1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::std_facade::{Cell, Vec, VecDeque};
use rand::Rng;
use crate::num;
use crate::strategy::traits::*;
use crate::test_runner::*;
/// `Strategy` shuffle adaptor.
///
/// See `Strategy::prop_shuffle()`.
#[derive(Clone, Debug)]
#[must_use = "strategies do nothing unless used"]
pub struct Shuffle<S>(pub(super) S);
/// A value which can be used with the `prop_shuffle` combinator.
///
/// This is not a general-purpose trait. Its methods are prefixed with
/// `shuffle_` to avoid the compiler suggesting them or this trait as
/// corrections in errors.
pub trait Shuffleable {
/// Return the length of this collection.
fn shuffle_len(&self) -> usize;
/// Swap the elements at the given indices.
fn shuffle_swap(&mut self, a: usize, b: usize);
}
macro_rules! shuffleable {
($($t:tt)*) => {
impl<T> Shuffleable for $($t)* {
fn shuffle_len(&self) -> usize {
self.len()
}
fn shuffle_swap(&mut self, a: usize, b: usize) {
self.swap(a, b);
}
}
}
}
shuffleable!([T]);
shuffleable!(Vec<T>);
shuffleable!(VecDeque<T>);
// Zero- and 1-length arrays aren't usefully shuffleable, but are included to
// simplify external macros that may try to use them anyway.
shuffleable!([T; 0]);
shuffleable!([T; 1]);
shuffleable!([T; 2]);
shuffleable!([T; 3]);
shuffleable!([T; 4]);
shuffleable!([T; 5]);
shuffleable!([T; 6]);
shuffleable!([T; 7]);
shuffleable!([T; 8]);
shuffleable!([T; 9]);
shuffleable!([T; 10]);
shuffleable!([T; 11]);
shuffleable!([T; 12]);
shuffleable!([T; 13]);
shuffleable!([T; 14]);
shuffleable!([T; 15]);
shuffleable!([T; 16]);
shuffleable!([T; 17]);
shuffleable!([T; 18]);
shuffleable!([T; 19]);
shuffleable!([T; 20]);
shuffleable!([T; 21]);
shuffleable!([T; 22]);
shuffleable!([T; 23]);
shuffleable!([T; 24]);
shuffleable!([T; 25]);
shuffleable!([T; 26]);
shuffleable!([T; 27]);
shuffleable!([T; 28]);
shuffleable!([T; 29]);
shuffleable!([T; 30]);
shuffleable!([T; 31]);
shuffleable!([T; 32]);
impl<S: Strategy> Strategy for Shuffle<S>
where
S::Value: Shuffleable,
{
type Tree = ShuffleValueTree<S::Tree>;
type Value = S::Value;
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
let rng = runner.new_rng();
self.0.new_tree(runner).map(|inner| ShuffleValueTree {
inner,
rng,
dist: Cell::new(None),
simplifying_inner: false,
})
}
}
/// `ValueTree` shuffling adaptor.
///
/// See `Strategy::prop_shuffle()`.
#[derive(Clone, Debug)]
pub struct ShuffleValueTree<V> {
inner: V,
rng: TestRng,
/// The maximum amount to move any one element during shuffling.
///
/// This is `Cell` since we can't determine the bounds of the value until
/// the first call to `current()`. (We technically _could_ by generating a
/// value in `new_tree` and checking its length, but that would be a 100%
/// slowdown.)
dist: Cell<Option<num::usize::BinarySearch>>,
/// Whether we've started simplifying `inner`. After this point, we can no
/// longer simplify or complicate `dist`.
simplifying_inner: bool,
}
impl<V: ValueTree> ShuffleValueTree<V>
where
V::Value: Shuffleable,
{
fn init_dist(&self, dflt: usize) -> usize {
if self.dist.get().is_none() {
self.dist.set(Some(num::usize::BinarySearch::new(dflt)));
}
self.dist.get().unwrap().current()
}
fn force_init_dist(&self) {
if self.dist.get().is_none() {
self.init_dist(self.current().shuffle_len());
}
}
}
impl<V: ValueTree> ValueTree for ShuffleValueTree<V>
where
V::Value: Shuffleable,
{
type Value = V::Value;
fn current(&self) -> V::Value {
let mut value = self.inner.current();
let len = value.shuffle_len();
// The maximum distance to swap elements. This could be larger than
// `value` if `value` has reduced size during shrinking; that's OK,
// since we only use this to filter swaps.
let max_swap = self.init_dist(len);
// If empty collection or all swaps will be filtered out, there's
// nothing to shuffle.
if 0 == len || 0 == max_swap {
return value;
}
let mut rng = self.rng.clone();
for start_index in 0..len - 1 {
// Determine the other index to be swapped, then skip the swap if
// it is too far. This ordering is critical, as it ensures that we
// generate the same sequence of random numbers every time.
let end_index = rng.gen_range(start_index..len);
if end_index - start_index <= max_swap {
value.shuffle_swap(start_index, end_index);
}
}
value
}
fn simplify(&mut self) -> bool {
if self.simplifying_inner {
self.inner.simplify()
} else {
// Ensure that we've initialised `dist` to *something* to give
// consistent non-panicking behaviour even if called in an
// unexpected sequence.
self.force_init_dist();
if self.dist.get_mut().as_mut().unwrap().simplify() {
true
} else {
self.simplifying_inner = true;
self.inner.simplify()
}
}
}
fn complicate(&mut self) -> bool {
if self.simplifying_inner {
self.inner.complicate()
} else {
self.force_init_dist();
self.dist.get_mut().as_mut().unwrap().complicate()
}
}
}
#[cfg(test)]
mod test {
use std::borrow::ToOwned;
use std::collections::HashSet;
use std::i32;
use super::*;
use crate::collection;
use crate::strategy::just::Just;
static VALUES: &'static [i32] = &[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
];
#[test]
fn generates_different_permutations() {
let mut runner = TestRunner::default();
let mut seen = HashSet::<Vec<i32>>::new();
let input = Just(VALUES.to_owned()).prop_shuffle();
for _ in 0..1024 {
let mut value = input.new_tree(&mut runner).unwrap().current();
assert!(
seen.insert(value.clone()),
"Value {:?} generated more than once",
value
);
value.sort();
assert_eq!(VALUES, &value[..]);
}
}
#[test]
fn simplify_reduces_shuffle_amount() {
let mut runner = TestRunner::default();
let input = Just(VALUES.to_owned()).prop_shuffle();
for _ in 0..1024 {
let mut value = input.new_tree(&mut runner).unwrap();
let mut prev_dist = i32::MAX;
loop {
let v = value.current();
// Compute the "shuffle distance" by summing the absolute
// distance of each element's displacement.
let mut dist = 0;
for (ix, &nominal) in v.iter().enumerate() {
dist += (nominal - ix as i32).abs();
}
assert!(
dist <= prev_dist,
"dist = {}, prev_dist = {}",
dist,
prev_dist
);
prev_dist = dist;
if !value.simplify() {
break;
}
}
// When fully simplified, the result is in the original order.
assert_eq!(0, prev_dist);
}
}
#[test]
fn simplify_complicate_contract_upheld() {
check_strategy_sanity(
collection::vec(0i32..1000, 5..10).prop_shuffle(),
None,
);
}
}