quil_rs/program/analysis/qubit_graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! The `QubitGraph` is a logical execution/dependency graph of
//! instructions with respect to gates on shared qubits.
// Copyright 2024 Rigetti Computing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use crate::instruction::{Instruction, InstructionHandler, InstructionRole};
use crate::quil::Quil;
use petgraph::{graph::DiGraph, Direction};
use super::BasicBlock;
#[derive(Debug, thiserror::Error)]
pub enum QubitGraphError {
#[error("Unsupported instruction: {}", .0.to_quil_or_debug())]
UnsupportedInstruction(Instruction),
}
/// QubitGraph is a logical execution/dependency graph of instructions. Pragma, RF Control, and Control Flow instructions
/// are not supported. It is a directed graph *from* the first instructions (the set of instructions that do not depend
/// on prior instructions) *to* the last instructions (the set of instructions that are not prerequisites for any later
/// instructions).
///
/// Nodes are instructions; edges link subsequent instructions which use a shared qubit.
#[derive(Debug)]
pub struct QubitGraph<'a> {
graph: DiGraph<&'a Instruction, ()>,
}
impl<'a> QubitGraph<'a> {
pub(crate) fn new(
instructions: impl Iterator<Item = &'a Instruction>,
) -> Result<Self, QubitGraphError> {
let mut last_instruction_for_qubit = HashMap::new();
let mut graph = DiGraph::new();
let mut handler = InstructionHandler::default();
for instruction in instructions {
match handler.role_for_instruction(instruction) {
InstructionRole::ClassicalCompute => {
if let Instruction::Pragma(_) = instruction {
return Err(QubitGraphError::UnsupportedInstruction(instruction.clone()));
}
} // Valid, mostly ignored
InstructionRole::ControlFlow => match &instruction {
Instruction::Jump(_)
| Instruction::JumpWhen(_)
| Instruction::JumpUnless(_) => {
return Err(QubitGraphError::UnsupportedInstruction(instruction.clone()))
}
_ => {}
},
InstructionRole::ProgramComposition => {} // Valid, includes Gate, etc.,
InstructionRole::RFControl => {
return Err(QubitGraphError::UnsupportedInstruction(instruction.clone()))
}
}
let qubits: Vec<_> = instruction.get_qubits().into_iter().collect();
let node = graph.add_node(instruction);
for qubit in qubits {
if let Some(last_instruction) = last_instruction_for_qubit.insert(qubit, node) {
graph.add_edge(last_instruction, node, ());
}
}
}
Ok(Self { graph })
}
/// Fold over all paths over the graph, starting from sources (nodes with no incoming edges),
/// and ending at sinks (nodes with no outgoing edges).
///
/// The `f` function is called for each instruction in each path, with the current accumulator value and the current
/// instruction.
///
/// # Examples
///
/// ## Tree
///
/// ```text
/// CNOT 0 1
/// X 0
/// H 1
/// ```
///
/// 1. `CNOT 0 1` is visited with the initial value, and a new accumulator `A` is returned from `f`.
/// 2. `X 0` is visited with accumulator `A`, and a result value `B` is returned from `f`.
/// 3. `H 1` is visited with accumulator `A`, and a second result value `C` is returned from `f`.
/// 4. The result values are collected into a [`Vec`] and returned as `[B, C]`.
///
/// ## Diamond
///
/// If the program graph forms a diamond shape (i.e. multiple paths converge to a single node), the `f` function
/// will be called multiple times with the same instruction, but with potentially different accumulator values.
///
/// ```text
/// CNOT 0 1
/// X 0
/// H 1
/// CNOT 1 0
/// ```
///
/// 1. `CNOT 0 1` is visited with the initial value, and a new accumulator `A` is returned from `f`.
/// 2. `X 0` is visited with accumulator `A`, and a new accumulator `B` is returned from `f`.
/// 3. `H 1` is visited with accumulator `A`, and a new accumulator `C` is returned from `f`.
/// 4. `CNOT 1 0` is visited with accumulator `B`, and a result value `D` is returned from `f`.
/// 5. `CNOT 1 0` is visited with accumulator `C`, and a result value `E` is returned from `f`.
/// 5. The result values are collected into a [`Vec`] and returned as `[D, E]`.
fn path_fold<T, F>(&self, initial_value: T, mut f: F) -> Vec<T>
where
T: Clone + std::fmt::Debug,
F: FnMut(T, &Instruction) -> T,
{
let nodes: Vec<_> = self.graph.externals(Direction::Incoming).collect();
let mut stack = vec![(initial_value, nodes)];
let mut result = Vec::new();
while let Some((acc, nodes)) = stack.pop() {
if nodes.is_empty() {
result.push(acc);
continue;
}
for node in nodes {
let instruction = &self.graph[node];
let value = f(acc.clone(), instruction);
stack.push((
value,
self.graph
.neighbors_directed(node, Direction::Outgoing)
.collect(),
));
}
}
result
}
/// Returns the length of the longest path from an initial instruction (one with no prerequisite instructions) to a final
/// instruction (one with no dependent instructions), where the length of a path is the number of gate instructions in the path.
///
/// # Arguments
///
/// * `gate_minimum_qubit_count` - The minimum number of qubits in a gate for it to be counted in the depth.
pub fn gate_depth(&self, gate_minimum_qubit_count: usize) -> usize {
let path_lengths = self.path_fold(0, |depth: usize, instruction: &Instruction| -> usize {
if let Instruction::Gate(gate) = instruction {
if gate.qubits.len() >= gate_minimum_qubit_count {
return depth + 1;
}
}
depth
});
path_lengths.into_iter().max().unwrap_or_default()
}
}
impl<'a> TryFrom<&'_ BasicBlock<'a>> for QubitGraph<'a> {
type Error = QubitGraphError;
fn try_from(block: &BasicBlock<'a>) -> Result<Self, Self::Error> {
QubitGraph::new(block.instructions().iter().copied())
}
}
#[cfg(test)]
mod tests {
use crate::Program;
use rstest::rstest;
use super::*;
use super::super::test_programs::*;
#[rstest]
#[case(QUIL_AS_TREE, 2)]
#[case(QUIL_AS_INVERSE_TREE, 2)]
#[case(QUIL_AS_LINEAR, 4)]
#[case(QUIL_WITH_DIAMOND, 6)]
#[case(QUIL_WITH_SWAP, 3)]
#[case(KITCHEN_SINK_QUIL, 2)]
fn gate_depth(#[case] input: &str, #[case] expected: usize) {
let program: Program = input.parse().unwrap();
let block: BasicBlock = (&program).try_into().unwrap();
let graph: QubitGraph = (&block).try_into().unwrap();
let depth = graph.gate_depth(1);
assert_eq!(expected, depth);
}
#[rstest]
#[case(QUIL_AS_TREE, 1)]
#[case(QUIL_AS_INVERSE_TREE, 1)]
#[case(QUIL_AS_LINEAR, 0)]
#[case(QUIL_WITH_DIAMOND, 2)]
#[case(QUIL_WITH_SWAP, 1)]
#[case(KITCHEN_SINK_QUIL, 1)]
fn multiqubit_gate_depth(#[case] input: &str, #[case] expected: usize) {
let program: Program = input.parse().unwrap();
let block: BasicBlock = (&program).try_into().unwrap();
let graph: QubitGraph = (&block).try_into().unwrap();
let depth = graph.gate_depth(2);
assert_eq!(expected, depth);
}
#[rstest]
#[case(QUIL_AS_TREE, Some(2))]
#[case(QUIL_AS_INVERSE_TREE, Some(2))]
#[case(QUIL_AS_LINEAR, Some(4))]
#[case(QUIL_WITH_DIAMOND, Some(6))]
#[case(QUIL_WITH_SWAP, Some(3))]
#[case(KITCHEN_SINK_QUIL, Some(2))]
#[case(QUIL_WITH_JUMP, None)]
#[case(QUIL_WITH_JUMP_WHEN, None)]
#[case(QUIL_WITH_JUMP_UNLESS, None)]
fn gate_depth_conditional(#[case] input: &str, #[case] expected: Option<usize>) {
let program: Program = input.parse().unwrap();
let block = (&program).try_into();
let block: BasicBlock = match block {
Ok(block) => block,
Err(_) => {
if expected.is_none() {
return;
} else {
panic!("Expected block, got error");
}
}
};
let maybe_graph: Result<QubitGraph, _> = (&block).try_into();
match maybe_graph {
Ok(graph) => {
let depth = graph.gate_depth(1);
assert_eq!(expected, Some(depth));
}
Err(_) => {
assert_eq!(expected, None)
}
}
}
}