quil_rs/waveform/
templates.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! Templates for generating discrete IQ value sequences representing Quil's defined set of waveforms.

use std::f64::consts::PI;

use crate::{imag, real};
use ndarray::Array;
use num_complex::Complex64;
use statrs::function::erf::erf;

use serde::{Deserialize, Serialize};

const J: Complex64 = Complex64::new(0f64, 1f64);

/// Modulate and phase shift waveform IQ data in place.
pub fn apply_phase_and_detuning(
    iq_values: &mut [Complex64],
    phase: f64,
    detuning: f64,
    sample_rate: f64,
) {
    for (index, value) in iq_values.iter_mut().enumerate() {
        *value *= (2.0 * PI * J * (detuning * (index as f64) / sample_rate + phase)).exp();
    }
}

/// A custom `ceil()` method that includes a machine-epsilon sized region above each integer in the
/// set of values that are mapped to that integer. In other words:
/// ceil_eps(x) = n, for all x and integers n s.t. n <= x < (n + n*epsilon)
///
/// To handle accumulated floating point errors in sweeps above typical floating point imprecision
/// we make epsilon 10x larger than floating point epsilon.
fn ceiling_with_epsilon(value: f64) -> f64 {
    let truncated = value - (value * 10.0 * f64::EPSILON);
    truncated.ceil()
}

/// Convert polar coordinates to rectangular coordinates.
fn polar_to_rectangular(magnitude: f64, angle: crate::units::Radians<f64>) -> Complex64 {
    magnitude * imag!(angle.0).exp()
}

pub trait WaveformTemplate {
    fn into_iq_values(self) -> Vec<Complex64>;
}

#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
pub struct BoxcarKernel {
    pub phase: crate::units::Cycles<f64>,
    pub scale: f64,
    pub sample_count: u64,
}

impl BoxcarKernel {
    pub fn into_iq_value(self) -> Complex64 {
        polar_to_rectangular(self.scale / self.sample_count as f64, self.phase.into())
    }
}

/// Creates a waveform with a flat top and edges that are error functions (erfs).
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
pub struct ErfSquare {
    /// Full duration of the pulse (s)
    pub duration: f64,
    /// Slope of erf shoulders (2x FWHM of erf in s)
    pub risetime: f64,
    /// Generate wavform samples at this rate (Hz)
    pub sample_rate: f64,
    /// Length of zero padding to add to beginning of pulse (s)
    pub pad_left: f64,
    /// Length of zero padding to add to end of pulse (s)
    pub pad_right: f64,
    /// Toggle for positive/negative polarity
    pub positive_polarity: bool,
    /// Scale to apply to waveform envelope
    pub scale: f64,
    /// Phase shift for entire waveform
    pub phase: f64,
    /// Explicit detuning to bake into iq values
    pub detuning: f64,
}

impl WaveformTemplate for ErfSquare {
    fn into_iq_values(self) -> Vec<Complex64> {
        let length = ceiling_with_epsilon(self.duration * self.sample_rate);
        let mut time_steps = Array::<f64, _>::range(0f64, length, 1f64) / self.sample_rate;

        let fwhm = 0.5 * self.risetime;
        let t1 = fwhm;
        let t2 = self.duration - fwhm;
        let sigma = 0.5 * fwhm / (2f64 * 2f64.ln()).sqrt();
        time_steps.mapv_inplace(|el| 0.5 * (erf((el - t1) / sigma) - erf((el - t2) / sigma)));
        if !self.positive_polarity {
            time_steps *= -1f64;
        }

        let left_pad_length = (self.pad_left * self.sample_rate).ceil() as usize;
        let mut waveform = vec![real!(0f64); left_pad_length];
        waveform.extend(time_steps.into_iter().map(|el| self.scale * real!(el)));

        let right_pad_length = (self.pad_right * self.sample_rate).ceil() as usize;
        waveform.extend_from_slice(&vec![real!(0f64); right_pad_length]);
        apply_phase_and_detuning(&mut waveform, self.phase, self.detuning, self.sample_rate);
        waveform
    }
}

/// Creates a waveform with a Gaussian shape.
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
pub struct Gaussian {
    /// Full duration of the pulse (s)
    pub duration: f64,
    /// Full width half maximum of the pulse (s)
    pub fwhm: f64,
    /// Center/offset for pulse centroid (s)
    pub t0: f64,
    /// Generate waveform samples at this rate (Hz)
    pub sample_rate: f64,
    /// Scale to apply to waveform envelope
    pub scale: f64,
    /// Phase shift for entire waveform
    pub phase: f64,
    /// Explicit detuning to bake into IQ values
    pub detuning: f64,
}

impl WaveformTemplate for Gaussian {
    fn into_iq_values(self) -> Vec<Complex64> {
        let length = ceiling_with_epsilon(self.duration * self.sample_rate);
        let mut time_steps = Array::<f64, _>::range(0f64, length, 1f64) / self.sample_rate;

        let sigma = 0.5 * self.fwhm / (2f64 * 2f64.ln()).sqrt();
        time_steps.mapv_inplace(|el| (-0.5 * (el - self.t0).powf(2f64) / sigma.powf(2f64)).exp());

        let mut waveform = time_steps
            .into_iter()
            .map(|el| self.scale * real!(el))
            .collect::<Vec<_>>();
        apply_phase_and_detuning(&mut waveform, self.phase, self.detuning, self.sample_rate);
        waveform
    }
}

/// Creates a waveform with a DRAG-corrected Gaussian shape.
///
/// This is a Gaussian shape with an additional component proportional to the time derivative of the main Gaussian pulse.
///
/// See Motzoi F. et al., Phys. Rev. Lett., 103 (2009) 110501. for details.
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
pub struct DragGaussian {
    /// Full duration of the pulse (s)
    pub duration: f64,
    /// Full width half maximum of the pulse (s)
    pub fwhm: f64,
    /// Center/offset for pulse centroid (s)
    pub t0: f64,
    /// Qubit anharmonicity - sets rate of evolution for the imaginary term (Hz)
    pub anh: f64,
    /// DRAG parameter - controls strength of the imaginary term
    pub alpha: f64,
    /// Generate samples at this rate (Hz)
    pub sample_rate: f64,
    /// Scale to apply to waveform envelope
    pub scale: f64,
    /// Phase shift for entire waveform
    pub phase: f64,
    /// Explicit detuning to bake into iq values
    pub detuning: f64,
}

impl WaveformTemplate for DragGaussian {
    fn into_iq_values(self) -> Vec<Complex64> {
        let length = ceiling_with_epsilon(self.duration * self.sample_rate);
        let time_steps = Array::<f64, _>::range(0f64, length, 1f64) / self.sample_rate;

        let sigma = 0.5 * self.fwhm / (2f64 * 2f64.ln()).sqrt();

        let mut waveform = vec![Complex64::new(0f64, 0f64,); length as usize];
        for i in 0..length as usize {
            // Generate envelope sample
            let env = (-0.5 * (time_steps[i] - self.t0).powf(2f64) / sigma.powf(2f64)).exp();
            // Generate modified envelope sample
            let env_mod = (self.alpha * (1f64 / (2f64 * PI * self.anh * sigma.powf(2f64))))
                * (time_steps[i] - self.t0)
                * env;
            waveform[i] = self.scale * Complex64::new(env, env_mod);
        }
        apply_phase_and_detuning(&mut waveform, self.phase, self.detuning, self.sample_rate);

        waveform
    }
}

/// Creates a Hermite Gaussian waveform.
///
/// This extends the basic DRAG pulse by adding an additional imaginary term to the pulse envelope consisting of a
/// Gaussian pulse modified by the second order Hermite polynomial.
///
/// Refer to
/// "Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence"
/// Warren S. Warren. 81, (1984); doi: 10.1063/1.447644
/// for details.
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
pub struct HermiteGaussian {
    /// Full duration of the pulse
    pub duration: f64,
    /// Full width half maximum of the pulse
    pub fwhm: f64,
    /// Center/offset for pulse centroid
    pub t0: f64,
    /// Qubit anharmonicity - sets rate of evolution for the imaginary term
    pub anh: f64,
    /// DRAG parameter - controls strength of the imaginary term
    pub alpha: f64,
    /// Generate samples at this rate
    pub sample_rate: f64,
    /// Coefficient of the second order Hermite polynomial term.
    pub second_order_hrm_coeff: f64,
    /// Scale to apply to waveform envelope
    pub scale: f64,
    /// Phase shift for entire waveform
    pub phase: f64,
    /// Explicit detuning to bake into iq values
    pub detuning: f64,
}

impl WaveformTemplate for HermiteGaussian {
    fn into_iq_values(self) -> Vec<Complex64> {
        let length = ceiling_with_epsilon(self.duration * self.sample_rate);
        let time_steps = Array::<f64, _>::range(0f64, length, 1f64) / self.sample_rate;

        let sigma = 0.5 * self.fwhm / (2f64 * 2f64.ln()).sqrt();
        let deriv_prefactor = -self.alpha / (2f64 * PI * self.anh);

        let mut waveform = vec![Complex64::new(0f64, 0f64,); length as usize];
        for i in 0..length as usize {
            let exp_t = 0.5 * (time_steps[i] - self.t0).powf(2f64) / sigma.powf(2f64);
            let g = (-exp_t).exp();
            let env = (1f64 - self.second_order_hrm_coeff * exp_t) * g;
            let env_derived = deriv_prefactor * (time_steps[i] - self.t0) / sigma.powf(2f64)
                * g
                * (self.second_order_hrm_coeff * (exp_t - 1f64) - 1f64);
            waveform[i] = self.scale * Complex64::new(env, env_derived);
        }
        apply_phase_and_detuning(&mut waveform, self.phase, self.detuning, self.sample_rate);

        waveform
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    /// Clean up a Debug representation to something more apt for a filename.
    /// It's important that this remain stable or there'll be a mess of updating snapshot files.
    fn format_snapshot_name(item: impl std::fmt::Debug) -> String {
        format!("{item:?}")
            .replace(['{', '}', ':', ','], "")
            .replace([' ', '.'], "_")
    }

    fn assert_almost_eq(left: Complex64, right: Complex64, epsilon: f64) {
        assert!(
            (left - right).norm() < epsilon,
            "Expected {} to be almost equal to {} with epsilon {}",
            left,
            right,
            epsilon
        );
    }

    #[rstest::rstest]
    #[case(BoxcarKernel {
        phase: crate::units::Cycles(0.0),
        scale: 1.0,
        sample_count: 10,
    }, Complex64::new(0.1, 0.0))]
    #[case(BoxcarKernel {
        phase: crate::units::Cycles(0.5),
        scale: 1.0,
        sample_count: 10,
    }, Complex64::new(-0.1, 0.0))]
    #[case(BoxcarKernel {
        phase: crate::units::Cycles(0.0),
        scale: -1.0,
        sample_count: 10,
    }, Complex64::new(-0.1, 0.0))]
    #[case(BoxcarKernel {
        phase: crate::units::Cycles(0.0),
        scale: 0.0,
        sample_count: 10,
    }, Complex64::new(0.0, 0.0))]
    fn boxcar_kernel(#[case] kernel: BoxcarKernel, #[case] expected: Complex64) {
        let iq_value = kernel.into_iq_value();
        assert_almost_eq(iq_value, expected, 1e-10);
    }

    #[rstest::rstest]
    #[case(0.0, 0.0)]
    #[case(0.0-f64::EPSILON, 0.0)]
    #[case(0.0+f64::EPSILON, 1.0)]
    // Based on a past edge case
    #[case(8.800_000_000_000_001e-8 * 1.0e9, 88.0)]
    fn ceiling_with_epsilon(#[case] value: f64, #[case] expected: f64) {
        let result = super::ceiling_with_epsilon(value);
        assert_eq!(result, expected);
    }

    /// Assert that for some exemplar waveform templates, the right IQ values are generated.
    /// This is done by comparing the generated IQ values to two snapshots:
    ///
    /// * one, a rendered IQ plot in ascii art format. This is mostly for the benefit of the reviewer.
    /// * two, the raw IQ values. At the end of the day this is all that matters.
    ///
    /// The IQ values may not need to be inspected carefully, but the benefit of the snapshot approach is that
    /// we'll be alerted when they change. The plot is only generated for shorter lists of IQ values.
    ///
    /// The plot snapshot is asserted first (before IQ values) so that the user can get a visual impression of the problem.
    ///
    /// Snapshot filenames are based on the debug representation of the waveform template, so if template fields
    /// are added, removed, or renamed, then this test will fail for those cases. Additionally, if the string printing
    /// of `Complex64` changes, then the IQ values snapshot will also change.
    #[rstest::rstest]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: true, scale: 1.0, phase: 0.0, detuning: 0.0 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 1e-5, pad_right: 2e-5, positive_polarity: false, scale: 1.0, phase: 0.0, detuning: 0.0 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-4, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: false, scale: 1.0, phase: 0.0, detuning: 1e6 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: true, scale: 1.0, phase: 0.5, detuning: 0.0 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: true, scale: -1.0, phase: 0.0, detuning: 0.0 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: true, scale: 0.0, phase: 0.0, detuning: 0.0 })]
    #[case(ErfSquare { duration: 1e-4, risetime: 1e-5, sample_rate: 1e6, pad_left: 0.0, pad_right: 0.0, positive_polarity: false, scale: 0.5, phase: 0.4, detuning: -1e6 })]
    #[case(Gaussian { duration: 1e-4, fwhm: 1e-5, t0: 0.0, sample_rate: 1e6, scale: 1.0, phase: 0.0, detuning: 0.0 })]
    #[case(Gaussian { duration: 1e-4, fwhm: 1e-5, t0: 5e-5, sample_rate: 1e6, scale: 1.0, phase: 0.0, detuning: 1e6 })]
    #[case(Gaussian { duration: 1e-4, fwhm: 2e-5, t0: 5e-5, sample_rate: 1e6, scale: 0.5, phase: 0.0, detuning: 0.0 })]
    #[case(Gaussian { duration: 1e-4, fwhm: 4e-5, t0: 5e-5, sample_rate: 1e6, scale: 0.5, phase: 0.5, detuning: 0.0 })]
    #[case(Gaussian { duration: 1e-4, fwhm: 4e-5, t0: 5e-5, sample_rate: 1e6, scale: -1.0, phase: 0.0, detuning: 0.0 })]
    #[case(DragGaussian { duration: 1e-4, fwhm: 1e-5, t0: 0.0, anh: 1e6, alpha: 1.0, sample_rate: 1e6, scale: 1.0, phase: 0.0, detuning: 0.0 })]
    #[case(DragGaussian { duration: 1e-4, fwhm: 1e-5, t0: 0.0, anh: 1e6, alpha: 1.0, sample_rate: 1e6, scale: 1.0, phase: 0.0, detuning: 1e6 })]
    #[case(HermiteGaussian { duration: 1e-4, fwhm: 1e-5, t0: 0.0, anh: 1e6, alpha: 1.0, sample_rate: 1e6, second_order_hrm_coeff: 0.1, scale: 1.0, phase: 0.0, detuning: 0.0 })]
    #[case(HermiteGaussian { duration: 1e-4, fwhm: 1e-5, t0: 0.0, anh: 1e6, alpha: 1.0, sample_rate: 1e6, second_order_hrm_coeff: 0.1, scale: 1.0, phase: 0.0, detuning: 1e6 })]
    fn into_iq_values(#[case] parameters: impl WaveformTemplate + Copy + std::fmt::Debug) {
        let iq_values = parameters.into_iq_values();
        let count = iq_values.len();

        let all_values_zero = iq_values.iter().all(|el| el == &Complex64::new(0.0, 0.0));

        // count <= 200 prevents huge runaway plots if we test a long waveform
        // !all_values_zero prevents a useless plot that appears to render differently on different platforms, making the snapshot a poor comparison
        if count <= 200 && !all_values_zero {
            let split = iq_values.clone().into_iter().fold(
                (vec![], vec![]),
                |(mut reals, mut imags), el| {
                    reals.push(el.re);
                    imags.push(el.im);
                    (reals, imags)
                },
            );
            let split = vec![split.0, split.1];

            let res = rasciigraph::plot_many(
                split,
                rasciigraph::Config::default()
                    .with_width(count as u32 + 10)
                    .with_height(20),
            );

            // This snapshot is taken so that the developer has a visual impression of the waveform in a way that's committed to source control.
            // however, the test should only be considered a true failure if the IQ data in the next snapshot is not equal to what's expected.
            insta::assert_snapshot!(format!("{}__plot", format_snapshot_name(parameters)), res);
        }

        let neat_iq_values = iq_values
            .iter()
            .map(|el| format!("{:+.5e}, {:+.5e}", el.re, el.im))
            .collect::<Vec<_>>()
            .join("\n");

        insta::assert_snapshot!(
            format!("{}__data", format_snapshot_name(parameters)),
            neat_iq_values
        )
    }
}