1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
//! Module implementing an Open Metrics histogram.
//!
//! See [`Histogram`] for details.
use crate::encoding::{EncodeMetric, MetricEncoder};
use super::{MetricType, TypedMetric};
use parking_lot::{MappedRwLockReadGuard, RwLock, RwLockReadGuard};
use std::iter::{self, once};
use std::sync::Arc;
/// Open Metrics [`Histogram`] to measure distributions of discrete events.
///
/// ```
/// # use prometheus_client::metrics::histogram::{Histogram, exponential_buckets};
/// let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
/// histogram.observe(4.2);
/// ```
///
/// [`Histogram`] does not implement [`Default`], given that the choice of
/// bucket values depends on the situation [`Histogram`] is used in. As an
/// example, to measure HTTP request latency, the values suggested in the
/// Golang implementation might work for you:
///
/// ```
/// # use prometheus_client::metrics::histogram::Histogram;
/// // Default values from go client(https://github.com/prometheus/client_golang/blob/5d584e2717ef525673736d72cd1d12e304f243d7/prometheus/histogram.go#L68)
/// let custom_buckets = [
/// 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0,
/// ];
/// let histogram = Histogram::new(custom_buckets.into_iter());
/// histogram.observe(4.2);
/// ```
// TODO: Consider using atomics. See
// https://github.com/tikv/rust-prometheus/pull/314.
#[derive(Debug)]
pub struct Histogram {
inner: Arc<RwLock<Inner>>,
}
impl Clone for Histogram {
fn clone(&self) -> Self {
Histogram {
inner: self.inner.clone(),
}
}
}
#[derive(Debug)]
pub(crate) struct Inner {
// TODO: Consider allowing integer observe values.
sum: f64,
count: u64,
// TODO: Consider being generic over the bucket length.
buckets: Vec<(f64, u64)>,
}
impl Histogram {
/// Create a new [`Histogram`].
pub fn new(buckets: impl Iterator<Item = f64>) -> Self {
Self {
inner: Arc::new(RwLock::new(Inner {
sum: Default::default(),
count: Default::default(),
buckets: buckets
.into_iter()
.chain(once(f64::MAX))
.map(|upper_bound| (upper_bound, 0))
.collect(),
})),
}
}
/// Observe the given value.
pub fn observe(&self, v: f64) {
self.observe_and_bucket(v);
}
/// Observes the given value, returning the index of the first bucket the
/// value is added to.
///
/// Needed in
/// [`HistogramWithExemplars`](crate::metrics::exemplar::HistogramWithExemplars).
pub(crate) fn observe_and_bucket(&self, v: f64) -> Option<usize> {
let mut inner = self.inner.write();
inner.sum += v;
inner.count += 1;
let first_bucket = inner
.buckets
.iter_mut()
.enumerate()
.find(|(_i, (upper_bound, _value))| upper_bound >= &v);
match first_bucket {
Some((i, (_upper_bound, value))) => {
*value += 1;
Some(i)
}
None => None,
}
}
pub(crate) fn get(&self) -> (f64, u64, MappedRwLockReadGuard<Vec<(f64, u64)>>) {
let inner = self.inner.read();
let sum = inner.sum;
let count = inner.count;
let buckets = RwLockReadGuard::map(inner, |inner| &inner.buckets);
(sum, count, buckets)
}
}
impl TypedMetric for Histogram {
const TYPE: MetricType = MetricType::Histogram;
}
/// Exponential bucket distribution.
pub fn exponential_buckets(start: f64, factor: f64, length: u16) -> impl Iterator<Item = f64> {
iter::repeat(())
.enumerate()
.map(move |(i, _)| start * factor.powf(i as f64))
.take(length.into())
}
/// Linear bucket distribution.
pub fn linear_buckets(start: f64, width: f64, length: u16) -> impl Iterator<Item = f64> {
iter::repeat(())
.enumerate()
.map(move |(i, _)| start + (width * (i as f64)))
.take(length.into())
}
impl EncodeMetric for Histogram {
fn encode(&self, mut encoder: MetricEncoder) -> Result<(), std::fmt::Error> {
let (sum, count, buckets) = self.get();
encoder.encode_histogram::<()>(sum, count, &buckets, None)
}
fn metric_type(&self) -> MetricType {
Self::TYPE
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn histogram() {
let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
histogram.observe(1.0);
}
#[test]
fn exponential() {
assert_eq!(
vec![1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0],
exponential_buckets(1.0, 2.0, 10).collect::<Vec<_>>()
);
}
#[test]
fn linear() {
assert_eq!(
vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
linear_buckets(0.0, 1.0, 10).collect::<Vec<_>>()
);
}
}