1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//! Module implementing an Open Metrics histogram.
//!
//! See [`Histogram`] for details.

use crate::encoding::{EncodeMetric, MetricEncoder};

use super::{MetricType, TypedMetric};
use parking_lot::{MappedRwLockReadGuard, RwLock, RwLockReadGuard};
use std::iter::{self, once};
use std::sync::Arc;

/// Open Metrics [`Histogram`] to measure distributions of discrete events.
///
/// ```
/// # use prometheus_client::metrics::histogram::{Histogram, exponential_buckets};
/// let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
/// histogram.observe(4.2);
/// ```
///
/// [`Histogram`] does not implement [`Default`], given that the choice of
/// bucket values depends on the situation [`Histogram`] is used in. As an
/// example, to measure HTTP request latency, the values suggested in the
/// Golang implementation might work for you:
///
/// ```
/// # use prometheus_client::metrics::histogram::Histogram;
/// // Default values from go client(https://github.com/prometheus/client_golang/blob/5d584e2717ef525673736d72cd1d12e304f243d7/prometheus/histogram.go#L68)
/// let custom_buckets = [
///    0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0,
/// ];
/// let histogram = Histogram::new(custom_buckets.into_iter());
/// histogram.observe(4.2);
/// ```
// TODO: Consider using atomics. See
// https://github.com/tikv/rust-prometheus/pull/314.
#[derive(Debug)]
pub struct Histogram {
    inner: Arc<RwLock<Inner>>,
}

impl Clone for Histogram {
    fn clone(&self) -> Self {
        Histogram {
            inner: self.inner.clone(),
        }
    }
}

#[derive(Debug)]
pub(crate) struct Inner {
    // TODO: Consider allowing integer observe values.
    sum: f64,
    count: u64,
    // TODO: Consider being generic over the bucket length.
    buckets: Vec<(f64, u64)>,
}

impl Histogram {
    /// Create a new [`Histogram`].
    pub fn new(buckets: impl Iterator<Item = f64>) -> Self {
        Self {
            inner: Arc::new(RwLock::new(Inner {
                sum: Default::default(),
                count: Default::default(),
                buckets: buckets
                    .into_iter()
                    .chain(once(f64::MAX))
                    .map(|upper_bound| (upper_bound, 0))
                    .collect(),
            })),
        }
    }

    /// Observe the given value.
    pub fn observe(&self, v: f64) {
        self.observe_and_bucket(v);
    }

    /// Observes the given value, returning the index of the first bucket the
    /// value is added to.
    ///
    /// Needed in
    /// [`HistogramWithExemplars`](crate::metrics::exemplar::HistogramWithExemplars).
    pub(crate) fn observe_and_bucket(&self, v: f64) -> Option<usize> {
        let mut inner = self.inner.write();
        inner.sum += v;
        inner.count += 1;

        let first_bucket = inner
            .buckets
            .iter_mut()
            .enumerate()
            .find(|(_i, (upper_bound, _value))| upper_bound >= &v);

        match first_bucket {
            Some((i, (_upper_bound, value))) => {
                *value += 1;
                Some(i)
            }
            None => None,
        }
    }

    pub(crate) fn get(&self) -> (f64, u64, MappedRwLockReadGuard<Vec<(f64, u64)>>) {
        let inner = self.inner.read();
        let sum = inner.sum;
        let count = inner.count;
        let buckets = RwLockReadGuard::map(inner, |inner| &inner.buckets);
        (sum, count, buckets)
    }
}

impl TypedMetric for Histogram {
    const TYPE: MetricType = MetricType::Histogram;
}

/// Exponential bucket distribution.
pub fn exponential_buckets(start: f64, factor: f64, length: u16) -> impl Iterator<Item = f64> {
    iter::repeat(())
        .enumerate()
        .map(move |(i, _)| start * factor.powf(i as f64))
        .take(length.into())
}

/// Linear bucket distribution.
pub fn linear_buckets(start: f64, width: f64, length: u16) -> impl Iterator<Item = f64> {
    iter::repeat(())
        .enumerate()
        .map(move |(i, _)| start + (width * (i as f64)))
        .take(length.into())
}

impl EncodeMetric for Histogram {
    fn encode(&self, mut encoder: MetricEncoder) -> Result<(), std::fmt::Error> {
        let (sum, count, buckets) = self.get();
        encoder.encode_histogram::<()>(sum, count, &buckets, None)
    }

    fn metric_type(&self) -> MetricType {
        Self::TYPE
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn histogram() {
        let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
        histogram.observe(1.0);
    }

    #[test]
    fn exponential() {
        assert_eq!(
            vec![1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0],
            exponential_buckets(1.0, 2.0, 10).collect::<Vec<_>>()
        );
    }

    #[test]
    fn linear() {
        assert_eq!(
            vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
            linear_buckets(0.0, 1.0, 10).collect::<Vec<_>>()
        );
    }
}