pulley_interpreter/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! The pulley bytecode for fast interpreters.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(pulley_tail_calls, feature(explicit_tail_calls))]
#![cfg_attr(pulley_tail_calls, allow(incomplete_features, unstable_features))]
#![deny(missing_docs)]
#![no_std]
#![expect(clippy::allow_attributes_without_reason, reason = "crate not migrated")]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[allow(unused_extern_crates)] // Some cfg's don't use this.
extern crate alloc;
/// Calls the given macro with each opcode.
macro_rules! for_each_op {
( $macro:ident ) => {
$macro! {
/// Transfer control the address in the `lr` register.
ret = Ret;
/// Transfer control to the PC at the given offset and set the `lr`
/// register to the PC just after this instruction.
call = Call { offset: PcRelOffset };
/// Transfer control to the PC in `reg` and set `lr` to the PC just
/// after this instruction.
call_indirect = CallIndirect { reg: XReg };
/// Unconditionally transfer control to the PC at the given offset.
jump = Jump { offset: PcRelOffset };
/// Conditionally transfer control to the given PC offset if `cond`
/// contains a non-zero value.
br_if = BrIf { cond: XReg, offset: PcRelOffset };
/// Conditionally transfer control to the given PC offset if `cond`
/// contains a zero value.
br_if_not = BrIfNot { cond: XReg, offset: PcRelOffset };
/// Branch if `a == b`.
br_if_xeq32 = BrIfXeq32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if `a != `b.
br_if_xneq32 = BrIfXneq32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if signed `a < b`.
br_if_xslt32 = BrIfXslt32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if signed `a <= b`.
br_if_xslteq32 = BrIfXslteq32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if unsigned `a < b`.
br_if_xult32 = BrIfXult32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if unsigned `a <= b`.
br_if_xulteq32 = BrIfXulteq32 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if `a == b`.
br_if_xeq64 = BrIfXeq64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if `a != `b.
br_if_xneq64 = BrIfXneq64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if signed `a < b`.
br_if_xslt64 = BrIfXslt64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if signed `a <= b`.
br_if_xslteq64 = BrIfXslteq64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if unsigned `a < b`.
br_if_xult64 = BrIfXult64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch if unsigned `a <= b`.
br_if_xulteq64 = BrIfXulteq64 { a: XReg, b: XReg, offset: PcRelOffset };
/// Branch to the label indicated by `idx`.
///
/// After this instruction are `amt` instances of `PcRelOffset`
/// and the `idx` selects which one will be branched to. The value
/// of `idx` is clamped to `amt - 1` (e.g. the last offset is the
/// "default" one.
br_table32 = BrTable32 { idx: XReg, amt: u32 };
/// Move between `x` registers.
xmov = Xmov { dst: XReg, src: XReg };
/// Move between `f` registers.
fmov = Fmov { dst: FReg, src: FReg };
/// Move between `v` registers.
vmov = Vmov { dst: VReg, src: VReg };
/// Set `dst = sign_extend(imm8)`.
xconst8 = Xconst8 { dst: XReg, imm: i8 };
/// Set `dst = sign_extend(imm16)`.
xconst16 = Xconst16 { dst: XReg, imm: i16 };
/// Set `dst = sign_extend(imm32)`.
xconst32 = Xconst32 { dst: XReg, imm: i32 };
/// Set `dst = imm64`.
xconst64 = Xconst64 { dst: XReg, imm: i64 };
/// 32-bit wrapping addition: `low32(dst) = low32(src1) + low32(src2)`.
///
/// The upper 32-bits of `dst` are unmodified.
xadd32 = Xadd32 { operands: BinaryOperands<XReg> };
/// 64-bit wrapping addition: `dst = src1 + src2`.
xadd64 = Xadd64 { operands: BinaryOperands<XReg> };
/// 64-bit equality.
xeq64 = Xeq64 { operands: BinaryOperands<XReg> };
/// 64-bit inequality.
xneq64 = Xneq64 { operands: BinaryOperands<XReg> };
/// 64-bit signed less-than.
xslt64 = Xslt64 { operands: BinaryOperands<XReg> };
/// 64-bit signed less-than-equal.
xslteq64 = Xslteq64 { operands: BinaryOperands<XReg> };
/// 64-bit unsigned less-than.
xult64 = Xult64 { operands: BinaryOperands<XReg> };
/// 64-bit unsigned less-than-equal.
xulteq64 = Xulteq64 { operands: BinaryOperands<XReg> };
/// 32-bit equality.
xeq32 = Xeq32 { operands: BinaryOperands<XReg> };
/// 32-bit inequality.
xneq32 = Xneq32 { operands: BinaryOperands<XReg> };
/// 32-bit signed less-than.
xslt32 = Xslt32 { operands: BinaryOperands<XReg> };
/// 32-bit signed less-than-equal.
xslteq32 = Xslteq32 { operands: BinaryOperands<XReg> };
/// 32-bit unsigned less-than.
xult32 = Xult32 { operands: BinaryOperands<XReg> };
/// 32-bit unsigned less-than-equal.
xulteq32 = Xulteq32 { operands: BinaryOperands<XReg> };
/// `dst = zero_extend(load32(ptr))`
load32_u = Load32U { dst: XReg, ptr: XReg };
/// `dst = sign_extend(load32(ptr))`
load32_s = Load32S { dst: XReg, ptr: XReg };
/// `dst = load64(ptr)`
load64 = Load64 { dst: XReg, ptr: XReg };
/// `dst = zero_extend(load32(ptr + offset8))`
load32_u_offset8 = Load32UOffset8 { dst: XReg, ptr: XReg, offset: i8 };
/// `dst = sign_extend(load32(ptr + offset8))`
load32_s_offset8 = Load32SOffset8 { dst: XReg, ptr: XReg, offset: i8 };
/// `dst = load64(ptr + offset8)`
load64_offset8 = Load64Offset8 { dst: XReg, ptr: XReg, offset: i8 };
/// `dst = zero_extend(load32(ptr + offset64))`
load32_u_offset64 = Load32UOffset64 { dst: XReg, ptr: XReg, offset: i64 };
/// `dst = sign_extend(load32(ptr + offset64))`
load32_s_offset64 = Load32SOffset64 { dst: XReg, ptr: XReg, offset: i64 };
/// `dst = load64(ptr + offset64)`
load64_offset64 = Load64Offset64 { dst: XReg, ptr: XReg, offset: i64 };
/// `*ptr = low32(src)`
store32 = Store32 { ptr: XReg, src: XReg };
/// `*ptr = src`
store64 = Store64 { ptr: XReg, src: XReg };
/// `*(ptr + sign_extend(offset8)) = low32(src)`
store32_offset8 = Store32SOffset8 { ptr: XReg, offset: i8, src: XReg };
/// `*(ptr + sign_extend(offset8)) = src`
store64_offset8 = Store64Offset8 { ptr: XReg, offset: i8, src: XReg };
/// `*(ptr + sign_extend(offset64)) = low32(src)`
store32_offset64 = Store32SOffset64 { ptr: XReg, offset: i64, src: XReg };
/// `*(ptr + sign_extend(offset64)) = src`
store64_offset64 = Store64Offset64 { ptr: XReg, offset: i64, src: XReg };
/// `push lr; push fp; fp = sp`
push_frame = PushFrame ;
/// `sp = fp; pop fp; pop lr`
pop_frame = PopFrame ;
/// `*sp = low32(src); sp = sp.checked_add(4)`
xpush32 = XPush32 { src: XReg };
/// `for src in srcs { xpush32 src }`
xpush32_many = XPush32Many { srcs: RegSet<XReg> };
/// `*sp = src; sp = sp.checked_add(8)`
xpush64 = XPush64 { src: XReg };
/// `for src in srcs { xpush64 src }`
xpush64_many = XPush64Many { srcs: RegSet<XReg> };
/// `*dst = *sp; sp -= 4`
xpop32 = XPop32 { dst: XReg };
/// `for dst in dsts.rev() { xpop32 dst }`
xpop32_many = XPop32Many { dsts: RegSet<XReg> };
/// `*dst = *sp; sp -= 8`
xpop64 = XPop64 { dst: XReg };
/// `for dst in dsts.rev() { xpop64 dst }`
xpop64_many = XPop64Many { dsts: RegSet<XReg> };
/// `low32(dst) = bitcast low32(src) as i32`
bitcast_int_from_float_32 = BitcastIntFromFloat32 { dst: XReg, src: FReg };
/// `dst = bitcast src as i64`
bitcast_int_from_float_64 = BitcastIntFromFloat64 { dst: XReg, src: FReg };
/// `low32(dst) = bitcast low32(src) as f32`
bitcast_float_from_int_32 = BitcastFloatFromInt32 { dst: FReg, src: XReg };
/// `dst = bitcast src as f64`
bitcast_float_from_int_64 = BitcastFloatFromInt64 { dst: FReg, src: XReg };
/// `sp = sp.checked_sub(amt)`
stack_alloc32 = StackAlloc32 { amt: u32 };
/// `sp = sp + amt`
stack_free32 = StackFree32 { amt: u32 };
}
};
}
/// Calls the given macro with each extended opcode.
macro_rules! for_each_extended_op {
( $macro:ident ) => {
$macro! {
/// Raise a trap.
trap = Trap;
/// Do nothing.
nop = Nop;
/// A special opcode to use an indirect function call to reenter the
/// host from the interpreter.
///
/// This is used to implement host intrinsics such as `memory.grow`
/// for example where that needs to reenter the host from the
/// interpreter.
///
/// The `sig` immediate here is the Nth signature in the
/// `for_each_host_signature!` macro below. The 0th "argument", in
/// register x0, is the function pointer that's being called and all
/// further arguments follow after that in registers.
call_indirect_host = CallIndirectHost { sig: u8 };
}
};
}
#[cfg(feature = "decode")]
pub mod decode;
#[cfg(feature = "disas")]
pub mod disas;
#[cfg(feature = "encode")]
pub mod encode;
#[cfg(feature = "interp")]
pub mod interp;
pub mod regs;
pub use regs::*;
pub mod imms;
pub use imms::*;
pub mod op;
pub use op::*;
pub mod opcode;
pub use opcode::*;
#[allow(dead_code)] // Unused in some `cfg`s.
pub(crate) unsafe fn unreachable_unchecked<T>() -> T {
#[cfg(debug_assertions)]
unreachable!();
#[cfg_attr(debug_assertions, allow(unreachable_code))]
unsafe {
core::hint::unreachable_unchecked()
}
}