quil_rs/program/scheduling/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
//! Utilities for analysis of the dependency graph of a Quil Program

// Copyright 2021 Rigetti Computing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::{HashMap, HashSet};

use petgraph::graphmap::GraphMap;
use petgraph::Directed;

use crate::instruction::{
    ExternSignatureMap, FrameIdentifier, Instruction, InstructionHandler, Target,
};
use crate::program::analysis::{
    BasicBlock, BasicBlockOwned, BasicBlockTerminator, ControlFlowGraph,
};
use crate::{instruction::InstructionRole, program::Program, quil::Quil};

pub use crate::program::memory::MemoryAccessType;

#[derive(Debug, Clone, Copy)]
pub enum ScheduleErrorVariant {
    DuplicateLabel,
    Extern,
    UncalibratedInstruction,
    UnresolvedCallInstruction,
    ControlFlowNotBlockTerminator,
    UnschedulableInstruction,
}

#[derive(Debug, Clone, thiserror::Error)]
#[error(
    "Error scheduling {}: {}: {variant:?}",
    .instruction_node.map_or_else(||  "an instruction".to_string(), |node| node.to_string()),
    .instruction.to_quil_or_debug(),
)]
pub struct ScheduleError {
    pub instruction_node: Option<ScheduledGraphNode>,
    pub instruction: Instruction,
    pub variant: ScheduleErrorVariant,
}

pub type ScheduleResult<T> = Result<T, ScheduleError>;

#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Hash, Ord)]
pub enum ScheduledGraphNode {
    BlockStart,
    InstructionIndex(usize),
    BlockEnd,
}

impl std::fmt::Display for ScheduledGraphNode {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::BlockStart => write!(f, "the start of the block"),
            Self::InstructionIndex(ix) => write!(f, "instruction {ix}"),
            Self::BlockEnd => write!(f, "the end-of-block terminator"),
        }
    }
}

/// A MemoryAccessQueue expresses the current state of memory accessors at the time of
/// an instruction's execution.
///
/// Quil uses a multiple-reader, single-writer concurrency model for memory access.
#[derive(Debug, Default, Clone)]
struct MemoryAccessQueue {
    pending_capture: Option<ScheduledGraphNode>,
    pending_reads: Vec<ScheduledGraphNode>,
    pending_write: Option<ScheduledGraphNode>,
}

/// A MemoryAccessDependency expresses a dependency that one node has on another to complete
/// some type of memory access prior to the dependent node's execution.
#[derive(Clone, Debug)]
struct MemoryAccessDependency {
    /// What type of memory access must complete prior to the downstream instruction.
    // NOTE: This must remain the first field for ordering to work as expected.
    pub access_type: MemoryAccessType,

    /// Which node is using the given `access_type`.
    pub node_id: ScheduledGraphNode,
}

#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum ExecutionDependency {
    /// The downstream instruction must wait for the given operation to complete.
    AwaitMemoryAccess(MemoryAccessType),

    /// The schedule of the downstream instruction depends on the upstream instruction.
    /// Per the Quil-T specification, the downstream instruction begins execution at
    /// the time that its latest upstream neighbor completes.
    Scheduled,

    /// The ordering between these two instructions must remain unchanged
    StableOrdering,
}

/// A data structure to be used in the serializing of access to a memory region.
/// This utility helps guarantee strong consistency in a single-writer, multiple-reader model.
impl MemoryAccessQueue {
    /// Register that a node wants access of the given type, while returning which accesses block
    /// the requested access.
    ///
    /// Captures and writes may not happen concurrently with any other access; multiple reads may
    /// occur concurrently.
    ///
    /// Thus, if the caller requests Read access, and there are no pending captures or writes, then
    /// there will be no blocking nodes.
    ///
    /// However, if there is a pending capture or write, that dependency will be expressed in the
    /// return value.
    ///
    /// If the caller requests a capture or a write, then all pending calls - reads, writes, and captures -
    /// will be returned as "blocking" the capture or write.
    ///
    /// A capture or write remains blocking until the next capture or write.
    pub fn get_blocking_nodes(
        &mut self,
        node_id: ScheduledGraphNode,
        access: &MemoryAccessType,
    ) -> Vec<MemoryAccessDependency> {
        use MemoryAccessType::*;

        let mut result = vec![];
        if let Some(node_id) = self.pending_write {
            result.push(MemoryAccessDependency {
                node_id,
                access_type: Write,
            });
        }
        if let Some(node_id) = self.pending_capture {
            result.push(MemoryAccessDependency {
                node_id,
                access_type: Capture,
            });
        }

        self.pending_capture = None;
        self.pending_write = None;

        match access {
            Read => {
                self.pending_reads.push(node_id);
            }
            Capture => {
                for upstream_node_id in self.pending_reads.iter() {
                    result.push(MemoryAccessDependency {
                        node_id: *upstream_node_id,
                        access_type: Read,
                    });
                }

                self.pending_reads = vec![];
                self.pending_capture = Some(node_id);
            }

            Write => {
                for upstream_node_id in self.pending_reads.iter() {
                    result.push(MemoryAccessDependency {
                        node_id: *upstream_node_id,
                        access_type: Read,
                    });
                }

                self.pending_reads = vec![];
                self.pending_write = Some(node_id);
            }
        }

        result
    }
}

/// Add a dependency to an edge on the graph, whether that edge currently exists or not.
macro_rules! add_dependency {
    ($graph:expr, $source:expr => $target:expr, $dependency:expr) => {{
        let source = $source;
        let target = $target;
        let dependency = $dependency;
        match $graph.edge_weight_mut(source, target) {
            Some(edge) => {
                edge.insert(dependency);
            }
            None => {
                let mut edge = HashSet::new();
                edge.insert(dependency);
                $graph.add_edge(source, target, edge);
            }
        }
    }};
}

pub type DependencyGraph = GraphMap<ScheduledGraphNode, HashSet<ExecutionDependency>, Directed>;

/// A [`ScheduledBasicBlock`] is a wrapper around a [`BasicBlock`] which includes a graph expressing the vector clock
/// among the instructions according to the Quil specification.
///
/// If instruction A blocks instruction B (because of shared use of a frame), then there will be an edge from A to B
/// in the graph.
#[derive(Clone, Debug)]
pub struct ScheduledBasicBlock<'a> {
    basic_block: BasicBlock<'a>,
    pub(super) graph: DependencyGraph,
}
/// PreviousNodes is a structure which helps maintain ordering among instructions which operate on a given frame.
/// It works similarly to a multiple-reader-single-writer queue, where an instruction which "uses" a frame is like
/// a writer and an instruction which blocks that frame is like a reader. Multiple instructions may concurrently
/// block a frame, but an instruction may not use a frame while it is concurrently used or blocked.
///
/// ## Examples
///
/// Note that "depends on" is equivalent to "must execute at or after completion of." The interpretation of
/// "at or after" depends on the type of dependency and the compiler.
///
/// ```text
/// user --> user # a second user takes a dependency on the first
///
/// user --> blocker # multiple blockers take a dependency on the most recent user
///      \-> blocker
///      \-> blocker
///
/// blocker --> user --> blocker # users and blockers take dependencies on one another,
///                              # but blockers do not depend on other blocking instructions
/// ```
struct PreviousNodes {
    using: Option<ScheduledGraphNode>,
    blocking: HashSet<ScheduledGraphNode>,
}

impl Default for PreviousNodes {
    /// The default value for [PreviousNodes] is useful in that, if no previous nodes have been recorded
    /// as using a frame, we should consider that the start of the instruction block "uses" of that frame
    ///
    /// In other words, no instruction can be scheduled prior to the start of the instruction block
    /// and all scheduled instructions within the block depend on the block's start time, at least indirectly.
    fn default() -> Self {
        Self {
            using: Some(ScheduledGraphNode::BlockStart),
            blocking: HashSet::new(),
        }
    }
}

impl PreviousNodes {
    /// Register a node as using a frame, and return the instructions on which it should depend/wait for scheduling (if any).
    ///
    /// A node which uses a frame will block on any previous user or blocker of the frame, much like a writer in a read-write lock.
    fn get_dependencies_for_next_user(
        &mut self,
        node: ScheduledGraphNode,
    ) -> HashSet<ScheduledGraphNode> {
        let mut result = std::mem::take(&mut self.blocking);
        if let Some(previous_user) = self.using.replace(node) {
            result.insert(previous_user);
        }

        result
    }

    /// Register a node as blocking a frame, and return the instructions on which it should depend/wait for scheduling (if any).
    ///
    /// A node which blocks a frame will block on any previous user of the frame, but not concurrent blockers.
    ///
    /// If the frame is currently blocked by other nodes, it will add itself to the list of blockers,
    /// much like a reader in a read-write lock.
    fn get_dependency_for_next_blocker(
        &mut self,
        node: ScheduledGraphNode,
    ) -> Option<ScheduledGraphNode> {
        self.blocking.insert(node);
        self.using
    }

    /// Consume the [PreviousNodes] and return all nodes within.
    pub fn into_hashset(mut self) -> HashSet<ScheduledGraphNode> {
        if let Some(using) = self.using {
            self.blocking.insert(using);
        }
        self.blocking
    }
}

impl<'a> ScheduledBasicBlock<'a> {
    /// Build a scheduled basic block from a basic block and a program.
    pub fn build(
        basic_block: BasicBlock<'a>,
        program: &'a Program,
        custom_handler: &mut InstructionHandler,
    ) -> ScheduleResult<Self> {
        let mut graph: DependencyGraph = GraphMap::new();
        // Root node
        graph.add_node(ScheduledGraphNode::BlockStart);

        // The set of classical instructions that do not have outgoing edges (i.e. there are no
        // downstream instructions that depend on them). After iterating over all instructions,
        // the set of trailing classical instructions will need an outgoing edge to the block end.
        let mut trailing_classical_instructions: HashSet<ScheduledGraphNode> = HashSet::new();

        // Store the instruction index of the last instruction to block that frame
        let mut last_instruction_by_frame: HashMap<FrameIdentifier, PreviousNodes> = HashMap::new();
        let mut last_timed_instruction_by_frame: HashMap<FrameIdentifier, PreviousNodes> =
            HashMap::new();

        // Store memory access reads and writes. Key is memory region name.
        // NOTE: this may be refined to serialize by memory region offset rather than by entire region.
        let mut pending_memory_access: HashMap<String, MemoryAccessQueue> = HashMap::new();

        let extern_signature_map = ExternSignatureMap::try_from(program.extern_pragma_map.clone())
            .map_err(|(pragma, _)| ScheduleError {
                instruction_node: None,
                instruction: Instruction::Pragma(pragma),
                variant: ScheduleErrorVariant::Extern,
            })?;

        let terminator = basic_block.terminator().clone().into_instruction();
        let terminator_ref = terminator.as_ref();

        let instructions_iter = basic_block
            .instructions()
            .iter()
            .enumerate()
            .map(|(index, instr)| (ScheduledGraphNode::InstructionIndex(index), *instr))
            .chain(terminator_ref.map(|instr| (ScheduledGraphNode::BlockEnd, instr)));

        for (node, instruction) in instructions_iter {
            graph.add_node(node);

            let accesses = custom_handler
                .memory_accesses(instruction, &extern_signature_map)
                .map_err(|_| ScheduleError {
                    instruction_node: Some(node),
                    instruction: instruction.clone(),
                    variant: ScheduleErrorVariant::UnresolvedCallInstruction,
                })?;

            let memory_dependencies = [
                (accesses.reads, MemoryAccessType::Read),
                (accesses.writes, MemoryAccessType::Write),
                (accesses.captures, MemoryAccessType::Capture),
            ]
            .iter()
            .flat_map(|(regions, access_type)| {
                regions
                    .iter()
                    .flat_map(|region| {
                        pending_memory_access
                            .entry(region.clone())
                            .or_default()
                            // NOTE: This mutates the underlying `MemoryAccessQueue` by registering
                            // the instruction node.
                            .get_blocking_nodes(node, access_type)
                    })
                    // Collecting is necessary to avoid "captured variable cannot escape FnMut closure body" errors
                    .collect::<Vec<_>>()
            })
            .collect::<Vec<_>>();
            let has_memory_dependencies = !memory_dependencies.is_empty();
            for memory_dependency in memory_dependencies {
                // Test to make sure that no instructions depend directly on themselves
                if memory_dependency.node_id != node {
                    let execution_dependency =
                        ExecutionDependency::AwaitMemoryAccess(memory_dependency.access_type);
                    add_dependency!(graph, memory_dependency.node_id => node, execution_dependency);
                    // This memory dependency now has an outgoing edge, so it is no longer a trailing classical
                    // instruction. If the memory dependency is not a classical instruction, this
                    // has no effect.
                    trailing_classical_instructions.remove(&memory_dependency.node_id);
                }
            }

            match custom_handler.role_for_instruction(instruction) {
                // Classical instructions must be ordered by appearance in the program
                InstructionRole::ClassicalCompute => {
                    // If this instruction has no memory dependencies, it is a leading classical
                    // instruction and needs an incoming edge from the block start.
                    if !has_memory_dependencies {
                        add_dependency!(graph, ScheduledGraphNode::BlockStart => node, ExecutionDependency::StableOrdering);
                    }
                    trailing_classical_instructions.insert(node);
                    Ok(())
                }
                InstructionRole::RFControl => {
                    let matched_frames = custom_handler.matching_frames(instruction, program);
                    let is_scheduled = custom_handler.is_scheduled(instruction);

                    if let Some(matched_frames) = matched_frames {
                        for frame in matched_frames.used() {
                            if is_scheduled {
                                let previous_node_ids = last_timed_instruction_by_frame
                                    .entry((*frame).clone())
                                    .or_default()
                                    .get_dependencies_for_next_user(node);

                                for previous_node_id in previous_node_ids {
                                    add_dependency!(graph, previous_node_id => node, ExecutionDependency::Scheduled);
                                }
                            }

                            let previous_node_ids = last_instruction_by_frame
                                .entry((*frame).clone())
                                .or_default()
                                .get_dependencies_for_next_user(node);

                            for previous_node_id in previous_node_ids {
                                add_dependency!(graph, previous_node_id => node, ExecutionDependency::StableOrdering);
                            }
                        }

                        for frame in matched_frames.blocked() {
                            if is_scheduled {
                                if let Some(previous_node_id) = last_timed_instruction_by_frame
                                    .entry((*frame).clone())
                                    .or_default()
                                    .get_dependency_for_next_blocker(node)
                                {
                                    add_dependency!(graph, previous_node_id => node, ExecutionDependency::Scheduled);
                                }
                            }

                            if let Some(previous_node_id) = last_instruction_by_frame
                                .entry((*frame).clone())
                                .or_default()
                                .get_dependency_for_next_blocker(node)
                            {
                                add_dependency!(graph, previous_node_id => node, ExecutionDependency::StableOrdering);
                            }
                        }
                    }

                    Ok(())
                }
                InstructionRole::ControlFlow => {
                    if let ScheduledGraphNode::BlockEnd = node {
                        Ok(())
                    } else {
                        Err(ScheduleError {
                            instruction_node: Some(node),
                            instruction: instruction.clone(),
                            variant: ScheduleErrorVariant::ControlFlowNotBlockTerminator,
                        })
                    }
                }
                InstructionRole::ProgramComposition => Err(ScheduleError {
                    instruction_node: Some(node),
                    instruction: instruction.clone(),
                    variant: ScheduleErrorVariant::UnschedulableInstruction,
                }),
            }?;
        }

        // Link all pending dependency nodes to the end of the block, to ensure that the block
        // does not terminate until these are complete
        for trailing_classical_instruction in trailing_classical_instructions {
            add_dependency!(graph, trailing_classical_instruction => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
        }

        for previous_nodes in last_timed_instruction_by_frame.into_values() {
            for node in previous_nodes.into_hashset() {
                add_dependency!(graph, node => ScheduledGraphNode::BlockEnd, ExecutionDependency::Scheduled);
            }
        }

        for previous_nodes in last_instruction_by_frame.into_values() {
            for node in previous_nodes.into_hashset() {
                add_dependency!(graph, node => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
            }
        }

        // Maintain the invariant that the block start node has a connecting path to the block end node.
        if basic_block.instructions().is_empty() {
            add_dependency!(graph, ScheduledGraphNode::BlockStart => ScheduledGraphNode::BlockEnd, ExecutionDependency::StableOrdering);
        }

        Ok(ScheduledBasicBlock { graph, basic_block })
    }

    pub fn get_dependency_graph(&self) -> &DependencyGraph {
        &self.graph
    }

    pub fn instructions(&'a self) -> &'a [&'a Instruction] {
        self.basic_block.instructions()
    }

    /// Return a particular-indexed instruction (if present).
    pub fn get_instruction(&self, node_id: usize) -> Option<&Instruction> {
        self.instructions().get(node_id).copied()
    }

    pub fn label(&self) -> Option<&Target> {
        self.basic_block.label()
    }

    /// Return the count of executable instructions in this block.
    pub fn len(&self) -> usize {
        self.instructions().len()
    }

    /// Return true if this block contains no executable instructions.
    pub fn is_empty(&self) -> bool {
        self.instructions().is_empty()
    }

    pub fn terminator(&self) -> &BasicBlockTerminator {
        self.basic_block.terminator()
    }

    pub fn basic_block(&self) -> &BasicBlock<'a> {
        &self.basic_block
    }
}

/// A program broken down into its [`ScheduledBasicBlock`]s.  All instruction-level scheduling in a
/// program is intra-block; the only dependencies between basic blocks are those resulting from
/// execution flow.  For instance, we do *not* track memory dependencies from a write in one block to
/// a read in a subsequent block.
#[derive(Clone, Debug)]
pub struct ScheduledProgram<'a> {
    basic_blocks: Vec<ScheduledBasicBlock<'a>>,
}

impl<'a> ScheduledProgram<'a> {
    /// Structure a sequential program
    pub fn from_program(
        program: &'a Program,
        custom_handler: &mut InstructionHandler,
    ) -> ScheduleResult<Self> {
        let control_flow_graph = ControlFlowGraph::from(program);
        Ok(Self {
            basic_blocks: control_flow_graph
                .into_blocks()
                .into_iter()
                .map(|block| ScheduledBasicBlock::build(block, program, custom_handler))
                .collect::<ScheduleResult<Vec<_>>>()?,
        })
    }

    pub fn basic_blocks(&self) -> &[ScheduledBasicBlock<'_>] {
        self.basic_blocks.as_ref()
    }

    pub fn into_basic_blocks(self) -> Vec<ScheduledBasicBlock<'a>> {
        self.basic_blocks
    }
}

#[derive(Clone, Debug)]
pub struct ScheduledBasicBlockOwned {
    basic_block: BasicBlockOwned,
    graph: DependencyGraph,
}

impl<'a> From<&'a ScheduledBasicBlockOwned> for ScheduledBasicBlock<'a> {
    fn from(block: &'a ScheduledBasicBlockOwned) -> Self {
        Self {
            basic_block: (&block.basic_block).into(),
            graph: block.graph.clone(),
        }
    }
}

impl From<ScheduledBasicBlock<'_>> for ScheduledBasicBlockOwned {
    fn from(block: ScheduledBasicBlock) -> Self {
        Self {
            basic_block: block.basic_block.into(),
            graph: block.graph.clone(),
        }
    }
}

#[cfg(all(test, feature = "graphviz-dot"))]
mod graphviz_dot_tests {
    use super::*;

    use crate::program::scheduling::graphviz_dot::tests::build_dot_format_snapshot_test_case;

    mod custom_handler {
        use super::*;

        use crate::instruction::Pragma;
        use crate::instruction::PragmaArgument;
        use crate::program::frame::FrameMatchCondition;
        use crate::program::{MatchedFrames, MemoryAccesses};

        /// Generates a custom [`InstructionHandler`] that specially handles two `PRAGMA` instructions:
        ///
        /// - `NO-OP` is considered a `ClassicalCompute` instruction that does nothing
        /// - `RAW-INSTRUCTION` is an `RFControl` instruction that is scheduled on all frames by default
        ///   or the frame names specified as arguments, and reads from `ro`.
        ///
        /// Note that any program being tested must define at least one frame for `RAW-INSTRUCTION` to
        /// have any effect.
        fn get_custom_handler() -> InstructionHandler {
            const NO_OP: &str = "NO-OP";
            const RAW_INSTRUCTION: &str = "RAW-INSTRUCTION";

            InstructionHandler::default()
                .set_is_scheduled(|instruction| match instruction {
                    Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => Some(false),
                    Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => {
                        Some(true)
                    }
                    _ => None,
                })
                .set_role_for_instruction(|instruction| match instruction {
                    Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => {
                        Some(InstructionRole::ClassicalCompute)
                    }
                    Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => {
                        Some(InstructionRole::RFControl)
                    }
                    _ => None,
                })
                .set_matching_frames(|instruction, program| match instruction {
                    Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => Some(None),
                    Instruction::Pragma(Pragma {
                        name, arguments, ..
                    }) if name == RAW_INSTRUCTION => Some(Some({
                        let frame_condition = if arguments.is_empty() {
                            FrameMatchCondition::All
                        } else {
                            FrameMatchCondition::AnyOfNames(
                                arguments
                                    .iter()
                                    .filter_map(|arg| match arg {
                                        PragmaArgument::Identifier(name) => Some(name.as_str()),
                                        PragmaArgument::Integer(_) => None,
                                    })
                                    .collect(),
                            )
                        };

                        let used = program
                            .frames
                            .get_matching_keys_for_condition(frame_condition);

                        MatchedFrames {
                            used,
                            blocked: HashSet::new(),
                        }
                    })),
                    _ => None,
                })
                .set_memory_accesses(|instruction| match instruction {
                    Instruction::Pragma(Pragma { name, .. }) if name == NO_OP => {
                        Some(MemoryAccesses::default())
                    }
                    Instruction::Pragma(Pragma { name, .. }) if name == RAW_INSTRUCTION => Some({
                        MemoryAccesses {
                            captures: HashSet::new(),
                            reads: [String::from("ro")].into(),
                            writes: HashSet::new(),
                        }
                    }),
                    _ => None,
                })
        }

        build_dot_format_snapshot_test_case! {
            only_pragmas_without_frames,
            r#"
DEFFRAME 0 "quux":
    SAMPLE-RATE: 1.0
    INITIAL-FREQUENCY: 1e8
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION
PRAGMA RAW-INSTRUCTION
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION
"#,
            &mut get_custom_handler(),
        }

        build_dot_format_snapshot_test_case! {
            only_pragmas_with_frames,
            r#"
DEFFRAME 0 "foo":
    SAMPLE-RATE: 1.0
    INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "bar":
    SAMPLE-RATE: 1.0
    INITIAL-FREQUENCY: 1e8

PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
PRAGMA RAW-INSTRUCTION bar
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo bar
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
"#,
            &mut get_custom_handler(),
        }

        build_dot_format_snapshot_test_case! {
            mixed_pragmas_and_pulses,
            r#"
DEFFRAME 0 "foo":
    SAMPLE-RATE: 1.0
    INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "bar":
    SAMPLE-RATE: 1.0
    INITIAL-FREQUENCY: 1e8

PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
PULSE 1 "bar" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA RAW-INSTRUCTION foo bar
PRAGMA NO-OP
PULSE 0 "foo" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA RAW-INSTRUCTION bar
PULSE 0 "foo" gaussian(duration: 1, fwhm: 2, t0: 3)
PULSE 1 "bar" gaussian(duration: 1, fwhm: 2, t0: 3)
PRAGMA NO-OP
PRAGMA RAW-INSTRUCTION foo
"#,
            &mut get_custom_handler(),
        }
    }

    // Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
    // we expect an edge from the first load to the second (0 -> 1).
    build_dot_format_snapshot_test_case! {
        classical_write_read_load_load,
        r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE params3 REAL[1]
DECLARE integers INTEGER[1]
LOAD params2[0] params3 integers[0] # writes params2 
LOAD params1[0] params2 integers[0] # reads params2
"#
    }

    // Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
    // we expect an edge from the mul to the load (0 -> 1).
    build_dot_format_snapshot_test_case! {
        classical_write_read_mul_load,
        r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]

MUL params2[0] 2 # reads and writes params2
LOAD params1[0] params2 integers[0] # just reads params2
"#
    }

    // Because any instruction that reads a particular region must be preceded by any earlier instructions that write to/ capture that memory region,
    // we expect an edge from the mul to the add (0 -> 1).
    build_dot_format_snapshot_test_case! {
        classical_write_read_add_mul,
        r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]

ADD params1[0] 1 # this reads and writes params1
MUL params1[0] 2 # this reads and writes params1
"#
    }

    // Because any instruction that reads a particular region must precede any later instructions that write to/ capture that memory region,
    // we expect an edge from the first load to the second (0, 1).
    build_dot_format_snapshot_test_case! {
        classical_read_write_load_load,
        r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]

LOAD params1[0] params2 integers[0] # reads params2
LOAD params2[0] params3 integers[0] # writes params2
"#
    }

    // Because any instruction that reads a particular region must precede any later instructions that write to/ capture that memory region,
    // we expect an edge from the load to the mul (0, 1).
    build_dot_format_snapshot_test_case! {
        classical_read_write_load_mul,
        r#"
DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]

LOAD params1[0] params2 integers[0] # reads params2
MUL params2[0] 2                    # reads and writes params2
"#
    }

    // Because memory reading and writing dependencies also apply to RfControl instructions, we
    // expect edges from the first load to the first shift-phase (0 -> 1), the first shift-phase
    // to the second load (1 -> 2), and the second load to the second shift-phase (2 -> 3).
    build_dot_format_snapshot_test_case! {
        quantum_write_parameterized_operations,
        r#"
DEFFRAME 0 "rx":
    INITIAL-FREQUENCY: 1e8
DEFFRAME 1 "rx":
    INITIAL-FREQUENCY: 1e8

DECLARE params1 REAL[1]
DECLARE params2 REAL[1]
DECLARE integers INTEGER[1]

LOAD params2[0] params1 integers[0] # writes params2
SHIFT-PHASE 0 "rf" params2[0]       # reads params2
LOAD params2[0] params1 integers[1] # writes params2
SHIFT-PHASE 1 "rf" params2[0]       # reads params2
"#
    }

    // Because a pragma by default will have no memory accesses, it should only have edges from the block start and to the block end.
    build_dot_format_snapshot_test_case! {
        classical_no_memory_pragma,
        r#"PRAGMA example"#
    }

    build_dot_format_snapshot_test_case! {
        write_capture_read,
        r#"
DECLARE bits BIT[1]
DECLARE integers INTEGER[1]
LOAD bits[0] bits2 integers[0] # write
NONBLOCKING CAPTURE 0 "Transmon-0_readout_rx" flat(duration: 2.0000000000000003e-06, iq: 1.0, scale: 1.0, phase: 0.8745492960861506, detuning: 0.0) bits[0] # capture
LOAD bits3[0] bits integers[0] # read
"#
    }

    build_dot_format_snapshot_test_case! {
        write_write_read,
        r#"
DECLARE bits BIT[1]
DECLARE bits2 BIT[1]
DECLARE bits3 BIT[1]
DECLARE integers INTEGER[1]
LOAD bits[0] bits2 integers[0] # write
LOAD bits[0] bits3 integers[0] # write
LOAD bits4[0] bits integers[0] # read
"#
    }

    build_dot_format_snapshot_test_case! {
        memory_dependency_not_in_block_terminator,
        r#"
DECLARE ro BIT
DECLARE depends_on_ro BIT

NONBLOCKING CAPTURE 0 "ro_rx" flat(duration: 2.0000000000000003e-06, iq: 1.0, scale: 1.0, phase: 0.8745492960861506, detuning: 0.0) ro
MOVE depends_on_ro ro
JUMP @eq
LABEL @eq
PULSE 0 "ro_tx" gaussian(duration: 1, fwhm: 2, t0: 3)
"#
    }

    build_dot_format_snapshot_test_case! {
        memory_dependency_in_block_terminator,
        r#"
DECLARE ro BIT

NONBLOCKING CAPTURE 0 "ro_rx" flat(duration: 2.0000000000000003e-06, iq: 1.0, scale: 1.0, phase: 0.8745492960861506, detuning: 0.0) ro
JUMP-WHEN @eq ro
LABEL @eq
PULSE 0 "ro_tx" gaussian(duration: 1, fwhm: 2, t0: 3)
"#
    }

    build_dot_format_snapshot_test_case! {
        no_memory_dependency_across_blocks,
        r#"
DECLARE ro BIT
DECLARE depends_on_ro BIT

NONBLOCKING CAPTURE 0 "ro_rx" flat(duration: 2.0000000000000003e-06, iq: 1.0, scale: 1.0, phase: 0.8745492960861506, detuning: 0.0) ro
JUMP @eq
LABEL @eq
MOVE depends_on_ro ro
PULSE 0 "ro_tx" gaussian(duration: 1, fwhm: 2, t0: 3)
"#
    }
}