prometheus_client/metrics/histogram.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
//! Module implementing an Open Metrics histogram.
//!
//! See [`Histogram`] for details.
use crate::encoding::{EncodeMetric, MetricEncoder, NoLabelSet};
use super::{MetricType, TypedMetric};
use parking_lot::{MappedRwLockReadGuard, RwLock, RwLockReadGuard};
use std::iter::{self, once};
use std::sync::Arc;
/// Open Metrics [`Histogram`] to measure distributions of discrete events.
///
/// ```
/// # use prometheus_client::metrics::histogram::{Histogram, exponential_buckets};
/// let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
/// histogram.observe(4.2);
/// ```
///
/// [`Histogram`] does not implement [`Default`], given that the choice of
/// bucket values depends on the situation [`Histogram`] is used in. As an
/// example, to measure HTTP request latency, the values suggested in the
/// Golang implementation might work for you:
///
/// ```
/// # use prometheus_client::metrics::histogram::Histogram;
/// // Default values from go client(https://github.com/prometheus/client_golang/blob/5d584e2717ef525673736d72cd1d12e304f243d7/prometheus/histogram.go#L68)
/// let custom_buckets = [
/// 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0,
/// ];
/// let histogram = Histogram::new(custom_buckets);
/// histogram.observe(4.2);
/// ```
// TODO: Consider using atomics. See
// https://github.com/tikv/rust-prometheus/pull/314.
#[derive(Debug)]
pub struct Histogram {
inner: Arc<RwLock<Inner>>,
}
impl Clone for Histogram {
fn clone(&self) -> Self {
Histogram {
inner: self.inner.clone(),
}
}
}
#[derive(Debug)]
pub(crate) struct Inner {
// TODO: Consider allowing integer observe values.
sum: f64,
count: u64,
// TODO: Consider being generic over the bucket length.
buckets: Vec<(f64, u64)>,
}
impl Histogram {
/// Create a new [`Histogram`].
///
/// ```rust
/// # use prometheus_client::metrics::histogram::Histogram;
/// let histogram = Histogram::new([10.0, 100.0, 1_000.0]);
/// ```
pub fn new(buckets: impl IntoIterator<Item = f64>) -> Self {
Self {
inner: Arc::new(RwLock::new(Inner {
sum: Default::default(),
count: Default::default(),
buckets: buckets
.into_iter()
.chain(once(f64::MAX))
.map(|upper_bound| (upper_bound, 0))
.collect(),
})),
}
}
/// Observe the given value.
pub fn observe(&self, v: f64) {
self.observe_and_bucket(v);
}
/// Observes the given value, returning the index of the first bucket the
/// value is added to.
///
/// Needed in
/// [`HistogramWithExemplars`](crate::metrics::exemplar::HistogramWithExemplars).
pub(crate) fn observe_and_bucket(&self, v: f64) -> Option<usize> {
let mut inner = self.inner.write();
inner.sum += v;
inner.count += 1;
let first_bucket = inner
.buckets
.iter_mut()
.enumerate()
.find(|(_i, (upper_bound, _value))| upper_bound >= &v);
match first_bucket {
Some((i, (_upper_bound, value))) => {
*value += 1;
Some(i)
}
None => None,
}
}
pub(crate) fn get(&self) -> (f64, u64, MappedRwLockReadGuard<Vec<(f64, u64)>>) {
let inner = self.inner.read();
let sum = inner.sum;
let count = inner.count;
let buckets = RwLockReadGuard::map(inner, |inner| &inner.buckets);
(sum, count, buckets)
}
}
impl TypedMetric for Histogram {
const TYPE: MetricType = MetricType::Histogram;
}
/// Exponential bucket distribution.
pub fn exponential_buckets(start: f64, factor: f64, length: u16) -> impl Iterator<Item = f64> {
iter::repeat(())
.enumerate()
.map(move |(i, _)| start * factor.powf(i as f64))
.take(length.into())
}
/// Exponential bucket distribution within a range
///
/// Creates `length` buckets, where the lowest bucket is `min` and the highest bucket is `max`.
///
/// If `length` is less than 1, or `min` is less than or equal to 0, an empty iterator is returned.
pub fn exponential_buckets_range(min: f64, max: f64, length: u16) -> impl Iterator<Item = f64> {
let mut len_observed = length;
let mut min_bucket = min;
// length needs a positive length and min needs to be greater than 0
// set len_observed to 0 and min_bucket to 1.0
// this will return an empty iterator in the result
if length < 1 || min <= 0.0 {
len_observed = 0;
min_bucket = 1.0;
}
// We know max/min and highest bucket. Solve for growth_factor.
let growth_factor = (max / min_bucket).powf(1.0 / (len_observed as f64 - 1.0));
iter::repeat(())
.enumerate()
.map(move |(i, _)| min_bucket * growth_factor.powf(i as f64))
.take(len_observed.into())
}
/// Linear bucket distribution.
pub fn linear_buckets(start: f64, width: f64, length: u16) -> impl Iterator<Item = f64> {
iter::repeat(())
.enumerate()
.map(move |(i, _)| start + (width * (i as f64)))
.take(length.into())
}
impl EncodeMetric for Histogram {
fn encode(&self, mut encoder: MetricEncoder) -> Result<(), std::fmt::Error> {
let (sum, count, buckets) = self.get();
encoder.encode_histogram::<NoLabelSet>(sum, count, &buckets, None)
}
fn metric_type(&self) -> MetricType {
Self::TYPE
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn histogram() {
let histogram = Histogram::new(exponential_buckets(1.0, 2.0, 10));
histogram.observe(1.0);
}
#[test]
fn exponential() {
assert_eq!(
vec![1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0],
exponential_buckets(1.0, 2.0, 10).collect::<Vec<_>>()
);
}
#[test]
fn linear() {
assert_eq!(
vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],
linear_buckets(0.0, 1.0, 10).collect::<Vec<_>>()
);
}
#[test]
fn exponential_range() {
assert_eq!(
vec![1.0, 2.0, 4.0, 8.0, 16.0, 32.0],
exponential_buckets_range(1.0, 32.0, 6).collect::<Vec<_>>()
);
}
#[test]
fn exponential_range_incorrect() {
let res = exponential_buckets_range(1.0, 32.0, 0).collect::<Vec<_>>();
assert!(res.is_empty());
let res = exponential_buckets_range(0.0, 32.0, 6).collect::<Vec<_>>();
assert!(res.is_empty());
}
}