quil_rs/program/calibration.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
// Copyright 2021 Rigetti Computing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use std::ops::Range;
use itertools::FoldWhile::{Continue, Done};
use itertools::Itertools;
use crate::instruction::{CalibrationIdentifier, MeasureCalibrationIdentifier};
use crate::quil::Quil;
use crate::{
expression::Expression,
instruction::{
Calibration, Capture, Delay, Fence, FrameIdentifier, Gate, Instruction,
MeasureCalibrationDefinition, Measurement, Pulse, Qubit, RawCapture, SetFrequency,
SetPhase, SetScale, ShiftFrequency, ShiftPhase,
},
};
use super::source_map::{SourceMap, SourceMapEntry, SourceMapIndexable};
use super::{CalibrationSet, InstructionIndex, ProgramError};
/// A collection of Quil calibrations (`DEFCAL` instructions) with utility methods.
#[derive(Clone, Debug, Default, PartialEq)]
pub struct Calibrations {
pub calibrations: CalibrationSet<Calibration>,
pub measure_calibrations: CalibrationSet<MeasureCalibrationDefinition>,
}
struct MatchedCalibration<'a> {
pub calibration: &'a Calibration,
pub fixed_qubit_count: usize,
}
impl<'a> MatchedCalibration<'a> {
pub fn new(calibration: &'a Calibration) -> Self {
Self {
calibration,
fixed_qubit_count: calibration
.identifier
.qubits
.iter()
.filter(|q| match q {
Qubit::Fixed(_) => true,
Qubit::Placeholder(_) | Qubit::Variable(_) => false,
})
.count(),
}
}
}
/// The product of expanding an instruction using a calibration
#[derive(Clone, Debug, PartialEq)]
pub struct CalibrationExpansionOutput {
/// The new instructions resulting from the expansion
pub new_instructions: Vec<Instruction>,
/// Details about the expansion process
pub detail: CalibrationExpansion,
}
/// Details about the expansion of a calibration
#[derive(Clone, Debug, PartialEq)]
pub struct CalibrationExpansion {
/// The calibration used to expand the instruction
pub(crate) calibration_used: CalibrationSource,
/// The target instruction indices produced by the expansion
pub(crate) range: Range<InstructionIndex>,
/// A map of source locations to the expansions they produced
pub(crate) expansions: SourceMap<InstructionIndex, CalibrationExpansion>,
}
impl CalibrationExpansion {
/// Remove the given target index from all entries, recursively.
///
/// This is to be used when the given index is removed from the target program
/// in the process of calibration expansion (for example, a `DECLARE`).
pub(crate) fn remove_target_index(&mut self, target_index: InstructionIndex) {
// Adjust the start of the range if the target index is before the range
if self.range.start >= target_index {
self.range.start = self.range.start.map(|v| v.saturating_sub(1));
}
// Adjust the end of the range if the target index is before the end of the range
if self.range.end > target_index {
self.range.end = self.range.end.map(|v| v.saturating_sub(1));
}
// Then walk through all entries expanded for this calibration and remove the
// index as well. This is needed when a recursively-expanded instruction contains
// an instruction which is excised from the overall calibration.
if let Some(target_within_expansion) = target_index.0.checked_sub(self.range.start.0) {
self.expansions.entries.retain_mut(
|entry: &mut SourceMapEntry<InstructionIndex, CalibrationExpansion>| {
entry
.target_location
.remove_target_index(InstructionIndex(target_within_expansion));
!entry.target_location.range.is_empty()
},
);
}
}
pub fn calibration_used(&self) -> &CalibrationSource {
&self.calibration_used
}
pub fn range(&self) -> &Range<InstructionIndex> {
&self.range
}
pub fn expansions(&self) -> &SourceMap<InstructionIndex, CalibrationExpansion> {
&self.expansions
}
}
impl SourceMapIndexable<InstructionIndex> for CalibrationExpansion {
fn intersects(&self, other: &InstructionIndex) -> bool {
self.range.contains(other)
}
}
impl SourceMapIndexable<CalibrationSource> for CalibrationExpansion {
fn intersects(&self, other: &CalibrationSource) -> bool {
self.calibration_used() == other
}
}
/// The result of an attempt to expand an instruction within a [`Program`]
#[derive(Clone, Debug, PartialEq)]
pub enum MaybeCalibrationExpansion {
/// The instruction was expanded into others
Expanded(CalibrationExpansion),
/// The instruction was not expanded, but was simply copied over into the target program at the given instruction index
Unexpanded(InstructionIndex),
}
impl SourceMapIndexable<InstructionIndex> for MaybeCalibrationExpansion {
fn intersects(&self, other: &InstructionIndex) -> bool {
match self {
MaybeCalibrationExpansion::Expanded(expansion) => expansion.intersects(other),
MaybeCalibrationExpansion::Unexpanded(index) => index == other,
}
}
}
impl SourceMapIndexable<CalibrationSource> for MaybeCalibrationExpansion {
fn intersects(&self, other: &CalibrationSource) -> bool {
match self {
MaybeCalibrationExpansion::Expanded(expansion) => expansion.intersects(other),
MaybeCalibrationExpansion::Unexpanded(_) => false,
}
}
}
/// A source of a calibration, either a [`Calibration`] or a [`MeasureCalibrationDefinition`]
#[derive(Clone, Debug, PartialEq)]
pub enum CalibrationSource {
/// Describes a `DEFCAL` instruction
Calibration(CalibrationIdentifier),
/// Describes a `DEFCAL MEASURE` instruction
MeasureCalibration(MeasureCalibrationIdentifier),
}
impl From<CalibrationIdentifier> for CalibrationSource {
fn from(value: CalibrationIdentifier) -> Self {
Self::Calibration(value)
}
}
impl From<MeasureCalibrationIdentifier> for CalibrationSource {
fn from(value: MeasureCalibrationIdentifier) -> Self {
Self::MeasureCalibration(value)
}
}
impl Calibrations {
/// Return a vector containing a reference to all [`Calibration`]s in the set.
pub fn calibrations(&self) -> Vec<&Calibration> {
self.iter_calibrations().collect()
}
/// Return a vector containing a reference to all [`MeasureCalibrationDefinition`]s
/// in the set.
pub fn measure_calibrations(&self) -> Vec<&MeasureCalibrationDefinition> {
self.iter_measure_calibrations().collect()
}
/// Iterate over all [`Calibration`]s in the set
pub fn iter_calibrations(&self) -> impl Iterator<Item = &Calibration> {
self.calibrations.iter()
}
/// Iterate over all [`MeasureCalibrationDefinition`]s calibrations in the set
pub fn iter_measure_calibrations(&self) -> impl Iterator<Item = &MeasureCalibrationDefinition> {
self.measure_calibrations.iter()
}
/// Given an instruction, return the instructions to which it is expanded if there is a match.
/// Recursively calibrate instructions, returning an error if a calibration directly or indirectly
/// expands into itself.
///
/// Return only the expanded instructions; for more information about the expansion process,
/// see [`Self::expand_with_detail`].
pub fn expand(
&self,
instruction: &Instruction,
previous_calibrations: &[Instruction],
) -> Result<Option<Vec<Instruction>>, ProgramError> {
self.expand_inner(instruction, previous_calibrations, false)
.map(|expansion| expansion.map(|expansion| expansion.new_instructions))
}
/// Given an instruction, return the instructions to which it is expanded if there is a match.
/// Recursively calibrate instructions, returning an error if a calibration directly or indirectly
/// expands into itself.
///
/// Also return information about the expansion.
pub fn expand_with_detail(
&self,
instruction: &Instruction,
previous_calibrations: &[Instruction],
) -> Result<Option<CalibrationExpansionOutput>, ProgramError> {
self.expand_inner(instruction, previous_calibrations, true)
}
/// Expand an instruction, returning an error if a calibration directly or indirectly
/// expands into itself. Return `None` if there are no matching calibrations in `self`.
///
/// # Arguments
///
/// * `instruction` - The instruction to expand.
/// * `previous_calibrations` - The calibrations that were invoked to yield this current instruction.
/// * `build_source_map` - Whether to build a source map of the expansion.
fn expand_inner(
&self,
instruction: &Instruction,
previous_calibrations: &[Instruction],
build_source_map: bool,
) -> Result<Option<CalibrationExpansionOutput>, ProgramError> {
if previous_calibrations.contains(instruction) {
return Err(ProgramError::RecursiveCalibration(instruction.clone()));
}
let expansion_result = match instruction {
Instruction::Gate(gate) => {
let matching_calibration = self.get_match_for_gate(gate);
match matching_calibration {
Some(calibration) => {
let mut qubit_expansions: HashMap<&String, Qubit> = HashMap::new();
for (index, calibration_qubit) in
calibration.identifier.qubits.iter().enumerate()
{
if let Qubit::Variable(identifier) = calibration_qubit {
qubit_expansions.insert(identifier, gate.qubits[index].clone());
}
}
// Variables used within the calibration's definition should be replaced with the actual expressions used by the gate.
// That is, `DEFCAL RX(%theta): ...` should have `%theta` replaced by `pi` throughout if it's used to expand `RX(pi)`.
let variable_expansions: HashMap<String, Expression> = calibration
.identifier
.parameters
.iter()
.zip(gate.parameters.iter())
.filter_map(|(calibration_expression, gate_expression)| {
if let Expression::Variable(variable_name) = calibration_expression
{
Some((variable_name.clone(), gate_expression.clone()))
} else {
None
}
})
.collect();
let mut instructions = calibration.instructions.clone();
for instruction in instructions.iter_mut() {
match instruction {
Instruction::Gate(Gate { qubits, .. })
| Instruction::Delay(Delay { qubits, .. })
| Instruction::Capture(Capture {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::RawCapture(RawCapture {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::SetFrequency(SetFrequency {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::SetPhase(SetPhase {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::SetScale(SetScale {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::ShiftFrequency(ShiftFrequency {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::ShiftPhase(ShiftPhase {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::Pulse(Pulse {
frame: FrameIdentifier { qubits, .. },
..
})
| Instruction::Fence(Fence { qubits }) => {
// Swap all qubits for their concrete implementations
for qubit in qubits {
match qubit {
Qubit::Variable(name) => {
if let Some(expansion) = qubit_expansions.get(name)
{
*qubit = expansion.clone();
}
}
Qubit::Fixed(_) | Qubit::Placeholder(_) => {}
}
}
}
_ => {}
}
instruction.apply_to_expressions(|expr| {
let previous = std::mem::replace(expr, Expression::PiConstant);
*expr = previous.substitute_variables(&variable_expansions);
})
}
Some((
instructions,
CalibrationSource::Calibration(calibration.identifier.clone()),
))
}
None => None,
}
}
Instruction::Measurement(measurement) => {
let matching_calibration = self.get_match_for_measurement(measurement);
match matching_calibration {
Some(calibration) => {
let mut instructions = calibration.instructions.clone();
for instruction in instructions.iter_mut() {
match instruction {
Instruction::Pragma(pragma) => {
if pragma.name == "LOAD-MEMORY"
&& pragma.data.as_ref()
== Some(&calibration.identifier.parameter)
{
if let Some(target) = &measurement.target {
pragma.data = Some(target.to_quil_or_debug())
}
}
}
Instruction::Capture(capture) => {
if let Some(target) = &measurement.target {
capture.memory_reference = target.clone()
}
}
_ => {}
}
}
Some((
instructions,
CalibrationSource::MeasureCalibration(calibration.identifier.clone()),
))
}
None => None,
}
}
_ => None,
};
// Add this instruction to the breadcrumb trail before recursion
let mut calibration_path = Vec::with_capacity(previous_calibrations.len() + 1);
calibration_path.push(instruction.clone());
calibration_path.extend_from_slice(previous_calibrations);
self.recursively_expand_inner(expansion_result, &calibration_path, build_source_map)
}
fn recursively_expand_inner(
&self,
expansion_result: Option<(Vec<Instruction>, CalibrationSource)>,
calibration_path: &[Instruction],
build_source_map: bool,
) -> Result<Option<CalibrationExpansionOutput>, ProgramError> {
Ok(match expansion_result {
Some((instructions, matched_calibration)) => {
let mut recursively_expanded_instructions = CalibrationExpansionOutput {
new_instructions: Vec::new(),
detail: CalibrationExpansion {
calibration_used: matched_calibration,
range: InstructionIndex(0)..InstructionIndex(0),
expansions: SourceMap::default(),
},
};
for (expanded_index, instruction) in instructions.into_iter().enumerate() {
let expanded_instructions =
self.expand_inner(&instruction, calibration_path, build_source_map)?;
match expanded_instructions {
Some(mut output) => {
if build_source_map {
let range_start = InstructionIndex(
recursively_expanded_instructions.new_instructions.len(),
);
recursively_expanded_instructions
.new_instructions
.extend(output.new_instructions);
let range_end = InstructionIndex(
recursively_expanded_instructions.new_instructions.len(),
);
output.detail.range = range_start..range_end;
recursively_expanded_instructions
.detail
.expansions
.entries
.push(SourceMapEntry {
source_location: InstructionIndex(expanded_index),
target_location: output.detail,
});
} else {
recursively_expanded_instructions
.new_instructions
.extend(output.new_instructions);
}
}
None => {
recursively_expanded_instructions
.new_instructions
.push(instruction);
}
};
}
if build_source_map {
// While this appears to be duplicated information at this point, it's useful when multiple
// source mappings are merged together.
recursively_expanded_instructions.detail.range = InstructionIndex(0)
..InstructionIndex(
recursively_expanded_instructions.new_instructions.len(),
);
}
Some(recursively_expanded_instructions)
}
None => None,
})
}
/// Returns the last-specified [`MeasureCalibrationDefinition`] that matches the target
/// qubit (if any), or otherwise the last-specified one that specified no qubit.
///
/// If multiple calibrations match the measurement, the precedence is as follows:
///
/// 1. Match fixed qubit.
/// 2. Match variable qubit.
/// 3. Match no qubit.
///
/// In the case of multiple calibrations with equal precedence, the last one wins.
pub fn get_match_for_measurement(
&self,
measurement: &Measurement,
) -> Option<&MeasureCalibrationDefinition> {
measurement.target.as_ref()?;
self.measure_calibrations()
.into_iter()
.rev()
.fold_while(None, |best_match, calibration| {
if let Some(qubit) = &calibration.identifier.qubit {
match qubit {
Qubit::Fixed(_) if qubit == &measurement.qubit => Done(Some(calibration)),
Qubit::Variable(_)
if best_match.is_none()
|| best_match.is_some_and(|c| c.identifier.qubit.is_none()) =>
{
Continue(Some(calibration))
}
_ => Continue(best_match),
}
} else if best_match.is_none() {
Continue(Some(calibration))
} else {
Continue(best_match)
}
})
.into_inner()
}
/// Return the final calibration which matches the gate per the QuilT specification:
///
/// A calibration matches a gate if:
/// 1. It has the same name
/// 2. It has the same modifiers
/// 3. It has the same qubit count (any mix of fixed & variable)
/// 4. It has the same parameter count (both specified and unspecified)
/// 5. All fixed qubits in the calibration definition match those in the gate
/// 6. All specified parameters in the calibration definition match those in the gate
pub fn get_match_for_gate(&self, gate: &Gate) -> Option<&Calibration> {
let mut matched_calibration: Option<MatchedCalibration> = None;
for calibration in self
.iter_calibrations()
.filter(|calibration| calibration.identifier.matches(gate))
{
matched_calibration = match matched_calibration {
None => Some(MatchedCalibration::new(calibration)),
Some(previous_match) => {
let potential_match = MatchedCalibration::new(calibration);
if potential_match.fixed_qubit_count >= previous_match.fixed_qubit_count {
Some(potential_match)
} else {
Some(previous_match)
}
}
}
}
matched_calibration.map(|m| m.calibration)
}
/// Return the count of contained calibrations.
pub fn len(&self) -> usize {
self.calibrations.len()
}
/// Return true if this contains no data.
pub fn is_empty(&self) -> bool {
self.calibrations.is_empty()
}
/// Insert a [`Calibration`] into the set.
///
/// If a calibration with the same [`CalibrationSignature`] already exists in the set, it will
/// be replaced, and the old calibration is returned.
pub fn insert_calibration(&mut self, calibration: Calibration) -> Option<Calibration> {
self.calibrations.replace(calibration)
}
/// Insert a [`MeasureCalibration`] into the set.
///
/// If a calibration with the same [`CalibrationSignature`] already exists in the set, it will
/// be replaced, and the old calibration is returned.
pub fn insert_measurement_calibration(
&mut self,
calibration: MeasureCalibrationDefinition,
) -> Option<MeasureCalibrationDefinition> {
self.measure_calibrations.replace(calibration)
}
/// Append another [`CalibrationSet`] onto this one.
///
/// Calibrations with conflicting [`CalibrationSignature`]s are overwritten by the ones in the
/// given set.
pub fn extend(&mut self, other: Calibrations) {
self.calibrations.extend(other.calibrations);
self.measure_calibrations.extend(other.measure_calibrations);
}
/// Return the Quil instructions which describe the contained calibrations, consuming the
/// [`CalibrationSet`]
pub fn into_instructions(self) -> Vec<Instruction> {
self.calibrations
.into_iter()
.map(Instruction::CalibrationDefinition)
.chain(
self.measure_calibrations
.into_iter()
.map(Instruction::MeasureCalibrationDefinition),
)
.collect()
}
/// Return the Quil instructions which describe the contained calibrations.
pub fn to_instructions(&self) -> Vec<Instruction> {
self.iter_calibrations()
.cloned()
.map(Instruction::CalibrationDefinition)
.chain(
self.iter_measure_calibrations()
.cloned()
.map(Instruction::MeasureCalibrationDefinition),
)
.collect()
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use crate::program::calibration::{CalibrationSource, MeasureCalibrationIdentifier};
use crate::program::source_map::{SourceMap, SourceMapEntry};
use crate::program::{InstructionIndex, Program};
use crate::quil::Quil;
use insta::assert_snapshot;
use rstest::rstest;
use super::{CalibrationExpansion, CalibrationExpansionOutput, CalibrationIdentifier};
#[rstest]
#[case(
"Calibration-Param-Precedence",
concat!(
"DEFCAL RX(%theta) %qubit:\n",
" PULSE 1 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)\n",
"DEFCAL RX(%theta) 0:\n",
" PULSE 2 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)\n",
"DEFCAL RX(pi/2) 0:\n",
" PULSE 3 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)\n",
"RX(pi/2) 1\n",
"RX(pi) 0\n",
"RX(pi/2) 0\n"
),
)]
#[case(
"Calibration-Simple",
concat!(
"DEFCAL X 0:\n",
" PULSE 0 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)\n",
"X 0\n",
),
)]
#[case(
"Calibration-Literal-Parameter",
concat!(
"DEFCAL RX(3.141592653589793) 0:\n",
" NOP\n",
"RX(3.141592653589793) 0\n",
),
)]
#[case(
"Calibration-Instruction-Match",
concat!(
"DEFCAL X 0:\n",
" Y 0\n",
"DEFCAL Y 0:\n",
" PULSE 0 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)\n",
"X 0\n"
),
)]
#[case(
"Measure-Calibration",
concat!(
"DEFCAL MEASURE 0 addr:\n",
" PRAGMA INCORRECT_ORDERING\n",
"DEFCAL MEASURE 0 addr:\n",
" PRAGMA CORRECT\n",
"DEFCAL MEASURE q addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE 1 addr:\n",
" PRAGMA INCORRECT_QUBIT\n",
"DEFCAL MEASURE addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"MEASURE 0 ro\n",
),
)]
#[case(
"Calibration-Variable-Qubit",
concat!("DEFCAL I %q:\n", " DELAY q 4e-8\n", "I 0\n",),
)]
#[case(
"Precedence-Fixed-Match",
concat!(
"DEFCAL MEASURE addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE q addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE 0 addr:\n",
" PRAGMA INCORRECT_ORDER\n",
"DEFCAL MEASURE 0 addr:\n",
" PRAGMA CORRECT\n",
"MEASURE 0 ro\n",
)
)]
#[case(
"Precedence-Variable-Match",
concat!(
"DEFCAL MEASURE addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE q addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE b addr:\n",
" PRAGMA CORRECT\n",
"MEASURE 0 ro\n",
)
)]
#[case(
"Precedence-No-Qubit-Match",
concat!(
"DEFCAL MEASURE addr:\n",
" PRAGMA INCORRECT_PRECEDENCE\n",
"DEFCAL MEASURE addr:\n",
" PRAGMA CORRECT\n",
"MEASURE 0 ro\n",
)
)]
#[case(
"ShiftPhase",
concat!(
"DEFCAL RZ(%theta) %q:\n",
" SHIFT-PHASE %q \"rf\" -%theta\n",
"RZ(pi) 0\n",
)
)]
#[case(
"FenceVariableQubit",
concat!(
"DEFCAL FENCES q0 q1:\n",
" FENCE q0\n",
" FENCE q1\n",
"FENCES 0 1\n",
)
)]
fn test_expansion(#[case] description: &str, #[case] input: &str) {
let program = Program::from_str(input).unwrap();
let calibrated_program = program.expand_calibrations().unwrap();
insta::with_settings!({
snapshot_suffix => description,
}, {
assert_snapshot!(calibrated_program.to_quil_or_debug())
})
}
/// Assert that instruction expansion yields the expected [`SourceMap`] and resulting instructions.
#[test]
fn expand_with_detail_recursive() {
let input = r#"
DEFCAL X 0:
Y 0
MEASURE 0 ro
Y 0
DEFCAL Y 0:
NOP
Z 0
DEFCAL Z 0:
WAIT
DEFCAL MEASURE 0 addr:
HALT
X 0
"#;
let program = Program::from_str(input).unwrap();
let instruction = program.instructions.last().unwrap();
let expansion = program
.calibrations
.expand_with_detail(instruction, &[])
.unwrap();
let expected = CalibrationExpansionOutput {
new_instructions: vec![
crate::instruction::Instruction::Nop,
crate::instruction::Instruction::Wait,
crate::instruction::Instruction::Halt,
crate::instruction::Instruction::Nop,
crate::instruction::Instruction::Wait,
],
detail: CalibrationExpansion {
calibration_used: CalibrationSource::Calibration(CalibrationIdentifier {
modifiers: vec![],
name: "X".to_string(),
parameters: vec![],
qubits: vec![crate::instruction::Qubit::Fixed(0)],
}),
range: InstructionIndex(0)..InstructionIndex(5),
expansions: SourceMap {
entries: vec![
SourceMapEntry {
source_location: InstructionIndex(0),
target_location: CalibrationExpansion {
calibration_used: CalibrationSource::Calibration(
CalibrationIdentifier {
modifiers: vec![],
name: "Y".to_string(),
parameters: vec![],
qubits: vec![crate::instruction::Qubit::Fixed(0)],
},
),
range: InstructionIndex(0)..InstructionIndex(2),
expansions: SourceMap {
entries: vec![SourceMapEntry {
source_location: InstructionIndex(1),
target_location: CalibrationExpansion {
calibration_used: CalibrationSource::Calibration(
CalibrationIdentifier {
modifiers: vec![],
name: "Z".to_string(),
parameters: vec![],
qubits: vec![crate::instruction::Qubit::Fixed(
0,
)],
},
),
range: InstructionIndex(1)..InstructionIndex(2),
expansions: SourceMap::default(),
},
}],
},
},
},
SourceMapEntry {
source_location: InstructionIndex(1),
target_location: CalibrationExpansion {
calibration_used: CalibrationSource::MeasureCalibration(
MeasureCalibrationIdentifier {
qubit: Some(crate::instruction::Qubit::Fixed(0)),
parameter: "addr".to_string(),
},
),
range: InstructionIndex(2)..InstructionIndex(3),
expansions: SourceMap::default(),
},
},
SourceMapEntry {
source_location: InstructionIndex(2),
target_location: CalibrationExpansion {
calibration_used: CalibrationSource::Calibration(
CalibrationIdentifier {
modifiers: vec![],
name: "Y".to_string(),
parameters: vec![],
qubits: vec![crate::instruction::Qubit::Fixed(0)],
},
),
range: InstructionIndex(3)..InstructionIndex(5),
expansions: SourceMap {
entries: vec![SourceMapEntry {
source_location: InstructionIndex(1),
target_location: CalibrationExpansion {
calibration_used: CalibrationSource::Calibration(
CalibrationIdentifier {
modifiers: vec![],
name: "Z".to_string(),
parameters: vec![],
qubits: vec![crate::instruction::Qubit::Fixed(
0,
)],
},
),
range: InstructionIndex(1)..InstructionIndex(2),
expansions: SourceMap::default(),
},
}],
},
},
},
],
},
},
};
pretty_assertions::assert_eq!(expansion, Some(expected));
}
#[test]
fn test_eq() {
let input = "DEFCAL X 0:
PULSE 0 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)
X 0";
let a = Program::from_str(input);
let b = Program::from_str(input);
assert_eq!(a, b);
}
#[test]
fn test_ne() {
let input_a = "DEFCAL X 0:
PULSE 0 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)
X 0";
let input_b = "DEFCAL X 1:
PULSE 1 \"xy\" gaussian(duration: 1, fwhm: 2, t0: 3)
X 1";
let a = Program::from_str(input_a);
let b = Program::from_str(input_b);
assert_ne!(a, b);
}
}