1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
#![doc(html_root_url = "https://docs.rs/prost-build/0.6.1")] //! `prost-build` compiles `.proto` files into Rust. //! //! `prost-build` is designed to be used for build-time code generation as part of a Cargo //! build-script. //! //! ## Example //! //! Let's create a small crate, `snazzy`, that defines a collection of //! snazzy new items in a protobuf file. //! //! ```bash //! $ cargo new snazzy && cd snazzy //! ``` //! //! First, add `prost-build`, `prost` and its public dependencies to `Cargo.toml` //! (see [crates.io](https://crates.io/crates/prost) for the current versions): //! //! ```toml //! [dependencies] //! bytes = <bytes-version> //! prost = <prost-version> //! //! [build-dependencies] //! prost-build = { version = <prost-version> } //! ``` //! //! Next, add `src/items.proto` to the project: //! //! ```proto //! syntax = "proto3"; //! //! package snazzy.items; //! //! // A snazzy new shirt! //! message Shirt { //! enum Size { //! SMALL = 0; //! MEDIUM = 1; //! LARGE = 2; //! } //! //! string color = 1; //! Size size = 2; //! } //! ``` //! //! To generate Rust code from `items.proto`, we use `prost-build` in the crate's //! `build.rs` build-script: //! //! ```rust,no_run //! fn main() { //! prost_build::compile_protos(&["src/items.proto"], //! &["src/"]).unwrap(); //! } //! ``` //! //! And finally, in `lib.rs`, include the generated code: //! //! ```rust,ignore //! // Include the `items` module, which is generated from items.proto. //! pub mod items { //! include!(concat!(env!("OUT_DIR"), "/snazzy.items.rs")); //! } //! //! pub fn create_large_shirt(color: String) -> items::Shirt { //! let mut shirt = items::Shirt::default(); //! shirt.color = color; //! shirt.set_size(items::shirt::Size::Large); //! shirt //! } //! ``` //! //! That's it! Run `cargo doc` to see documentation for the generated code. The full //! example project can be found on [GitHub](https://github.com/danburkert/snazzy). //! //! ## Sourcing `protoc` //! //! `prost-build` depends on the Protocol Buffers compiler, `protoc`, to parse `.proto` files into //! a representation that can be transformed into Rust. If set, `prost-build` uses the `PROTOC` and //! `PROTOC_INCLUDE` environment variables for locating `protoc` and the Protobuf includes //! directory. For example, on a macOS system where Protobuf is installed with Homebrew, set the //! environment to: //! //! ```bash //! PROTOC=/usr/local/bin/protoc //! PROTOC_INCLUDE=/usr/local/include //! ``` //! //! and in a typical Linux installation: //! //! ```bash //! PROTOC=/usr/bin/protoc //! PROTOC_INCLUDE=/usr/include //! ``` //! //! If `PROTOC` is not found in the environment, then a pre-compiled `protoc` binary bundled in //! the prost-build crate is used. Pre-compiled `protoc` binaries exist for Linux, macOS, and //! Windows systems. If no pre-compiled `protoc` is available for the host platform, then the //! `protoc` or `protoc.exe` binary on the `PATH` is used. If `protoc` is not available in any of //! these fallback locations, then the build fails. //! //! If `PROTOC_INCLUDE` is not found in the environment, then the Protobuf include directory bundled //! in the prost-build crate is be used. mod ast; mod code_generator; mod extern_paths; mod ident; mod message_graph; use std::collections::HashMap; use std::default; use std::env; use std::fs; use std::io::{Error, ErrorKind, Result}; use std::path::{Path, PathBuf}; use std::process::Command; use log::trace; use prost::Message; use prost_types::{FileDescriptorProto, FileDescriptorSet}; pub use crate::ast::{Comments, Method, Service}; use crate::code_generator::CodeGenerator; use crate::extern_paths::ExternPaths; use crate::ident::to_snake; use crate::message_graph::MessageGraph; type Module = Vec<String>; /// A service generator takes a service descriptor and generates Rust code. /// /// `ServiceGenerator` can be used to generate application-specific interfaces /// or implementations for Protobuf service definitions. /// /// Service generators are registered with a code generator using the /// `Config::service_generator` method. /// /// A viable scenario is that an RPC framework provides a service generator. It generates a trait /// describing methods of the service and some glue code to call the methods of the trait, defining /// details like how errors are handled or if it is asynchronous. Then the user provides an /// implementation of the generated trait in the application code and plugs it into the framework. /// /// Such framework isn't part of Prost at present. pub trait ServiceGenerator { /// Generates a Rust interface or implementation for a service, writing the /// result to `buf`. fn generate(&mut self, service: Service, buf: &mut String); /// Finalizes the generation process. /// /// In case there's something that needs to be output at the end of the generation process, it /// goes here. Similar to [`generate`](#method.generate), the output should be appended to /// `buf`. /// /// An example can be a module or other thing that needs to appear just once, not for each /// service generated. /// /// This still can be called multiple times in a lifetime of the service generator, because it /// is called once per `.proto` file. /// /// The default implementation is empty and does nothing. fn finalize(&mut self, _buf: &mut String) {} /// Finalizes the generation process for an entire protobuf package. /// /// This differs from [`finalize`](#method.finalize) by where (and how often) it is called /// during the service generator life cycle. This method is called once per protobuf package, /// making it ideal for grouping services within a single package spread across multiple /// `.proto` files. /// /// The default implementation is empty and does nothing. fn finalize_package(&mut self, _package: &str, _buf: &mut String) {} } /// Configuration options for Protobuf code generation. /// /// This configuration builder can be used to set non-default code generation options. pub struct Config { service_generator: Option<Box<dyn ServiceGenerator>>, btree_map: Vec<String>, type_attributes: Vec<(String, String)>, field_attributes: Vec<(String, String)>, prost_types: bool, strip_enum_prefix: bool, out_dir: Option<PathBuf>, extern_paths: Vec<(String, String)>, } impl Config { /// Creates a new code generator configuration with default options. pub fn new() -> Config { Config::default() } /// Configure the code generator to generate Rust [`BTreeMap`][1] fields for Protobuf /// [`map`][2] type fields. /// /// # Arguments /// /// **`paths`** - paths to specific fields, messages, or packages which should use a Rust /// `BTreeMap` for Protobuf `map` fields. Paths are specified in terms of the Protobuf type /// name (not the generated Rust type name). Paths with a leading `.` are treated as fully /// qualified names. Paths without a leading `.` are treated as relative, and are suffix /// matched on the fully qualified field name. If a Protobuf map field matches any of the /// paths, a Rust `BTreeMap` field is generated instead of the default [`HashMap`][3]. /// /// The matching is done on the Protobuf names, before converting to Rust-friendly casing /// standards. /// /// # Examples /// /// ```rust /// # let mut config = prost_build::Config::new(); /// // Match a specific field in a message type. /// config.btree_map(&[".my_messages.MyMessageType.my_map_field"]); /// /// // Match all map fields in a message type. /// config.btree_map(&[".my_messages.MyMessageType"]); /// /// // Match all map fields in a package. /// config.btree_map(&[".my_messages"]); /// /// // Match all map fields. /// config.btree_map(&["."]); /// /// // Match all map fields in a nested message. /// config.btree_map(&[".my_messages.MyMessageType.MyNestedMessageType"]); /// /// // Match all fields named 'my_map_field'. /// config.btree_map(&["my_map_field"]); /// /// // Match all fields named 'my_map_field' in messages named 'MyMessageType', regardless of /// // package or nesting. /// config.btree_map(&["MyMessageType.my_map_field"]); /// /// // Match all fields named 'my_map_field', and all fields in the 'foo.bar' package. /// config.btree_map(&["my_map_field", ".foo.bar"]); /// ``` /// /// [1]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html /// [2]: https://developers.google.com/protocol-buffers/docs/proto3#maps /// [3]: https://doc.rust-lang.org/std/collections/struct.HashMap.html pub fn btree_map<I, S>(&mut self, paths: I) -> &mut Self where I: IntoIterator<Item = S>, S: AsRef<str>, { self.btree_map = paths.into_iter().map(|s| s.as_ref().to_string()).collect(); self } /// Add additional attribute to matched fields. /// /// # Arguments /// /// **`path`** - a patch matching any number of fields. These fields get the attribute. /// For details about matching fields see [`btree_map`](#method.btree_map). /// /// **`attribute`** - an arbitrary string that'll be placed before each matched field. The /// expected usage are additional attributes, usually in concert with whole-type /// attributes set with [`type_attribute`](method.type_attribute), but it is not /// checked and anything can be put there. /// /// Note that the calls to this method are cumulative ‒ if multiple paths from multiple calls /// match the same field, the field gets all the corresponding attributes. /// /// # Examples /// /// ```rust /// # let mut config = prost_build::Config::new(); /// // Prost renames fields named `in` to `in_`. But if serialized through serde, /// // they should as `in`. /// config.field_attribute("in", "#[serde(rename = \"in\")]"); /// ``` pub fn field_attribute<P, A>(&mut self, path: P, attribute: A) -> &mut Self where P: AsRef<str>, A: AsRef<str>, { self.field_attributes .push((path.as_ref().to_string(), attribute.as_ref().to_string())); self } /// Add additional attribute to matched messages, enums and one-ofs. /// /// # Arguments /// /// **`paths`** - a path matching any number of types. It works the same way as in /// [`btree_map`](#method.btree_map), just with the field name omitted. /// /// **`attribute`** - an arbitrary string to be placed before each matched type. The /// expected usage are additional attributes, but anything is allowed. /// /// The calls to this method are cumulative. They don't overwrite previous calls and if a /// type is matched by multiple calls of the method, all relevant attributes are added to /// it. /// /// For things like serde it might be needed to combine with [field /// attributes](#method.field_attribute). /// /// # Examples /// /// ```rust /// # let mut config = prost_build::Config::new(); /// // Nothing around uses floats, so we can derive real `Eq` in addition to `PartialEq`. /// config.type_attribute(".", "#[derive(Eq)]"); /// // Some messages want to be serializable with serde as well. /// config.type_attribute("my_messages.MyMessageType", /// "#[derive(Serialize)] #[serde(rename-all = \"snake_case\")]"); /// config.type_attribute("my_messages.MyMessageType.MyNestedMessageType", /// "#[derive(Serialize)] #[serde(rename-all = \"snake_case\")]"); /// ``` /// /// # Oneof fields /// /// The `oneof` fields don't have a type name of their own inside Protobuf. Therefore, the /// field name can be used both with `type_attribute` and `field_attribute` ‒ the first is /// placed before the `enum` type definition, the other before the field inside corresponding /// message `struct`. /// /// In other words, to place an attribute on the `enum` implementing the `oneof`, the match /// would look like `my_messages.MyMessageType.oneofname`. pub fn type_attribute<P, A>(&mut self, path: P, attribute: A) -> &mut Self where P: AsRef<str>, A: AsRef<str>, { self.type_attributes .push((path.as_ref().to_string(), attribute.as_ref().to_string())); self } /// Configures the code generator to use the provided service generator. pub fn service_generator(&mut self, service_generator: Box<dyn ServiceGenerator>) -> &mut Self { self.service_generator = Some(service_generator); self } /// Configures the code generator to not use the `prost_types` crate for Protobuf well-known /// types, and instead generate Protobuf well-known types from their `.proto` definitions. pub fn compile_well_known_types(&mut self) -> &mut Self { self.prost_types = false; self } /// Declare an externally provided Protobuf package or type. /// /// `extern_path` allows `prost` types in external crates to be referenced in generated code. /// /// When `prost` compiles a `.proto` which includes an import of another `.proto`, it will /// automatically recursively compile the imported file as well. `extern_path` can be used /// to instead substitute types from an external crate. /// /// # Example /// /// As an example, consider a crate, `uuid`, with a `prost`-generated `Uuid` type: /// /// ```proto /// // uuid.proto /// /// syntax = "proto3"; /// package uuid; /// /// message Uuid { /// string uuid_str = 1; /// } /// ``` /// /// The `uuid` crate implements some traits for `Uuid`, and publicly exports it: /// /// ```rust,ignore /// // lib.rs in the uuid crate /// /// include!(concat!(env!("OUT_DIR"), "/uuid.rs")); /// /// pub trait DoSomething { /// fn do_it(&self); /// } /// /// impl DoSomething for Uuid { /// fn do_it(&self) { /// println!("Done"); /// } /// } /// ``` /// /// A separate crate, `my_application`, uses `prost` to generate message types which reference /// `Uuid`: /// /// ```proto /// // my_application.proto /// /// syntax = "proto3"; /// package my_application; /// /// import "uuid.proto"; /// /// message MyMessage { /// uuid.Uuid message_id = 1; /// string some_payload = 2; /// } /// ``` /// /// Additionally, `my_application` depends on the trait impls provided by the `uuid` crate: /// /// ```rust,ignore /// // `main.rs` of `my_application` /// /// use uuid::{DoSomething, Uuid}; /// /// include!(concat!(env!("OUT_DIR"), "/my_application.rs")); /// /// pub fn process_message(msg: MyMessage) { /// if let Some(uuid) = msg.message_id { /// uuid.do_it(); /// } /// } /// ``` /// /// Without configuring `uuid` as an external path in `my_application`'s `build.rs`, `prost` /// would compile a completely separate version of the `Uuid` type, and `process_message` would /// fail to compile. However, if `my_application` configures `uuid` as an extern path with a /// call to `.extern_path(".uuid", "::uuid")`, `prost` will use the external type instead of /// compiling a new version of `Uuid`. Note that the configuration could also be specified as /// `.extern_path(".uuid.Uuid", "::uuid::Uuid")` if only the `Uuid` type were externally /// provided, and not the whole `uuid` package. /// /// # Usage /// /// `extern_path` takes a fully-qualified Protobuf path, and the corresponding Rust path that /// it will be substituted with in generated code. The Protobuf path can refer to a package or /// a type, and the Rust path should correspondingly refer to a Rust module or type. /// /// ```rust /// # let mut config = prost_build::Config::new(); /// // Declare the `uuid` Protobuf package and all nested packages and types as externally /// // provided by the `uuid` crate. /// config.extern_path(".uuid", "::uuid"); /// /// // Declare the `foo.bar.baz` Protobuf package and all nested packages and types as /// // externally provided by the `foo_bar_baz` crate. /// config.extern_path(".foo.bar.baz", "::foo_bar_baz"); /// /// // Declare the `uuid.Uuid` Protobuf type (and all nested types) as externally provided /// // by the `uuid` crate's `Uuid` type. /// config.extern_path(".uuid.Uuid", "::uuid::Uuid"); /// ``` pub fn extern_path<P1, P2>(&mut self, proto_path: P1, rust_path: P2) -> &mut Self where P1: Into<String>, P2: Into<String>, { self.extern_paths .push((proto_path.into(), rust_path.into())); self } /// Configures the code generator to not strip the enum name from variant names. /// /// Protobuf enum definitions commonly include the enum name as a prefix of every variant name. /// This style is non-idiomatic in Rust, so by default `prost` strips the enum name prefix from /// variants which include it. Configuring this option prevents `prost` from stripping the /// prefix. pub fn retain_enum_prefix(&mut self) -> &mut Self { self.strip_enum_prefix = false; self } /// Configures the output directory where generated Rust files will be written. /// /// If unset, defaults to the `OUT_DIR` environment variable. `OUT_DIR` is set by Cargo when /// executing build scripts, so `out_dir` typically does not need to be configured. pub fn out_dir<P>(&mut self, path: P) -> &mut Self where P: Into<PathBuf>, { self.out_dir = Some(path.into()); self } /// Compile `.proto` files into Rust files during a Cargo build with additional code generator /// configuration options. /// /// This method is like the `prost_build::compile_protos` function, with the added ability to /// specify non-default code generation options. See that function for more information about /// the arguments and generated outputs. /// /// # Example `build.rs` /// /// ```rust,no_run /// fn main() { /// let mut prost_build = prost_build::Config::new(); /// prost_build.btree_map(&["."]); /// prost_build.compile_protos(&["src/frontend.proto", "src/backend.proto"], /// &["src"]).unwrap(); /// } /// ``` pub fn compile_protos<P>(&mut self, protos: &[P], includes: &[P]) -> Result<()> where P: AsRef<Path>, { let target: PathBuf = self.out_dir.clone().map(Ok).unwrap_or_else(|| { env::var_os("OUT_DIR") .ok_or_else(|| { Error::new(ErrorKind::Other, "OUT_DIR environment variable is not set") }) .map(Into::into) })?; // TODO: This should probably emit 'rerun-if-changed=PATH' directives for cargo, however // according to [1] if any are output then those paths replace the default crate root, // which is undesirable. Figure out how to do it in an additive way; perhaps gcc-rs has // this figured out. // [1]: http://doc.crates.io/build-script.html#outputs-of-the-build-script let tmp = tempfile::Builder::new().prefix("prost-build").tempdir()?; let descriptor_set = tmp.path().join("prost-descriptor-set"); let mut cmd = Command::new(protoc()); cmd.arg("--include_imports") .arg("--include_source_info") .arg("-o") .arg(&descriptor_set); for include in includes { cmd.arg("-I").arg(include.as_ref()); } // Set the protoc include after the user includes in case the user wants to // override one of the built-in .protos. cmd.arg("-I").arg(protoc_include()); for proto in protos { cmd.arg(proto.as_ref()); } let output = cmd.output()?; if !output.status.success() { return Err(Error::new( ErrorKind::Other, format!("protoc failed: {}", String::from_utf8_lossy(&output.stderr)), )); } let buf = fs::read(descriptor_set)?; let descriptor_set = FileDescriptorSet::decode(&*buf)?; let modules = self.generate(descriptor_set.file)?; for (module, content) in modules { let mut filename = module.join("."); filename.push_str(".rs"); let output_path = target.join(&filename); let previous_content = fs::read(&output_path); if previous_content .map(|previous_content| previous_content == content.as_bytes()) .unwrap_or(false) { trace!("unchanged: {:?}", filename); } else { trace!("writing: {:?}", filename); fs::write(output_path, content)?; } } Ok(()) } fn generate(&mut self, files: Vec<FileDescriptorProto>) -> Result<HashMap<Module, String>> { let mut modules = HashMap::new(); let mut packages = HashMap::new(); let message_graph = MessageGraph::new(&files) .map_err(|error| Error::new(ErrorKind::InvalidInput, error))?; let extern_paths = ExternPaths::new(&self.extern_paths, self.prost_types) .map_err(|error| Error::new(ErrorKind::InvalidInput, error))?; for file in files { let module = self.module(&file); // Only record packages that have services if !file.service.is_empty() { packages.insert(module.clone(), file.package().to_string()); } let mut buf = modules.entry(module).or_insert_with(String::new); CodeGenerator::generate(self, &message_graph, &extern_paths, file, &mut buf); } if let Some(ref mut service_generator) = self.service_generator { for (module, package) in packages { let buf = modules.get_mut(&module).unwrap(); service_generator.finalize_package(&package, buf); } } Ok(modules) } fn module(&self, file: &FileDescriptorProto) -> Module { file.package() .split('.') .filter(|s| !s.is_empty()) .map(to_snake) .collect() } } impl default::Default for Config { fn default() -> Config { Config { service_generator: None, btree_map: Vec::new(), type_attributes: Vec::new(), field_attributes: Vec::new(), prost_types: true, strip_enum_prefix: true, out_dir: None, extern_paths: Vec::new(), } } } /// Compile `.proto` files into Rust files during a Cargo build. /// /// The generated `.rs` files are written to the Cargo `OUT_DIR` directory, suitable for use with /// the [include!][1] macro. See the [Cargo `build.rs` code generation][2] example for more info. /// /// This function should be called in a project's `build.rs`. /// /// # Arguments /// /// **`protos`** - Paths to `.proto` files to compile. Any transitively [imported][3] `.proto` /// files are automatically be included. /// /// **`includes`** - Paths to directories in which to search for imports. Directories are searched /// in order. The `.proto` files passed in **`protos`** must be found in one of the provided /// include directories. /// /// # Errors /// /// This function can fail for a number of reasons: /// /// - Failure to locate or download `protoc`. /// - Failure to parse the `.proto`s. /// - Failure to locate an imported `.proto`. /// - Failure to compile a `.proto` without a [package specifier][4]. /// /// It's expected that this function call be `unwrap`ed in a `build.rs`; there is typically no /// reason to gracefully recover from errors during a build. /// /// # Example `build.rs` /// /// ```rust,no_run /// fn main() { /// prost_build::compile_protos(&["src/frontend.proto", "src/backend.proto"], /// &["src"]).unwrap(); /// } /// ``` /// /// [1]: https://doc.rust-lang.org/std/macro.include.html /// [2]: http://doc.crates.io/build-script.html#case-study-code-generation /// [3]: https://developers.google.com/protocol-buffers/docs/proto3#importing-definitions /// [4]: https://developers.google.com/protocol-buffers/docs/proto#packages pub fn compile_protos<P>(protos: &[P], includes: &[P]) -> Result<()> where P: AsRef<Path>, { Config::new().compile_protos(protos, includes) } /// Returns the path to the `protoc` binary. pub fn protoc() -> &'static Path { Path::new(env!("PROTOC")) } /// Returns the path to the Protobuf include directory. pub fn protoc_include() -> &'static Path { Path::new(env!("PROTOC_INCLUDE")) } #[cfg(test)] mod tests { use super::*; use env_logger; use std::cell::RefCell; use std::rc::Rc; /// An example service generator that generates a trait with methods corresponding to the /// service methods. struct ServiceTraitGenerator; impl ServiceGenerator for ServiceTraitGenerator { fn generate(&mut self, service: Service, buf: &mut String) { // Generate a trait for the service. service.comments.append_with_indent(0, buf); buf.push_str(&format!("trait {} {{\n", &service.name)); // Generate the service methods. for method in service.methods { method.comments.append_with_indent(1, buf); buf.push_str(&format!( " fn {}({}) -> {};\n", method.name, method.input_type, method.output_type )); } // Close out the trait. buf.push_str("}\n"); } fn finalize(&mut self, buf: &mut String) { // Needs to be present only once, no matter how many services there are buf.push_str("pub mod utils { }\n"); } } /// Implements `ServiceGenerator` and provides some state for assertions. struct MockServiceGenerator { state: Rc<RefCell<MockState>>, } /// Holds state for `MockServiceGenerator` #[derive(Default)] struct MockState { service_names: Vec<String>, package_names: Vec<String>, finalized: u32, } impl MockServiceGenerator { fn new(state: Rc<RefCell<MockState>>) -> Self { Self { state } } } impl ServiceGenerator for MockServiceGenerator { fn generate(&mut self, service: Service, _buf: &mut String) { let mut state = self.state.borrow_mut(); state.service_names.push(service.name.clone()); } fn finalize(&mut self, _buf: &mut String) { let mut state = self.state.borrow_mut(); state.finalized += 1; } fn finalize_package(&mut self, package: &str, _buf: &mut String) { let mut state = self.state.borrow_mut(); state.package_names.push(package.to_string()); } } #[test] fn smoke_test() { let _ = env_logger::try_init(); Config::new() .service_generator(Box::new(ServiceTraitGenerator)) .compile_protos(&["src/smoke_test.proto"], &["src"]) .unwrap(); } #[test] fn finalize_package() { let _ = env_logger::try_init(); let state = Rc::new(RefCell::new(MockState::default())); let gen = MockServiceGenerator::new(Rc::clone(&state)); Config::new() .service_generator(Box::new(gen)) .compile_protos(&["src/hello.proto", "src/goodbye.proto"], &["src"]) .unwrap(); let state = state.borrow(); assert_eq!(&state.service_names, &["Greeting", "Farewell"]); assert_eq!(&state.package_names, &["helloworld"]); assert_eq!(state.finalized, 3); } }