procfs_core/process/limit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
use crate::{ProcError, ProcResult};
use std::collections::HashMap;
use std::io::BufRead;
use std::str::FromStr;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
/// Process limits
///
/// For more details about each of these limits, see the `getrlimit` man page.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Limits {
/// Max Cpu Time
///
/// This is a limit, in seconds, on the amount of CPU time that the process can consume.
pub max_cpu_time: Limit,
/// Max file size
///
/// This is the maximum size in bytes of files that the process may create.
pub max_file_size: Limit,
/// Max data size
///
/// This is the maximum size of the process's data segment (initialized data, uninitialized
/// data, and heap).
pub max_data_size: Limit,
/// Max stack size
///
/// This is the maximum size of the process stack, in bytes.
pub max_stack_size: Limit,
/// Max core file size
///
/// This is the maximum size of a *core* file in bytes that the process may dump.
pub max_core_file_size: Limit,
/// Max resident set
///
/// This is a limit (in bytes) on the process's resident set (the number of virtual pages
/// resident in RAM).
pub max_resident_set: Limit,
/// Max processes
///
/// This is a limit on the number of extant process (or, more precisely on Linux, threads) for
/// the real user rID of the calling process.
pub max_processes: Limit,
/// Max open files
///
/// This specifies a value one greater than the maximum file descriptor number that can be
/// opened by this process.
pub max_open_files: Limit,
/// Max locked memory
///
/// This is the maximum number of bytes of memory that may be locked into RAM.
pub max_locked_memory: Limit,
/// Max address space
///
/// This is the maximum size of the process's virtual memory (address space).
pub max_address_space: Limit,
/// Max file locks
///
/// This is a limit on the combined number of flock locks and fcntl leases that this process
/// may establish.
pub max_file_locks: Limit,
/// Max pending signals
///
/// This is a limit on the number of signals that may be queued for the real user rID of the
/// calling process.
pub max_pending_signals: Limit,
/// Max msgqueue size
///
/// This is a limit on the number of bytes that can be allocated for POSIX message queues for
/// the real user rID of the calling process.
pub max_msgqueue_size: Limit,
/// Max nice priority
///
/// This specifies a ceiling to which the process's nice value can be raised using
/// `setpriority` or `nice`.
pub max_nice_priority: Limit,
/// Max realtime priority
///
/// This specifies a ceiling on the real-time priority that may be set for this process using
/// `sched_setscheduler` and `sched_setparam`.
pub max_realtime_priority: Limit,
/// Max realtime timeout
///
/// This is a limit (in microseconds) on the amount of CPU time that a process scheduled under
/// a real-time scheduling policy may consume without making a blocking system call.
pub max_realtime_timeout: Limit,
}
impl crate::FromBufRead for Limits {
fn from_buf_read<R: BufRead>(r: R) -> ProcResult<Self> {
let mut lines = r.lines();
let mut map = HashMap::new();
while let Some(Ok(line)) = lines.next() {
let line = line.trim();
if line.starts_with("Limit") {
continue;
}
let s: Vec<_> = line.split_whitespace().collect();
let l = s.len();
let (hard_limit, soft_limit, name) =
if line.starts_with("Max nice priority") || line.starts_with("Max realtime priority") {
// these two limits don't have units, and so need different offsets:
let hard_limit = expect!(s.get(l - 1)).to_owned();
let soft_limit = expect!(s.get(l - 2)).to_owned();
let name = s[0..l - 2].join(" ");
(hard_limit, soft_limit, name)
} else {
let hard_limit = expect!(s.get(l - 2)).to_owned();
let soft_limit = expect!(s.get(l - 3)).to_owned();
let name = s[0..l - 3].join(" ");
(hard_limit, soft_limit, name)
};
let _units = expect!(s.get(l - 1));
map.insert(name.to_owned(), (soft_limit.to_owned(), hard_limit.to_owned()));
}
let limits = Limits {
max_cpu_time: Limit::from_pair(expect!(map.remove("Max cpu time")))?,
max_file_size: Limit::from_pair(expect!(map.remove("Max file size")))?,
max_data_size: Limit::from_pair(expect!(map.remove("Max data size")))?,
max_stack_size: Limit::from_pair(expect!(map.remove("Max stack size")))?,
max_core_file_size: Limit::from_pair(expect!(map.remove("Max core file size")))?,
max_resident_set: Limit::from_pair(expect!(map.remove("Max resident set")))?,
max_processes: Limit::from_pair(expect!(map.remove("Max processes")))?,
max_open_files: Limit::from_pair(expect!(map.remove("Max open files")))?,
max_locked_memory: Limit::from_pair(expect!(map.remove("Max locked memory")))?,
max_address_space: Limit::from_pair(expect!(map.remove("Max address space")))?,
max_file_locks: Limit::from_pair(expect!(map.remove("Max file locks")))?,
max_pending_signals: Limit::from_pair(expect!(map.remove("Max pending signals")))?,
max_msgqueue_size: Limit::from_pair(expect!(map.remove("Max msgqueue size")))?,
max_nice_priority: Limit::from_pair(expect!(map.remove("Max nice priority")))?,
max_realtime_priority: Limit::from_pair(expect!(map.remove("Max realtime priority")))?,
max_realtime_timeout: Limit::from_pair(expect!(map.remove("Max realtime timeout")))?,
};
if cfg!(test) {
assert!(map.is_empty(), "Map isn't empty: {:?}", map);
}
Ok(limits)
}
}
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Limit {
pub soft_limit: LimitValue,
pub hard_limit: LimitValue,
}
impl Limit {
fn from_pair(l: (String, String)) -> ProcResult<Limit> {
let (soft, hard) = l;
Ok(Limit {
soft_limit: LimitValue::from_str(&soft)?,
hard_limit: LimitValue::from_str(&hard)?,
})
}
}
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum LimitValue {
Unlimited,
Value(u64),
}
impl FromStr for LimitValue {
type Err = ProcError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if s == "unlimited" {
Ok(LimitValue::Unlimited)
} else {
Ok(LimitValue::Value(from_str!(u64, s)))
}
}
}