], 16))
.ok_or_else(|| build_internal_error!(format!("Unable to parse {:?} as PermissionFlags", s)))?;
let group = PermissionFlags::from_bits(from_str!(u32, &s[4..6], 16))
.ok_or_else(|| build_internal_error!(format!("Unable to parse {:?} as PermissionFlags", s)))?;
let other = PermissionFlags::from_bits(from_str!(u32, &s[6..8], 16))
.ok_or_else(|| build_internal_error!(format!("Unable to parse {:?} as PermissionFlags", s)))?;
Ok(Permissions {
possessor,
user,
group,
other,
})
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum KeyTimeout {
Permanent,
Expired,
Timeout(Duration),
}
impl KeyTimeout {
fn from_str(s: &str) -> ProcResult<KeyTimeout> {
if s == "perm" {
Ok(KeyTimeout::Permanent)
} else if s == "expd" {
Ok(KeyTimeout::Expired)
} else {
let (val, unit) = s.split_at(s.len() - 1);
let val = from_str!(u64, val);
match unit {
"s" => Ok(KeyTimeout::Timeout(Duration::from_secs(val))),
"m" => Ok(KeyTimeout::Timeout(Duration::from_secs(val * 60))),
"h" => Ok(KeyTimeout::Timeout(Duration::from_secs(val * 60 * 60))),
"d" => Ok(KeyTimeout::Timeout(Duration::from_secs(val * 60 * 60 * 24))),
"w" => Ok(KeyTimeout::Timeout(Duration::from_secs(val * 60 * 60 * 24 * 7))),
_ => Err(build_internal_error!(format!("Unable to parse keytimeout of {:?}", s))),
}
}
}
}
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum KeyType {
/// This is a general-purpose key type.
///
/// The key is kept entirely within kernel memory. The payload may be read and updated by
/// user-space applications. The payload for keys of this type is a blob of arbitrary
/// data of up to 32,767 bytes.
/// The description may be any valid string, though it is preferred that it start
/// with a colon-delimited prefix representing the service to which the key is of
/// interest (for instance "afs:mykey").
User,
/// Keyrings are special keys which store a set of links to other keys (including
/// other keyrings), analogous to a directory holding links to files. The main
/// purpose of a keyring is to prevent other keys from being garbage collected
/// because nothing refers to them.
///
/// Keyrings with descriptions (names) that begin with a period ('.') are re‐
/// served to the implementation.
Keyring,
/// This key type is essentially the same as "user", but it does not provide
/// reading (i.e., the keyctl(2) KEYCTL_READ operation), meaning that the key
/// payload is never visible from user space. This is suitable for storing user‐
/// name-password pairs that should not be readable from user space.
///
/// The description of a "logon" key must start with a non-empty colon-delimited
/// prefix whose purpose is to identify the service to which the key belongs.
/// (Note that this differs from keys of the "user" type, where the inclusion of
/// a prefix is recommended but is not enforced.)
Logon,
/// This key type is similar to the "user" key type, but it may hold a payload of
/// up to 1 MiB in size. This key type is useful for purposes such as holding
/// Kerberos ticket caches.
///
/// The payload data may be stored in a tmpfs filesystem, rather than in kernel
/// memory, if the data size exceeds the overhead of storing the data in the
/// filesystem. (Storing the data in a filesystem requires filesystem structures
/// to be allocated in the kernel. The size of these structures determines the
/// size threshold above which the tmpfs storage method is used.) Since Linux
/// 4.8, the payload data is encrypted when stored in tmpfs, thereby preventing
/// it from being written unencrypted into swap space.
BigKey,
/// Other specialized, but rare keys types
Other(String),
}
impl KeyType {
fn from_str(s: &str) -> KeyType {
match s {
"keyring" => KeyType::Keyring,
"user" => KeyType::User,
"logon" => KeyType::Logon,
"big_key" => KeyType::BigKey,
other => KeyType::Other(other.to_string()),
}
}
}
/// A key
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Key {
/// The ID (serial number) of the key
pub id: u64,
/// A set of flags describing the state of the key
pub flags: KeyFlags,
/// Count of the number of kernel credential structures that are
/// pinning the key (approximately: the number of threads and open file
/// references that refer to this key).
pub usage: u32,
/// Key timeout
pub timeout: KeyTimeout,
/// Key permissions
pub permissions: Permissions,
/// The user ID of the key owner
pub uid: u32,
/// The group ID of the key.
///
/// The value of `None` here means that the key has no group ID; this can occur in certain circumstances for
/// keys created by the kernel.
pub gid: Option<u32>,
/// The type of key
pub key_type: KeyType,
/// The key description
pub description: String,
}
impl Key {
fn from_line(s: &str) -> ProcResult<Key> {
let mut s = s.split_whitespace();
let id = from_str!(u64, expect!(s.next()), 16);
let s_flags = expect!(s.next());
let usage = from_str!(u32, expect!(s.next()));
let s_timeout = expect!(s.next());
let s_perms = expect!(s.next());
let uid = from_str!(u32, expect!(s.next()));
let s_gid = expect!(s.next());
let s_type = expect!(s.next());
let desc: Vec<_> = s.collect();
Ok(Key {
id,
flags: KeyFlags::from_str(s_flags),
usage,
timeout: KeyTimeout::from_str(s_timeout)?,
permissions: Permissions::from_str(s_perms)?,
uid,
gid: if s_gid == "-1" {
None
} else {
Some(from_str!(u32, s_gid))
},
key_type: KeyType::from_str(s_type),
description: desc.join(" "),
})
}
}
/// A set of keys.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Keys(pub Vec<Key>);
impl crate::FromBufRead for Keys {
fn from_buf_read<R: BufRead>(r: R) -> ProcResult<Self> {
let mut v = Vec::new();
for line in r.lines() {
let line = line?;
v.push(Key::from_line(&line)?);
}
Ok(Keys(v))
}
}
/// Information about a user with at least one key
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct KeyUser {
/// The user that owns the key
pub uid: u32,
/// The kernel-internal usage count for the kernel structure used to record key users
pub usage: u32,
/// The total number of keys owned by the user
pub nkeys: u32,
/// THe number of keys that have been instantiated
pub nikeys: u32,
/// The number of keys owned by the user
pub qnkeys: u32,
/// The maximum number of keys that the user may own
pub maxkeys: u32,
/// The number of bytes consumed in playloads of the keys owned by this user
pub qnbytes: u32,
/// The upper limit on the number of bytes in key payloads for this user
pub maxbytes: u32,
}
impl KeyUser {
fn from_str(s: &str) -> ProcResult<KeyUser> {
let mut s = s.split_whitespace();
let uid = expect!(s.next());
let usage = from_str!(u32, expect!(s.next()));
let keys = expect!(s.next());
let qkeys = expect!(s.next());
let qbytes = expect!(s.next());
let (nkeys, nikeys) = {
let mut s = keys.split('/');
(from_str!(u32, expect!(s.next())), from_str!(u32, expect!(s.next())))
};
let (qnkeys, maxkeys) = {
let mut s = qkeys.split('/');
(from_str!(u32, expect!(s.next())), from_str!(u32, expect!(s.next())))
};
let (qnbytes, maxbytes) = {
let mut s = qbytes.split('/');
(from_str!(u32, expect!(s.next())), from_str!(u32, expect!(s.next())))
};
Ok(KeyUser {
uid: from_str!(u32, &uid[0..uid.len() - 1]),
usage,
nkeys,
nikeys,
qnkeys,
maxkeys,
qnbytes,
maxbytes,
})
}
}
/// Information about a set of users with at least one key.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct KeyUsers(pub HashMap<u32, KeyUser>);
impl crate::FromBufRead for KeyUsers {
fn from_buf_read<R: BufRead>(r: R) -> ProcResult<Self> {
let mut map = HashMap::new();
for line in r.lines() {
let line = line?;
let user = KeyUser::from_str(&line)?;
map.insert(user.uid, user);
}
Ok(KeyUsers(map))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn key_flags() {
assert_eq!(KeyFlags::from_str("I------"), KeyFlags::INSTANTIATED);
assert_eq!(KeyFlags::from_str("IR"), KeyFlags::INSTANTIATED | KeyFlags::REVOKED);
assert_eq!(KeyFlags::from_str("IRDQUNi"), KeyFlags::all());
}
#[test]
fn timeout() {
assert_eq!(KeyTimeout::from_str("perm").unwrap(), KeyTimeout::Permanent);
assert_eq!(KeyTimeout::from_str("expd").unwrap(), KeyTimeout::Expired);
assert_eq!(
KeyTimeout::from_str("2w").unwrap(),
KeyTimeout::Timeout(Duration::from_secs(1209600))
);
assert_eq!(
KeyTimeout::from_str("14d").unwrap(),
KeyTimeout::Timeout(Duration::from_secs(1209600))
);
assert_eq!(
KeyTimeout::from_str("336h").unwrap(),
KeyTimeout::Timeout(Duration::from_secs(1209600))
);
assert_eq!(
KeyTimeout::from_str("20160m").unwrap(),
KeyTimeout::Timeout(Duration::from_secs(1209600))
);
assert_eq!(
KeyTimeout::from_str("1209600s").unwrap(),
KeyTimeout::Timeout(Duration::from_secs(1209600))
);
}
}