pulley_interpreter/
interp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
//! Interpretation of pulley bytecode.

use crate::decode::*;
use crate::imms::*;
use crate::regs::*;
use crate::ExtendedOpcode;
use crate::Opcode;
use alloc::string::ToString;
use alloc::{vec, vec::Vec};
use core::fmt;
use core::mem;
use core::ops::ControlFlow;
use core::ops::{Index, IndexMut};
use core::ptr::{self, NonNull};
use sptr::Strict;

mod interp_loop;

const DEFAULT_STACK_SIZE: usize = 1 << 20; // 1 MiB

/// A virtual machine for interpreting Pulley bytecode.
pub struct Vm {
    state: MachineState,
}

impl Default for Vm {
    fn default() -> Self {
        Vm::new()
    }
}

impl Vm {
    /// Create a new virtual machine with the default stack size.
    pub fn new() -> Self {
        Self::with_stack(vec![0; DEFAULT_STACK_SIZE])
    }

    /// Create a new virtual machine with the given stack.
    pub fn with_stack(stack: Vec<u8>) -> Self {
        Self {
            state: MachineState::with_stack(stack),
        }
    }

    /// Get a shared reference to this VM's machine state.
    pub fn state(&self) -> &MachineState {
        &self.state
    }

    /// Get an exclusive reference to this VM's machine state.
    pub fn state_mut(&mut self) -> &mut MachineState {
        &mut self.state
    }

    /// Consumer this VM and return its stack storage.
    pub fn into_stack(self) -> Vec<u8> {
        self.state.stack
    }

    /// Call a bytecode function.
    ///
    /// The given `func` must point to the beginning of a valid Pulley bytecode
    /// function.
    ///
    /// The given `args` must match the number and type of arguments that
    /// function expects.
    ///
    /// The given `rets` must match the function's actual return types.
    ///
    /// Returns either the resulting values, or the PC at which a trap was
    /// raised.
    pub unsafe fn call<'a>(
        &'a mut self,
        func: NonNull<u8>,
        args: &[Val],
        rets: impl IntoIterator<Item = RegType> + 'a,
    ) -> Result<impl Iterator<Item = Val> + 'a, NonNull<u8>> {
        // NB: make sure this method stays in sync with
        // `PulleyMachineDeps::compute_arg_locs`!

        let mut x_args = (0..16).map(|x| XReg::new_unchecked(x));
        let mut f_args = (0..16).map(|f| FReg::new_unchecked(f));
        let mut v_args = (0..16).map(|v| VReg::new_unchecked(v));

        for arg in args {
            match arg {
                Val::XReg(val) => match x_args.next() {
                    Some(reg) => self.state[reg] = *val,
                    None => todo!("stack slots"),
                },
                Val::FReg(val) => match f_args.next() {
                    Some(reg) => self.state[reg] = *val,
                    None => todo!("stack slots"),
                },
                Val::VReg(val) => match v_args.next() {
                    Some(reg) => self.state[reg] = *val,
                    None => todo!("stack slots"),
                },
            }
        }

        self.run(func)?;

        let mut x_rets = (0..16).map(|x| XReg::new_unchecked(x));
        let mut f_rets = (0..16).map(|f| FReg::new_unchecked(f));
        let mut v_rets = (0..16).map(|v| VReg::new_unchecked(v));

        Ok(rets.into_iter().map(move |ty| match ty {
            RegType::XReg => match x_rets.next() {
                Some(reg) => Val::XReg(self.state[reg]),
                None => todo!("stack slots"),
            },
            RegType::FReg => match f_rets.next() {
                Some(reg) => Val::FReg(self.state[reg]),
                None => todo!("stack slots"),
            },
            RegType::VReg => match v_rets.next() {
                Some(reg) => Val::VReg(self.state[reg]),
                None => todo!("stack slots"),
            },
        }))
    }

    unsafe fn run(&mut self, pc: NonNull<u8>) -> Result<(), NonNull<u8>> {
        let mut bytecode = UnsafeBytecodeStream::new(pc);
        match interp_loop::interpreter_loop(self, &mut bytecode) {
            Done::ReturnToHost => self.return_to_host(),
            Done::Trap(pc) => self.trap(pc),
            Done::HostCall => self.host_call(),
        }
    }

    #[cold]
    #[inline(never)]
    fn return_to_host(&self) -> Result<(), NonNull<u8>> {
        Ok(())
    }

    #[cold]
    #[inline(never)]
    fn trap(&self, pc: NonNull<u8>) -> Result<(), NonNull<u8>> {
        // We are given the VM's PC upon having executed a trap instruction,
        // which is actually pointing to the next instruction after the
        // trap. Back the PC up to point exactly at the trap.
        let trap_pc = unsafe {
            NonNull::new_unchecked(pc.as_ptr().byte_sub(ExtendedOpcode::ENCODED_SIZE_OF_TRAP))
        };
        Err(trap_pc)
    }

    #[cold]
    #[inline(never)]
    fn host_call(&self) -> Result<(), NonNull<u8>> {
        todo!()
    }
}

/// The type of a register in the Pulley machine state.
#[derive(Clone, Copy, Debug)]
pub enum RegType {
    /// An `x` register: integers.
    XReg,

    /// An `f` register: floats.
    FReg,

    /// A `v` register: vectors.
    VReg,
}

/// A value that can be stored in a register.
#[derive(Clone, Copy, Debug)]
pub enum Val {
    /// An `x` register value: integers.
    XReg(XRegVal),

    /// An `f` register value: floats.
    FReg(FRegVal),

    /// A `v` register value: vectors.
    VReg(VRegVal),
}

impl fmt::LowerHex for Val {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Val::XReg(v) => fmt::LowerHex::fmt(v, f),
            Val::FReg(v) => fmt::LowerHex::fmt(v, f),
            Val::VReg(v) => fmt::LowerHex::fmt(v, f),
        }
    }
}

impl From<XRegVal> for Val {
    fn from(value: XRegVal) -> Self {
        Val::XReg(value)
    }
}

impl From<u64> for Val {
    fn from(value: u64) -> Self {
        XRegVal::new_u64(value).into()
    }
}

impl From<u32> for Val {
    fn from(value: u32) -> Self {
        XRegVal::new_u32(value).into()
    }
}

impl From<i64> for Val {
    fn from(value: i64) -> Self {
        XRegVal::new_i64(value).into()
    }
}

impl From<i32> for Val {
    fn from(value: i32) -> Self {
        XRegVal::new_i32(value).into()
    }
}

impl<T> From<*mut T> for Val {
    fn from(value: *mut T) -> Self {
        XRegVal::new_ptr(value).into()
    }
}

impl From<FRegVal> for Val {
    fn from(value: FRegVal) -> Self {
        Val::FReg(value)
    }
}

impl From<f64> for Val {
    fn from(value: f64) -> Self {
        FRegVal::new_f64(value).into()
    }
}

impl From<f32> for Val {
    fn from(value: f32) -> Self {
        FRegVal::new_f32(value).into()
    }
}

impl From<VRegVal> for Val {
    fn from(value: VRegVal) -> Self {
        Val::VReg(value)
    }
}

/// An `x` register value: integers.
#[derive(Copy, Clone)]
pub struct XRegVal(XRegUnion);

impl PartialEq for XRegVal {
    fn eq(&self, other: &Self) -> bool {
        self.get_u64() == other.get_u64()
    }
}

impl Eq for XRegVal {}

impl fmt::Debug for XRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("XRegVal")
            .field("as_u64", &self.get_u64())
            .finish()
    }
}

impl fmt::LowerHex for XRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.get_u64(), f)
    }
}

// NB: we always store these in little endian, so we have to `from_le_bytes`
// whenever we read and `to_le_bytes` whenever we store.
#[derive(Copy, Clone)]
union XRegUnion {
    i32: i32,
    u32: u32,
    i64: i64,
    u64: u64,
    ptr: *mut u8,
}

impl Default for XRegVal {
    fn default() -> Self {
        Self(unsafe { mem::zeroed() })
    }
}

#[allow(missing_docs)]
impl XRegVal {
    /// Sentinel return address that signals the end of the call stack.
    pub const HOST_RETURN_ADDR: Self = Self(XRegUnion { i64: -1 });

    pub fn new_i32(x: i32) -> Self {
        let mut val = XRegVal::default();
        val.set_i32(x);
        val
    }

    pub fn new_u32(x: u32) -> Self {
        let mut val = XRegVal::default();
        val.set_u32(x);
        val
    }

    pub fn new_i64(x: i64) -> Self {
        let mut val = XRegVal::default();
        val.set_i64(x);
        val
    }

    pub fn new_u64(x: u64) -> Self {
        let mut val = XRegVal::default();
        val.set_u64(x);
        val
    }

    pub fn new_ptr<T>(ptr: *mut T) -> Self {
        let mut val = XRegVal::default();
        val.set_ptr(ptr);
        val
    }

    pub fn get_i32(&self) -> i32 {
        let x = unsafe { self.0.i32 };
        i32::from_le(x)
    }

    pub fn get_u32(&self) -> u32 {
        let x = unsafe { self.0.u32 };
        u32::from_le(x)
    }

    pub fn get_i64(&self) -> i64 {
        let x = unsafe { self.0.i64 };
        i64::from_le(x)
    }

    pub fn get_u64(&self) -> u64 {
        let x = unsafe { self.0.u64 };
        u64::from_le(x)
    }

    pub fn get_ptr<T>(&self) -> *mut T {
        let ptr = unsafe { self.0.ptr };
        Strict::map_addr(ptr, |p| usize::from_le(p)).cast()
    }

    pub fn set_i32(&mut self, x: i32) {
        self.0.i32 = x.to_le();
    }

    pub fn set_u32(&mut self, x: u32) {
        self.0.u32 = x.to_le();
    }

    pub fn set_i64(&mut self, x: i64) {
        self.0.i64 = x.to_le();
    }

    pub fn set_u64(&mut self, x: u64) {
        self.0.u64 = x.to_le();
    }

    pub fn set_ptr<T>(&mut self, ptr: *mut T) {
        self.0.ptr = Strict::map_addr(ptr, |p| p.to_le()).cast();
    }
}

/// An `f` register value: floats.
#[derive(Copy, Clone)]
pub struct FRegVal(FRegUnion);

impl fmt::Debug for FRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FRegVal")
            .field("as_f32", &self.get_f32())
            .field("as_f64", &self.get_f64())
            .finish()
    }
}

impl fmt::LowerHex for FRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.get_f64().to_bits(), f)
    }
}

// NB: we always store these in little endian, so we have to `from_le_bytes`
// whenever we read and `to_le_bytes` whenever we store.
#[derive(Copy, Clone)]
union FRegUnion {
    f32: u32,
    f64: u64,
}

impl Default for FRegVal {
    fn default() -> Self {
        Self(unsafe { mem::zeroed() })
    }
}

#[allow(missing_docs)]
impl FRegVal {
    pub fn new_f32(f: f32) -> Self {
        let mut val = Self::default();
        val.set_f32(f);
        val
    }

    pub fn new_f64(f: f64) -> Self {
        let mut val = Self::default();
        val.set_f64(f);
        val
    }

    pub fn get_f32(&self) -> f32 {
        let val = unsafe { self.0.f32 };
        f32::from_le_bytes(val.to_ne_bytes())
    }

    pub fn get_f64(&self) -> f64 {
        let val = unsafe { self.0.f64 };
        f64::from_le_bytes(val.to_ne_bytes())
    }

    pub fn set_f32(&mut self, val: f32) {
        self.0.f32 = u32::from_ne_bytes(val.to_le_bytes());
    }

    pub fn set_f64(&mut self, val: f64) {
        self.0.f64 = u64::from_ne_bytes(val.to_le_bytes());
    }
}

/// A `v` register value: vectors.
#[derive(Copy, Clone)]
pub struct VRegVal(VRegUnion);

impl fmt::Debug for VRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("VRegVal")
            .field("as_u128", &unsafe { self.0.u128 })
            .finish()
    }
}

impl fmt::LowerHex for VRegVal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(unsafe { &self.0.u128 }, f)
    }
}

#[derive(Copy, Clone)]
union VRegUnion {
    // TODO: need to figure out how we are going to handle portability of lane
    // ordering on top of each lane's endianness.
    u128: u128,
}

impl Default for VRegVal {
    fn default() -> Self {
        Self(unsafe { mem::zeroed() })
    }
}

/// The machine state for a Pulley virtual machine: the various registers and
/// stack.
pub struct MachineState {
    x_regs: [XRegVal; XReg::RANGE.end as usize],
    f_regs: [FRegVal; FReg::RANGE.end as usize],
    v_regs: [VRegVal; VReg::RANGE.end as usize],
    stack: Vec<u8>,
}

unsafe impl Send for MachineState {}
unsafe impl Sync for MachineState {}

impl fmt::Debug for MachineState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let MachineState {
            x_regs,
            f_regs,
            v_regs,
            stack: _,
        } = self;

        struct RegMap<'a, R>(&'a [R], fn(u8) -> alloc::string::String);

        impl<R: fmt::Debug> fmt::Debug for RegMap<'_, R> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                let mut f = f.debug_map();
                for (i, r) in self.0.iter().enumerate() {
                    f.entry(&(self.1)(i as u8), r);
                }
                f.finish()
            }
        }

        f.debug_struct("MachineState")
            .field(
                "x_regs",
                &RegMap(x_regs, |i| XReg::new(i).unwrap().to_string()),
            )
            .field(
                "f_regs",
                &RegMap(f_regs, |i| FReg::new(i).unwrap().to_string()),
            )
            .field(
                "v_regs",
                &RegMap(v_regs, |i| VReg::new(i).unwrap().to_string()),
            )
            .finish_non_exhaustive()
    }
}

macro_rules! index_reg {
    ($reg_ty:ty,$value_ty:ty,$field:ident) => {
        impl Index<$reg_ty> for MachineState {
            type Output = $value_ty;

            fn index(&self, reg: $reg_ty) -> &Self::Output {
                &self.$field[reg.index()]
            }
        }

        impl IndexMut<$reg_ty> for MachineState {
            fn index_mut(&mut self, reg: $reg_ty) -> &mut Self::Output {
                &mut self.$field[reg.index()]
            }
        }
    };
}

index_reg!(XReg, XRegVal, x_regs);
index_reg!(FReg, FRegVal, f_regs);
index_reg!(VReg, VRegVal, v_regs);

impl MachineState {
    fn with_stack(stack: Vec<u8>) -> Self {
        assert!(stack.len() > 0);
        let mut state = Self {
            x_regs: [Default::default(); XReg::RANGE.end as usize],
            f_regs: Default::default(),
            v_regs: Default::default(),
            stack,
        };

        // Take care to construct SP such that we preserve pointer provenance
        // for the whole stack.
        let len = state.stack.len();
        let sp = &mut state.stack[..];
        let sp = sp.as_mut_ptr();
        let sp = unsafe { sp.add(len) };
        state[XReg::sp] = XRegVal::new_ptr(sp);
        state[XReg::fp] = XRegVal::HOST_RETURN_ADDR;
        state[XReg::lr] = XRegVal::HOST_RETURN_ADDR;

        state
    }

    /// `*sp = val; sp += size_of::<T>()`
    fn push<T>(&mut self, val: T) {
        let sp = self[XReg::sp].get_ptr::<T>();
        unsafe { sp.write_unaligned(val) }
        self[XReg::sp].set_ptr(sp.wrapping_add(1));
    }

    /// `ret = *sp; sp -= size_of::<T>()`
    fn pop<T>(&mut self) -> T {
        let sp = self[XReg::sp].get_ptr::<T>();
        let val = unsafe { sp.read_unaligned() };
        self[XReg::sp].set_ptr(sp.wrapping_sub(1));
        val
    }
}

/// The reason the interpreter loop terminated.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Done {
    /// A `ret` instruction was executed and the call stack was empty. This is
    /// how the loop normally ends.
    ReturnToHost,

    /// A `trap` instruction was executed at the given PC.
    Trap(NonNull<u8>),

    #[allow(dead_code)]
    HostCall,
}