quil_rs/program/scheduling/graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
//! Utilities for analysis of the dependency graph of a Quil Program
// Copyright 2021 Rigetti Computing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{HashMap, HashSet};
use petgraph::graphmap::GraphMap;
use petgraph::Directed;
use crate::instruction::{
ExternSignatureMap, FrameIdentifier, Instruction, InstructionHandler, Target,
};
use crate::program::analysis::{
BasicBlock, BasicBlockOwned, BasicBlockTerminator, ControlFlowGraph,
};
use crate::{instruction::InstructionRole, program::Program, quil::Quil};
pub use crate::program::memory::MemoryAccessType;
#[derive(Debug, Clone, Copy)]
pub enum ScheduleErrorVariant {
DuplicateLabel,
Extern,
UncalibratedInstruction,
UnresolvedCallInstruction,
UnschedulableInstruction,
}
#[derive(Debug, Clone, thiserror::Error)]
#[error("Error scheduling instruction {}: {}: {variant:?}", .instruction_index.map(|i| i.to_string()).unwrap_or(String::from("")), .instruction.to_quil_or_debug())]
pub struct ScheduleError {
pub instruction_index: Option<usize>,
pub instruction: Instruction,
pub variant: ScheduleErrorVariant,
}
pub type ScheduleResult<T> = Result<T, ScheduleError>;
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Hash, Ord)]
pub enum ScheduledGraphNode {
BlockStart,
InstructionIndex(usize),
BlockEnd,
}
impl Eq for ScheduledGraphNode {}
/// A MemoryAccessQueue expresses the current state of memory accessors at the time of
/// an instruction's execution.
///
/// Quil uses a multiple-reader, single-writer concurrency model for memory access.
#[derive(Debug, Default, Clone)]
struct MemoryAccessQueue {
pending_capture: Option<ScheduledGraphNode>,
pending_reads: Vec<ScheduledGraphNode>,
pending_write: Option<ScheduledGraphNode>,
}
/// A MemoryAccessDependency expresses a dependency that one node has on another to complete
/// some type of memory access prior to the dependent node's execution.
#[derive(Clone, Debug)]
struct MemoryAccessDependency {
/// What type of memory access must complete prior to the downstream instruction.
// NOTE: This must remain the first field for ordering to work as expected.
pub access_type: MemoryAccessType,
/// Which node is using the given `access_type`.
pub node_id: ScheduledGraphNode,
}
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ExecutionDependency {
/// The downstream instruction must wait for the given operation to complete.
AwaitMemoryAccess(MemoryAccessType),
/// The schedule of the downstream instruction depends on the upstream instruction.
/// Per the Quil-T specification, the downstream instruction begins execution at
/// the time that its latest upstream neighbor completes.
Scheduled,
/// The ordering between these two instructions must remain unchanged
StableOrdering,
}
/// A data structure to be used in the serializing of access to a memory region.
/// This utility helps guarantee strong consistency in a single-writer, multiple-reader model.
impl MemoryAccessQueue {
/// Register that a node wants access of the given type, while returning which accesses block
/// the requested access.
///
/// Captures and writes may not happen concurrently with any other access; multiple reads may
/// occur concurrently.
///
/// Thus, if the caller requests Read access, and there are no pending captures or writes, then
/// there will be no blocking nodes.
///
/// However, if there is a pending capture or write, that dependency will be expressed in the
/// return value.
///
/// If the caller requests a capture or a write, then all pending calls - reads, writes, and captures -
/// will be returned as "blocking" the capture or write.
///
/// A capture or write remains blocking until the next capture or write.
pub fn get_blocking_nodes(
&mut self,
node_id: ScheduledGraphNode,
access: &MemoryAccessType,
) -> Vec<MemoryAccessDependency> {
use MemoryAccessType::*;
let mut result = vec![];
if let Some(node_id) = self.pending_write {
result.push(MemoryAccessDependency {
node_id,
access_type: Write,
});
}
if let Some(node_id) = self.pending_capture {
result.push(MemoryAccessDependency {
node_id,
access_type: Capture,
});
}
self.pending_capture = None;
self.pending_write = None;
match access {
Read => {
self.pending_reads.push(node_id);
}
Capture => {
for upstream_node_id in self.pending_reads.iter() {
result.push(MemoryAccessDependency {
node_id: *upstream_node_id,
access_type: Read,
});
}
self.pending_reads = vec![];
self.pending_capture = Some(node_id);
}
Write => {
for upstream_node_id in self.pending_reads.iter() {
result.push(MemoryAccessDependency {
node_id: *upstream_node_id,
access_type: Read,
});
}
self.pending_reads = vec![];
self.pending_write = Some(node_id);
}
}
result
}
}
/// Add a dependency to an edge on the graph, whether that edge currently exists or not.
macro_rules! add_dependency {
($graph:expr, $source:expr => $target:expr, $dependency:expr) => {{
let source = $source;
let target = $target;
let dependency = $dependency;
match $graph.edge_weight_mut(source, target) {
Some(edge) => {
edge.insert(dependency);
}
None => {
let mut edge = HashSet::new();
edge.insert(dependency);
$graph.add_edge(source, target, edge);
}
}
}};
}
pub type DependencyGraph = GraphMap<ScheduledGraphNode, HashSet<ExecutionDependency>, Directed>;
/// A [`ScheduledBasicBlock`] is a wrapper around a [`BasicBlock`] which includes a graph expressing the vector clock
/// among the instructions according to the Quil specification.
///
/// If instruction A blocks instruction B (because of shared use of a frame), then there will be an edge from A to B
/// in the graph.
#[derive(Clone, Debug)]
pub struct ScheduledBasicBlock<'a> {
basic_block: BasicBlock<'a>,
pub(super) graph: DependencyGraph,
}
/// PreviousNodes is a structure which helps maintain ordering among instructions which operate on a given frame.
/// It works similarly to a multiple-reader-single-writer queue, where an instruction which "uses" a frame is like
/// a writer and an instruction which blocks that frame is like a reader. Multiple instructions may concurrently
/// block a frame, but an instruction may not use a frame while it is concurrently used or blocked.
///
/// ## Examples
///
/// Note that "depends on" is equivalent to "must execute at or after completion of." The interpretation of
/// "at or after" depends on the type of dependency and the compiler.
///
/// ```text
/// user --> user # a second user takes a dependency on the first
///
/// user --> blocker # multiple blockers take a dependency on the most recent user
/// \-> blocker
/// \-> blocker
///
/// blocker --> user --> blocker # users and blockers take dependencies on one another,
/// # but blockers do not depend on other blocking instructions
/// ```
struct PreviousNodes {
using: Option<ScheduledGraphNode>,
blocking: HashSet<ScheduledGraphNode>,
}
impl Default for PreviousNodes {
/// The default value for [PreviousNodes] is useful in that, if no previous nodes have been recorded
/// as using a frame, we should consider that the start of the instruction block "uses" of that frame
///
/// In other words, no instruction can be scheduled prior to the start of the instruction block
/// and all scheduled instructions within the block depend on the block's start time, at least indirectly.
fn default() -> Self {
Self {
using: Some(ScheduledGraphNode::BlockStart),
blocking: HashSet::new(),
}
}
}
impl PreviousNodes {
/// Register a node as using a frame, and return the instructions on which it should depend/wait for scheduling (if any).
///
/// A node which uses a frame will block on any previous user or blocker of the frame, much like a writer in a read-write lock.
fn get_dependencies_for_next_user(
&mut self,
node: ScheduledGraphNode,
) -> HashSet<ScheduledGraphNode> {
let mut result = std::mem::take(&mut self.blocking);
if let Some(previous_user) = self.using.replace(node) {
result.insert(previous_user);
}
result
}
/// Register a node as blocking a frame, and return the instructions on which it should depend/wait for scheduling (if any).
///
/// A node which blocks a frame will block on any previous user of the frame, but not concurrent blockers.
///
/// If the frame is currently blocked by other nodes, it will add itself to the list of blockers,
/// much like a reader in a read-write lock.
fn get_dependency_for_next_blocker(
&mut self,
node: ScheduledGraphNode,
) -> Option<ScheduledGraphNode> {
self.blocking.insert(node);
self.using
}
/// Consume the [PreviousNodes] and return all nodes within.
pub fn into_hashset(mut self) -> HashSet<ScheduledGraphNode> {
if let Some(using) = self.using {
self.blocking.insert(using);
}
self.blocking
}
}
impl<'a> ScheduledBasicBlock<'a> {
/// Build a scheduled basic block from a basic block and a program.
pub fn build(
basic_block: BasicBlock<'a>,
program: &'a Program,
custom_handler: &mut InstructionHandler,
) -> ScheduleResult<Self> {
let mut graph: DependencyGraph = GraphMap::new();
// Root node
graph.add_node(ScheduledGraphNode::BlockStart);
// The set of classical instructions that do not have outgoing edges (i.e. there are no
// downstream instructions that depend on them). After iterating over all instructions,
// the set of trailing classical instructions will need an outgoing edge to the block end.
let mut trailing_classical_instructions: HashSet<ScheduledGraphNode> = HashSet::new();
// Store the instruction index of the last instruction to block that frame
let mut last_instruction_by_frame: HashMap<FrameIdentifier, PreviousNodes> = HashMap::new();
let mut last_timed_instruction_by_frame: HashMap<FrameIdentifier, PreviousNodes> =
HashMap::new();
// Store memory access reads and writes. Key is memory region name.
// NOTE: this may be refined to serialize by memory region offset rather than by entire region.
let mut pending_memory_access: HashMap<String, MemoryAccessQueue> = HashMap::new();
let extern_signature_map = ExternSignatureMap::try_from(program.extern_pragma_map.clone())
.map_err(|(pragma, _)| ScheduleError {
instruction_index: None,
instruction: Instruction::Pragma(pragma),
variant: ScheduleErrorVariant::Extern,
})?;
for (index, &instruction) in basic_block.instructions().iter().enumerate() {
let node = graph.add_node(ScheduledGraphNode::InstructionIndex(index));
let accesses = custom_handler
.memory_accesses(instruction, &extern_signature_map)
.map_err(|_| ScheduleError {
instruction_index: Some(index),
instruction: instruction.clone(),
variant: ScheduleErrorVariant::UnresolvedCallInstruction,
})?;
let memory_dependencies = [
(accesses.reads, MemoryAccessType::Read),
(accesses.writes, MemoryAccessType::Write),
(accesses.captures, MemoryAccessType::Capture),
]
.iter()
.flat_map(|(regions, access_type)| {
regions
.iter()
.flat_map(|region| {
pending_memory_access
.entry(region.clone())
.or_default()
// NOTE: This mutates the underlying `MemoryAccessQueue` by registering
// the instruction node.
.get_blocking_nodes(node, access_type)
})
// Collecting is necessary to avoid "captured variable cannot escape FnMut closure body" errors
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
let has_memory_dependencies = !memory_dependencies.is_empty();
for memory_dependency in memory_dependencies {
// Test to make sure that no instructions depend directly on themselves
if memory_dependency.node_id != node {
let execution_dependency =
ExecutionDependency::AwaitMemoryAccess(memory_dependency.access_type);
add_dependency!(graph, memory_dependency.node_id => node, execution_dependency);
// This memory dependency now has an outgoing edge, so it is no longer a trailing classical
// instruction. If the memory dependency is not a classical instruction, this
// has no effect.
trailing_classical_instructions.remove(&memory_dependency.node_id);
}
}
match custom_handler.role_for_instruction(instruction) {
// Classical instructions must be ordered by appearance in the program
InstructionRole::ClassicalCompute => {
// If this instruction has no memory dependencies, it is a leading classical
// instruction and needs an incoming edge from the block start.
if !has_memory_dependencies {
add_dependency!(graph, ScheduledGraphNode::BlockStart => node, ExecutionDependency::StableOrdering);
}
trailing_classical_instructions.insert(node);
Ok(())
}
InstructionRole::RFControl => {
let matched_frames = custom_handler.matching_frames(instruction, program);
let is_scheduled = custom_handler.is_scheduled(instruction);
if let Some(matched_frames) = matched_frames {
for frame in matched_frames.used() {
if is_scheduled {
let previous_node_ids = last_timed_instruction_by_frame
.entry((*frame).clone())
.or_default()
.get_dependencies_for_next_user(node);
for previous_node_id in previous_node_ids {
add_dependency!(graph, previous_node_id => node, ExecutionDependency::Scheduled);
}
}
let previous_node_ids = last_instruction_by_frame
.entry((*frame).clone())
.or_default()
.get_dependencies_for_next_user(node);
for previous_node_id in previous_node_ids {
add_dependency!(graph, previous_node_id => node, ExecutionDependency::StableOrdering);
}
}
for frame in matched_frames.blocked() {
if is_scheduled {
if let Some(previous_node_id) = last_timed_instruction_by_frame
.entry((*frame).clone())
.or_default()
.get_dependency_for_next_blocker(node)
{
add_dependency!(graph, previous_node_id => node, ExecutionDependency::Scheduled);
}
}
if let Some(previous_node_id) = last_instruction_by_frame
.entry((*frame).clone())
.or_default()
.get_dependency_for_next_blocker(node)
{
add_dependency!(graph, previous_node_id => node, ExecutionDependency::StableOrdering);
}
}
}
Ok(())
}
InstructionRole::ControlFlow => Err(ScheduleError {
instruction_index: Some(index),
instruction: instruction.clone(),
variant: ScheduleErrorVariant::UnschedulableInstruction,
}),
InstructionRole::ProgramComposition => Err(ScheduleError {
instruction_index: Some(index),
instruction: instruction.clone(),
variant: ScheduleErrorVariant::UnschedulableInstruction,
}),
}?;
}
// Link all pending dependency nodes to the end of the block, to ensure that the block
// does not terminate until these are complete
for trailing_classical_instruction in trailing_classical_instructions {
add_dependency!(graph, trailing_classical_instruction => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
}
for previous_nodes in last_timed_instruction_by_frame.into_values() {
for node in previous_nodes.into_hashset() {
add_dependency!(graph, node => ScheduledGraphNode::BlockEnd, ExecutionDependency::Scheduled);
}
}
for previous_nodes in last_instruction_by_frame.into_values() {
for node in previous_nodes.into_hashset() {
add_dependency!(graph, node => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
}
}
// Maintain the invariant that the block start node has a connecting path to the block end node.
if basic_block.instructions().is_empty() {
add_dependency!(graph, ScheduledGraphNode::BlockStart => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
}
Ok(ScheduledBasicBlock { graph, basic_block })
}
pub fn get_dependency_graph(&self) -> &DependencyGraph {
&self.graph
}
pub fn instructions(&'a self) -> &'a [&'a Instruction] {
self.basic_block.instructions()
}
/// Return a particular-indexed instruction (if present).
pub fn get_instruction(&self, node_id: usize) -> Option<&Instruction> {
self.instructions().get(node_id).copied()
}
pub fn label(&self) -> Option<&Target> {
self.basic_block.label()
}
/// Return the count of executable instructions in this block.
pub fn len(&self) -> usize {
self.instructions().len()
}
/// Return true if this block contains no executable instructions.
pub fn is_empty(&self) -> bool {
self.instructions().is_empty()
}
pub fn terminator(&self) -> &BasicBlockTerminator {
self.basic_block.terminator()
}
pub fn basic_block(&self) -> &BasicBlock<'a> {
&self.basic_block
}
}
#[derive(Clone, Debug)]
pub struct ScheduledProgram<'a> {
basic_blocks: Vec<ScheduledBasicBlock<'a>>,
}
impl<'a> ScheduledProgram<'a> {
/// Structure a sequential program
#[allow(unused_assignments)]
pub fn from_program(
program: &'a Program,
custom_handler: &mut InstructionHandler,
) -> ScheduleResult<Self> {
let control_flow_graph = ControlFlowGraph::from(program);
Ok(Self {
basic_blocks: control_flow_graph
.into_blocks()
.into_iter()
.map(|block| ScheduledBasicBlock::build(block, program, custom_handler))
.collect::<ScheduleResult<Vec<_>>>()?,
})
}
pub fn basic_blocks(&self) -> &[ScheduledBasicBlock<'_>] {
self.basic_blocks.as_ref()
}
pub fn into_basic_blocks(self) -> Vec<ScheduledBasicBlock<'a>> {
self.basic_blocks
}
}
#[derive(Clone, Debug)]
pub struct ScheduledBasicBlockOwned {
basic_block: BasicBlockOwned,
graph: DependencyGraph,
}
impl<'a> From<&'a ScheduledBasicBlockOwned> for ScheduledBasicBlock<'a> {
fn from(block: &'a ScheduledBasicBlockOwned) -> Self {
Self {
basic_block: (&block.basic_block).into(),
graph: block.graph.clone(),
}
}
}
impl From<ScheduledBasicBlock<'_>> for ScheduledBasicBlockOwned {
fn from(block: ScheduledBasicBlock) -> Self {
Self {
basic_block: block.basic_block.into(),
graph: block.graph.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "graphviz-dot")]
use crate::program::scheduling::graphviz_dot::tests::build_dot_format_snapshot_test_case;
#[cfg(feature = "graphviz-dot")]
mod custom_handler {
use super::*;
use crate::instruction::Pragma;
use crate::instruction::PragmaArgument;
use crate::program::frame::FrameMatchCondition;
use crate::program::{MatchedFrames, MemoryAccesses};
/// Generates a custom [`InstructionHandler`] that specially handles two `PRAGMA` instructions:
///
/// - `NO-OP` is considered a `ClassicalCompute` instruction that does nothing
/// - `RAW-INSTRUCTION` is an `RFControl` instruction that is scheduled on all frames by default
/// or the frame names specified as arguments, and reads from `ro`.
///
/// Note that any program being tested must define at least one frame for `RAW-INSTRUCTION` to
/// have any effect.
fn get_custom_handler() -> InstructionHandler {
const NO_OP: &str = "NO-OP";
const RAW_INSTRUCTION: &str = "RAW-INSTRUCTION";
InstructionHandler::default()
.set_is_scheduled(|instruction| match instruction {
Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => Some(false),
Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => {
Some(true)
}
_ => None,
})
.set_role_for_instruction(|instruction| match instruction {
Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => {
Some(InstructionRole::ClassicalCompute)
}
Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => {
Some(InstructionRole::RFControl)
}
_ => None,
})
.set_matching_frames(|instruction, program| match instruction {
Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => Some(None),
Instruction::Pragma(Pragma {
name, arguments, ..
}) if name == RAW_INSTRUCTION => Some(Some({
let frame_condition = if arguments.is_empty() {
FrameMatchCondition::All
} else {
FrameMatchCondition::AnyOfNames(
arguments
.iter()
.filter_map(|arg| match arg {
PragmaArgument::Identifier(name) => Some(name.as_str()),
PragmaArgument::Integer(_) => None,
})
.collect(),
)
};
let used = program
.frames
.get_matching_keys_for_condition(frame_condition);
MatchedFrames {
used,
blocked: HashSet::new(),
}
})),
_ => None,
})
.set_memory_accesses(|instruction| match instruction {
Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => {
Some(MemoryAccesses::default())
}
Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => Some({
MemoryAccesses {
captures: HashSet::new(),
reads: [String::from("ro")].into(),
writes: HashSet::new(),
}
}),
_ => None,
})
}
build_dot_format_snapshot_test_case! {
only_pragmas_without_frames,
r#"
DEFFRAME 0 "quux":
SAMPLE-RATE: 1.0
INITIAL-FREQUENCY: 1e8
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION
PRAGMA RAW-INSTRUCTION
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION
"#,
&mut get_custom_handler(),
}
build_dot_format_snapshot_test_case! {
only_pragmas_with_frames,
r#"
DEFFRAME 0 "foo":
SAMPLE-RATE: 1.0
INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "bar":
SAMPLE-RATE: 1.0
INITIAL-FREQUENCY: 1e8
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
PRAGMA RAW-INSTRUCTION bar
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo bar
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
"#,
&mut get_custom_handler(),
}
build_dot_format_snapshot_test_case! {
mixed_pragmas_and_pulses,
r#"
DEFFRAME 0 "foo":
SAMPLE-RATE: 1.0
INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "bar":
SAMPLE-RATE: 1.0
INITIAL-FREQUENCY: 1e8
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
PULSE 1 "bar" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA RAW-INSTRUCTION foo bar
PRAGMA NO-OP
PULSE 0 "foo" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA RAW-INSTRUCTION bar
PULSE 0 "foo" gaussian(duration: 1, fwhm: 2, t0: 3)
PULSE 1 "bar" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
"#,
&mut get_custom_handler(),
}
}
// Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
// we expect an edge from the first load to the second (0 -> 1).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_write_read_load_load,
r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE params3 REAL[1]
DECLARE integers INTEGER[1]
LOAD params2[0] params3 integers[0] # writes params2
LOAD params1[0] params2 integers[0] # reads params2
"#
}
// Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
// we expect an edge from the mul to the load (0 -> 1).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_write_read_mul_load,
r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]
MUL params2[0] 2 # reads and writes params2
LOAD params1[0] params2 integers[0] # just reads params2
"#
}
// Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
// we expect an edge from the mul to the add (0 -> 1).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_write_read_add_mul,
r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]
ADD params1[0] 1 # this reads and writes params1
MUL params1[0] 2 # this reads and writes params1
"#
}
// Because any instruction that reads a particular region must precede any later instructions that write to/ capture that memory region,
// we expect an edge from the first load to the second (0, 1).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_read_write_load_load,
r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]
LOAD params1[0] params2 integers[0] # reads params2
LOAD params2[0] params3 integers[0] # writes params2
"#
}
// Because any instruction that reads a particular region must precede any later instructions that write to/ capture that memory region,
// we expect an edge from the load to the mul (0, 1).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_read_write_load_mul,
r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]
LOAD params1[0] params2 integers[0] # reads params2
MUL params2[0] 2 # reads and writes params2
"#
}
// Because memory reading and writing dependencies also apply to RfControl instructions, we
// expect edges from the first load to the first shift-phase (0 -> 1), the first shift-phase
// to the second load (1 -> 2), and the second load to the second shift-phase (2 -> 3).
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
quantum_write_parameterized_operations,
r#"
DEFFRAME 0 "rx":
INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "rx":
INITIAL-FREQUENCY: 1e8
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]
LOAD params2[0] params1 integers[0] # writes params2
SHIFT-PHASE 0 "rf" params2[0] # reads params2
LOAD params2[0] params1 integers[1] # writes params2
SHIFT-PHASE 1 "rf" params2[0] # reads params2
"#
}
// Because a pragma by default will have no memory accesses, it should only have edges from the block start and to the block end.
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
classical_no_memory_pragma,
r#"PRAGMA example"#
}
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
write_capture_read,
r#"
DECLARE bits BIT[1]
DECLARE integers INTEGER[1]
LOAD bits[0] bits2 integers[0] # write
NONBLOCKING CAPTURE 0 "Transmon-0_readout_rx" flat(duration: 2.0000000000000003e-06, iq: 1.0, scale: 1.0, phase: 0.8745492960861506, detuning: 0.0) bits[0] # capture
LOAD bits3[0] bits integers[0] # read
"#
}
#[cfg(feature = "graphviz-dot")]
build_dot_format_snapshot_test_case! {
write_write_read,
r#"
DECLARE bits BIT[1]
DECLARE bits2 BIT[1]
DECLARE bits3 BIT[1]
DECLARE integers INTEGER[1]
LOAD bits[0] bits2 integers[0] # write
LOAD bits[0] bits3 integers[0] # write
LOAD bits4[0] bits integers[0] # read
"#
}
}