pulley_interpreter/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//! The pulley bytecode for fast interpreters.

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(pulley_tail_calls, feature(explicit_tail_calls))]
#![cfg_attr(pulley_tail_calls, allow(incomplete_features, unstable_features))]
#![deny(missing_docs)]
#![no_std]
#![expect(clippy::allow_attributes_without_reason, reason = "crate not migrated")]

#[cfg(feature = "std")]
#[macro_use]
extern crate std;

#[allow(unused_extern_crates)] // Some cfg's don't use this.
extern crate alloc;

/// Calls the given macro with each opcode.
macro_rules! for_each_op {
    ( $macro:ident ) => {
        $macro! {
            /// Transfer control the address in the `lr` register.
            ret = Ret;

            /// Transfer control to the PC at the given offset and set the `lr`
            /// register to the PC just after this instruction.
            call = Call { offset: PcRelOffset };

            /// Transfer control to the PC in `reg` and set `lr` to the PC just
            /// after this instruction.
            call_indirect = CallIndirect { reg: XReg };

            /// Unconditionally transfer control to the PC at the given offset.
            jump = Jump { offset: PcRelOffset };

            /// Conditionally transfer control to the given PC offset if `cond`
            /// contains a non-zero value.
            br_if = BrIf { cond: XReg, offset: PcRelOffset };

            /// Conditionally transfer control to the given PC offset if `cond`
            /// contains a zero value.
            br_if_not = BrIfNot { cond: XReg, offset: PcRelOffset };

            /// Branch if `a == b`.
            br_if_xeq32 = BrIfXeq32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if `a != `b.
            br_if_xneq32 = BrIfXneq32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if signed `a < b`.
            br_if_xslt32 = BrIfXslt32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if signed `a <= b`.
            br_if_xslteq32 = BrIfXslteq32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if unsigned `a < b`.
            br_if_xult32 = BrIfXult32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if unsigned `a <= b`.
            br_if_xulteq32 = BrIfXulteq32 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if `a == b`.
            br_if_xeq64 = BrIfXeq64 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if `a != `b.
            br_if_xneq64 = BrIfXneq64 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if signed `a < b`.
            br_if_xslt64 = BrIfXslt64 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if signed `a <= b`.
            br_if_xslteq64 = BrIfXslteq64 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if unsigned `a < b`.
            br_if_xult64 = BrIfXult64 { a: XReg, b: XReg, offset: PcRelOffset };
            /// Branch if unsigned `a <= b`.
            br_if_xulteq64 = BrIfXulteq64 { a: XReg, b: XReg, offset: PcRelOffset };

            /// Branch to the label indicated by `idx`.
            ///
            /// After this instruction are `amt` instances of `PcRelOffset`
            /// and the `idx` selects which one will be branched to. The value
            /// of `idx` is clamped to `amt - 1` (e.g. the last offset is the
            /// "default" one.
            br_table32 = BrTable32 { idx: XReg, amt: u32 };

            /// Move between `x` registers.
            xmov = Xmov { dst: XReg, src: XReg };
            /// Move between `f` registers.
            fmov = Fmov { dst: FReg, src: FReg };
            /// Move between `v` registers.
            vmov = Vmov { dst: VReg, src: VReg };

            /// Set `dst = sign_extend(imm8)`.
            xconst8 = Xconst8 { dst: XReg, imm: i8 };
            /// Set `dst = sign_extend(imm16)`.
            xconst16 = Xconst16 { dst: XReg, imm: i16 };
            /// Set `dst = sign_extend(imm32)`.
            xconst32 = Xconst32 { dst: XReg, imm: i32 };
            /// Set `dst = imm64`.
            xconst64 = Xconst64 { dst: XReg, imm: i64 };

            /// 32-bit wrapping addition: `low32(dst) = low32(src1) + low32(src2)`.
            ///
            /// The upper 32-bits of `dst` are unmodified.
            xadd32 = Xadd32 { operands: BinaryOperands<XReg> };

            /// 64-bit wrapping addition: `dst = src1 + src2`.
            xadd64 = Xadd64 { operands: BinaryOperands<XReg> };

            /// 64-bit equality.
            xeq64 = Xeq64 { operands: BinaryOperands<XReg> };
            /// 64-bit inequality.
            xneq64 = Xneq64 { operands: BinaryOperands<XReg> };
            /// 64-bit signed less-than.
            xslt64 = Xslt64 { operands: BinaryOperands<XReg> };
            /// 64-bit signed less-than-equal.
            xslteq64 = Xslteq64 { operands: BinaryOperands<XReg> };
            /// 64-bit unsigned less-than.
            xult64 = Xult64 { operands: BinaryOperands<XReg> };
            /// 64-bit unsigned less-than-equal.
            xulteq64 = Xulteq64 { operands: BinaryOperands<XReg> };
            /// 32-bit equality.
            xeq32 = Xeq32 { operands: BinaryOperands<XReg> };
            /// 32-bit inequality.
            xneq32 = Xneq32 { operands: BinaryOperands<XReg> };
            /// 32-bit signed less-than.
            xslt32 = Xslt32 { operands: BinaryOperands<XReg> };
            /// 32-bit signed less-than-equal.
            xslteq32 = Xslteq32 { operands: BinaryOperands<XReg> };
            /// 32-bit unsigned less-than.
            xult32 = Xult32 { operands: BinaryOperands<XReg> };
            /// 32-bit unsigned less-than-equal.
            xulteq32 = Xulteq32 { operands: BinaryOperands<XReg> };

            /// `dst = zero_extend(load32(ptr))`
            load32_u = Load32U { dst: XReg, ptr: XReg };
            /// `dst = sign_extend(load32(ptr))`
            load32_s = Load32S { dst: XReg, ptr: XReg };
            /// `dst = load64(ptr)`
            load64 = Load64 { dst: XReg, ptr: XReg };

            /// `dst = zero_extend(load32(ptr + offset8))`
            load32_u_offset8 = Load32UOffset8 { dst: XReg, ptr: XReg, offset: i8 };
            /// `dst = sign_extend(load32(ptr + offset8))`
            load32_s_offset8 = Load32SOffset8 { dst: XReg, ptr: XReg, offset: i8 };
            /// `dst = load64(ptr + offset8)`
            load64_offset8 = Load64Offset8 { dst: XReg, ptr: XReg, offset: i8 };

            /// `dst = zero_extend(load32(ptr + offset64))`
            load32_u_offset64 = Load32UOffset64 { dst: XReg, ptr: XReg, offset: i64 };
            /// `dst = sign_extend(load32(ptr + offset64))`
            load32_s_offset64 = Load32SOffset64 { dst: XReg, ptr: XReg, offset: i64 };
            /// `dst = load64(ptr + offset64)`
            load64_offset64 = Load64Offset64 { dst: XReg, ptr: XReg, offset: i64 };

            /// `*ptr = low32(src)`
            store32 = Store32 { ptr: XReg, src: XReg };
            /// `*ptr = src`
            store64 = Store64 { ptr: XReg, src: XReg };

            /// `*(ptr + sign_extend(offset8)) = low32(src)`
            store32_offset8 = Store32SOffset8 { ptr: XReg, offset: i8, src: XReg };
            /// `*(ptr + sign_extend(offset8)) = src`
            store64_offset8 = Store64Offset8 { ptr: XReg, offset: i8, src: XReg };

            /// `*(ptr + sign_extend(offset64)) = low32(src)`
            store32_offset64 = Store32SOffset64 { ptr: XReg, offset: i64, src: XReg };
            /// `*(ptr + sign_extend(offset64)) = src`
            store64_offset64 = Store64Offset64 { ptr: XReg, offset: i64, src: XReg };

            /// `push lr; push fp; fp = sp`
            push_frame = PushFrame ;
            /// `sp = fp; pop fp; pop lr`
            pop_frame = PopFrame ;

            /// `*sp = low32(src); sp = sp.checked_add(4)`
            xpush32 = XPush32 { src: XReg };
            /// `for src in srcs { xpush32 src }`
            xpush32_many = XPush32Many { srcs: RegSet<XReg> };
            /// `*sp = src; sp = sp.checked_add(8)`
            xpush64 = XPush64 { src: XReg };
            /// `for src in srcs { xpush64 src }`
            xpush64_many = XPush64Many { srcs: RegSet<XReg> };

            /// `*dst = *sp; sp -= 4`
            xpop32 = XPop32 { dst: XReg };
            /// `for dst in dsts.rev() { xpop32 dst }`
            xpop32_many = XPop32Many { dsts: RegSet<XReg> };
            /// `*dst = *sp; sp -= 8`
            xpop64 = XPop64 { dst: XReg };
            /// `for dst in dsts.rev() { xpop64 dst }`
            xpop64_many = XPop64Many { dsts: RegSet<XReg> };

            /// `low32(dst) = bitcast low32(src) as i32`
            bitcast_int_from_float_32 = BitcastIntFromFloat32 { dst: XReg, src: FReg };
            /// `dst = bitcast src as i64`
            bitcast_int_from_float_64 = BitcastIntFromFloat64 { dst: XReg, src: FReg };
            /// `low32(dst) = bitcast low32(src) as f32`
            bitcast_float_from_int_32 = BitcastFloatFromInt32 { dst: FReg, src: XReg };
            /// `dst = bitcast src as f64`
            bitcast_float_from_int_64 = BitcastFloatFromInt64 { dst: FReg, src: XReg };

            /// `sp = sp.checked_sub(amt)`
            stack_alloc32 = StackAlloc32 { amt: u32 };

            /// `sp = sp + amt`
            stack_free32 = StackFree32 { amt: u32 };
        }
    };
}

/// Calls the given macro with each extended opcode.
macro_rules! for_each_extended_op {
    ( $macro:ident ) => {
        $macro! {
            /// Raise a trap.
            trap = Trap;

            /// Do nothing.
            nop = Nop;

            /// A special opcode to use an indirect function call to reenter the
            /// host from the interpreter.
            ///
            /// This is used to implement host intrinsics such as `memory.grow`
            /// for example where that needs to reenter the host from the
            /// interpreter.
            ///
            /// The `sig` immediate here is the Nth signature in the
            /// `for_each_host_signature!` macro below. The 0th "argument", in
            /// register x0, is the function pointer that's being called and all
            /// further arguments follow after that in registers.
            call_indirect_host = CallIndirectHost { sig: u8 };
        }
    };
}

#[cfg(feature = "decode")]
pub mod decode;
#[cfg(feature = "disas")]
pub mod disas;
#[cfg(feature = "encode")]
pub mod encode;
#[cfg(feature = "interp")]
pub mod interp;

pub mod regs;
pub use regs::*;

pub mod imms;
pub use imms::*;

pub mod op;
pub use op::*;

pub mod opcode;
pub use opcode::*;

#[allow(dead_code)] // Unused in some `cfg`s.
pub(crate) unsafe fn unreachable_unchecked<T>() -> T {
    #[cfg(debug_assertions)]
    unreachable!();

    #[cfg_attr(debug_assertions, allow(unreachable_code))]
    unsafe {
        core::hint::unreachable_unchecked()
    }
}