1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
use std::{
collections::{hash_map, BinaryHeap},
io,
};
use bytes::Bytes;
use thiserror::Error;
use tracing::trace;
use self::state::get_or_insert_recv;
use super::spaces::{Retransmits, ThinRetransmits};
use crate::{connection::streams::state::get_or_insert_send, frame, Dir, StreamId, VarInt};
mod recv;
use recv::Recv;
pub use recv::{Chunks, ReadError, ReadableError};
mod send;
pub(crate) use send::{ByteSlice, BytesArray};
pub use send::{BytesSource, FinishError, WriteError, Written};
use send::{Send, SendState};
mod state;
#[allow(unreachable_pub)] // fuzzing only
pub use state::StreamsState;
/// Access to streams
pub struct Streams<'a> {
pub(super) state: &'a mut StreamsState,
pub(super) conn_state: &'a super::State,
}
impl<'a> Streams<'a> {
#[cfg(fuzzing)]
pub fn new(state: &'a mut StreamsState, conn_state: &'a super::State) -> Self {
Self { state, conn_state }
}
/// Open a single stream if possible
///
/// Returns `None` if the streams in the given direction are currently exhausted.
pub fn open(&mut self, dir: Dir) -> Option<StreamId> {
if self.conn_state.is_closed() {
return None;
}
// TODO: Queue STREAM_ID_BLOCKED if this fails
if self.state.next[dir as usize] >= self.state.max[dir as usize] {
return None;
}
self.state.next[dir as usize] += 1;
let id = StreamId::new(self.state.side, dir, self.state.next[dir as usize] - 1);
self.state.insert(false, id);
self.state.send_streams += 1;
Some(id)
}
/// Accept a remotely initiated stream of a certain directionality, if possible
///
/// Returns `None` if there are no new incoming streams for this connection.
/// Has no impact on the data flow-control or stream concurrency limits.
pub fn accept(&mut self, dir: Dir) -> Option<StreamId> {
if self.state.next_remote[dir as usize] == self.state.next_reported_remote[dir as usize] {
return None;
}
let x = self.state.next_reported_remote[dir as usize];
self.state.next_reported_remote[dir as usize] = x + 1;
if dir == Dir::Bi {
self.state.send_streams += 1;
}
Some(StreamId::new(!self.state.side, dir, x))
}
#[cfg(fuzzing)]
pub fn state(&mut self) -> &mut StreamsState {
self.state
}
/// The number of streams that may have unacknowledged data.
pub fn send_streams(&self) -> usize {
self.state.send_streams
}
/// The number of remotely initiated open streams of a certain directionality.
///
/// Includes remotely initiated streams, which have not been accepted via [`accept`](Self::accept).
/// These streams count against the respective concurrency limit reported by
/// [`Connection::max_concurrent_streams`](super::Connection::max_concurrent_streams).
pub fn remote_open_streams(&self, dir: Dir) -> u64 {
// total opened - total closed = total opened - ( total permitted - total permitted unclosed )
self.state.next_remote[dir as usize]
- (self.state.max_remote[dir as usize]
- self.state.allocated_remote_count[dir as usize])
}
}
/// Access to streams
pub struct RecvStream<'a> {
pub(super) id: StreamId,
pub(super) state: &'a mut StreamsState,
pub(super) pending: &'a mut Retransmits,
}
impl<'a> RecvStream<'a> {
/// Read from the given recv stream
///
/// `max_length` limits the maximum size of the returned `Bytes` value; passing `usize::MAX`
/// will yield the best performance. `ordered` will make sure the returned chunk's offset will
/// have an offset exactly equal to the previously returned offset plus the previously returned
/// bytes' length.
///
/// Yields `Ok(None)` if the stream was finished. Otherwise, yields a segment of data and its
/// offset in the stream. If `ordered` is `false`, segments may be received in any order, and
/// the `Chunk`'s `offset` field can be used to determine ordering in the caller.
///
/// While most applications will prefer to consume stream data in order, unordered reads can
/// improve performance when packet loss occurs and data cannot be retransmitted before the flow
/// control window is filled. On any given stream, you can switch from ordered to unordered
/// reads, but ordered reads on streams that have seen previous unordered reads will return
/// `ReadError::IllegalOrderedRead`.
pub fn read(&mut self, ordered: bool) -> Result<Chunks, ReadableError> {
Chunks::new(self.id, ordered, self.state, self.pending)
}
/// Stop accepting data on the given receive stream
///
/// Discards unread data and notifies the peer to stop transmitting. Once stopped, further
/// attempts to operate on a stream will yield `ClosedStream` errors.
pub fn stop(&mut self, error_code: VarInt) -> Result<(), ClosedStream> {
let mut entry = match self.state.recv.entry(self.id) {
hash_map::Entry::Occupied(s) => s,
hash_map::Entry::Vacant(_) => return Err(ClosedStream { _private: () }),
};
let stream = get_or_insert_recv(self.state.stream_receive_window)(entry.get_mut());
let (read_credits, stop_sending) = stream.stop()?;
if stop_sending.should_transmit() {
self.pending.stop_sending.push(frame::StopSending {
id: self.id,
error_code,
});
}
// We need to keep stopped streams around until they're finished or reset so we can update
// connection-level flow control to account for discarded data. Otherwise, we can discard
// state immediately.
if !stream.final_offset_unknown() {
entry.remove();
self.state.stream_freed(self.id, StreamHalf::Recv);
}
if self.state.add_read_credits(read_credits).should_transmit() {
self.pending.max_data = true;
}
Ok(())
}
/// Check whether this stream has been reset by the peer, returning the reset error code if so
///
/// After returning `Ok(Some(_))` once, stream state will be discarded and all future calls will
/// return `Err(ClosedStream)`.
pub fn received_reset(&mut self) -> Result<Option<VarInt>, ClosedStream> {
let hash_map::Entry::Occupied(entry) = self.state.recv.entry(self.id) else {
return Err(ClosedStream { _private: () });
};
let Some(s) = entry.get().as_ref() else {
return Ok(None);
};
if s.stopped {
return Err(ClosedStream { _private: () });
}
let Some(code) = s.reset_code() else {
return Ok(None);
};
// Clean up state after application observes the reset, since there's no reason for the
// application to attempt to read or stop the stream once it knows it's reset
entry.remove_entry();
self.state.stream_freed(self.id, StreamHalf::Recv);
self.state.queue_max_stream_id(self.pending);
Ok(Some(code))
}
}
/// Access to streams
pub struct SendStream<'a> {
pub(super) id: StreamId,
pub(super) state: &'a mut StreamsState,
pub(super) pending: &'a mut Retransmits,
pub(super) conn_state: &'a super::State,
}
impl<'a> SendStream<'a> {
#[cfg(fuzzing)]
pub fn new(
id: StreamId,
state: &'a mut StreamsState,
pending: &'a mut Retransmits,
conn_state: &'a super::State,
) -> Self {
Self {
id,
state,
pending,
conn_state,
}
}
/// Send data on the given stream
///
/// Returns the number of bytes successfully written.
pub fn write(&mut self, data: &[u8]) -> Result<usize, WriteError> {
Ok(self.write_source(&mut ByteSlice::from_slice(data))?.bytes)
}
/// Send data on the given stream
///
/// Returns the number of bytes and chunks successfully written.
/// Note that this method might also write a partial chunk. In this case
/// [`Written::chunks`] will not count this chunk as fully written. However
/// the chunk will be advanced and contain only non-written data after the call.
pub fn write_chunks(&mut self, data: &mut [Bytes]) -> Result<Written, WriteError> {
self.write_source(&mut BytesArray::from_chunks(data))
}
fn write_source<B: BytesSource>(&mut self, source: &mut B) -> Result<Written, WriteError> {
if self.conn_state.is_closed() {
trace!(%self.id, "write blocked; connection draining");
return Err(WriteError::Blocked);
}
let limit = self.state.write_limit();
let max_send_data = self.state.max_send_data(self.id);
let stream = self
.state
.send
.get_mut(&self.id)
.map(get_or_insert_send(max_send_data))
.ok_or(WriteError::ClosedStream)?;
if limit == 0 {
trace!(
stream = %self.id, max_data = self.state.max_data, data_sent = self.state.data_sent,
"write blocked by connection-level flow control or send window"
);
if !stream.connection_blocked {
stream.connection_blocked = true;
self.state.connection_blocked.push(self.id);
}
return Err(WriteError::Blocked);
}
let was_pending = stream.is_pending();
let written = stream.write(source, limit)?;
self.state.data_sent += written.bytes as u64;
self.state.unacked_data += written.bytes as u64;
trace!(stream = %self.id, "wrote {} bytes", written.bytes);
if !was_pending {
self.state.pending.push_pending(self.id, stream.priority);
}
Ok(written)
}
/// Check if this stream was stopped, get the reason if it was
pub fn stopped(&self) -> Result<Option<VarInt>, ClosedStream> {
match self.state.send.get(&self.id).as_ref() {
Some(Some(s)) => Ok(s.stop_reason),
Some(None) => Ok(None),
None => Err(ClosedStream { _private: () }),
}
}
/// Finish a send stream, signalling that no more data will be sent.
///
/// If this fails, no [`StreamEvent::Finished`] will be generated.
///
/// [`StreamEvent::Finished`]: crate::StreamEvent::Finished
pub fn finish(&mut self) -> Result<(), FinishError> {
let max_send_data = self.state.max_send_data(self.id);
let stream = self
.state
.send
.get_mut(&self.id)
.map(get_or_insert_send(max_send_data))
.ok_or(FinishError::ClosedStream)?;
let was_pending = stream.is_pending();
stream.finish()?;
if !was_pending {
self.state.pending.push_pending(self.id, stream.priority);
}
Ok(())
}
/// Abandon transmitting data on a stream
///
/// # Panics
/// - when applied to a receive stream
pub fn reset(&mut self, error_code: VarInt) -> Result<(), ClosedStream> {
let max_send_data = self.state.max_send_data(self.id);
let stream = self
.state
.send
.get_mut(&self.id)
.map(get_or_insert_send(max_send_data))
.ok_or(ClosedStream { _private: () })?;
if matches!(stream.state, SendState::ResetSent) {
// Redundant reset call
return Err(ClosedStream { _private: () });
}
// Restore the portion of the send window consumed by the data that we aren't about to
// send. We leave flow control alone because the peer's responsible for issuing additional
// credit based on the final offset communicated in the RESET_STREAM frame we send.
self.state.unacked_data -= stream.pending.unacked();
stream.reset();
self.pending.reset_stream.push((self.id, error_code));
// Don't reopen an already-closed stream we haven't forgotten yet
Ok(())
}
/// Set the priority of a stream
///
/// # Panics
/// - when applied to a receive stream
pub fn set_priority(&mut self, priority: i32) -> Result<(), ClosedStream> {
let max_send_data = self.state.max_send_data(self.id);
let stream = self
.state
.send
.get_mut(&self.id)
.map(get_or_insert_send(max_send_data))
.ok_or(ClosedStream { _private: () })?;
stream.priority = priority;
Ok(())
}
/// Get the priority of a stream
///
/// # Panics
/// - when applied to a receive stream
pub fn priority(&self) -> Result<i32, ClosedStream> {
let stream = self
.state
.send
.get(&self.id)
.ok_or(ClosedStream { _private: () })?;
Ok(stream.as_ref().map(|s| s.priority).unwrap_or_default())
}
}
/// A queue of streams with pending outgoing data, sorted by priority
struct PendingStreamsQueue {
streams: BinaryHeap<PendingStream>,
/// A monotonically decreasing counter, used to implement round-robin scheduling for streams of the same priority.
/// Underflowing is not a practical concern, as it is initialized to u64::MAX and only decremented by 1 in `push_pending`
recency: u64,
}
impl PendingStreamsQueue {
fn new() -> Self {
Self {
streams: BinaryHeap::new(),
recency: u64::MAX,
}
}
/// Push a pending stream ID with the given priority, queued after any already-queued streams for the priority
fn push_pending(&mut self, id: StreamId, priority: i32) {
// As the recency counter is monotonically decreasing, we know that using its value to sort this stream will queue it
// after all other queued streams of the same priority.
// This is enough to implement round-robin scheduling for streams that are still pending even after being handled,
// as in that case they are removed from the `BinaryHeap`, handled, and then immediately reinserted.
self.recency -= 1;
self.streams.push(PendingStream {
priority,
recency: self.recency,
id,
});
}
}
/// The [`StreamId`] of a stream with pending data queued, ordered by its priority and recency
#[derive(PartialEq, Eq, PartialOrd, Ord)]
struct PendingStream {
/// The priority of the stream
// Note that this field should be kept above the `recency` field, in order for the `Ord` derive to be correct
// (See https://doc.rust-lang.org/stable/std/cmp/trait.Ord.html#derivable)
priority: i32,
/// A tie-breaker for streams of the same priority, used to improve fairness by implementing round-robin scheduling:
/// Larger values are prioritized, so it is initialised to `u64::MAX`, and when a stream writes data, we know
/// that it currently has the highest recency value, so it is deprioritized by setting its recency to 1 less than the
/// previous lowest recency value, such that all other streams of this priority will get processed once before we get back
/// round to this one
recency: u64,
/// The ID of the stream
// The way this type is used ensures that every instance has a unique `recency` value, so this field should be kept below
// the `priority` and `recency` fields, so that it does not interfere with the behaviour of the `Ord` derive
id: StreamId,
}
/// Application events about streams
#[derive(Debug, PartialEq, Eq)]
pub enum StreamEvent {
/// One or more new streams has been opened and might be readable
Opened {
/// Directionality for which streams have been opened
dir: Dir,
},
/// A currently open stream likely has data or errors waiting to be read
Readable {
/// Which stream is now readable
id: StreamId,
},
/// A formerly write-blocked stream might be ready for a write or have been stopped
///
/// Only generated for streams that are currently open.
Writable {
/// Which stream is now writable
id: StreamId,
},
/// A finished stream has been fully acknowledged or stopped
Finished {
/// Which stream has been finished
id: StreamId,
},
/// The peer asked us to stop sending on an outgoing stream
Stopped {
/// Which stream has been stopped
id: StreamId,
/// Error code supplied by the peer
error_code: VarInt,
},
/// At least one new stream of a certain directionality may be opened
Available {
/// Directionality for which streams are newly available
dir: Dir,
},
}
/// Indicates whether a frame needs to be transmitted
///
/// This type wraps around bool and uses the `#[must_use]` attribute in order
/// to prevent accidental loss of the frame transmission requirement.
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
#[must_use = "A frame might need to be enqueued"]
pub struct ShouldTransmit(bool);
impl ShouldTransmit {
/// Returns whether a frame should be transmitted
pub fn should_transmit(self) -> bool {
self.0
}
}
/// Error indicating that a stream has not been opened or has already been finished or reset
#[derive(Debug, Error, Clone, PartialEq, Eq)]
#[error("closed stream")]
pub struct ClosedStream {
_private: (),
}
impl ClosedStream {
#[doc(hidden)] // For use in quinn only
pub fn new() -> Self {
Self { _private: () }
}
}
impl From<ClosedStream> for io::Error {
fn from(x: ClosedStream) -> Self {
Self::new(io::ErrorKind::NotConnected, x)
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum StreamHalf {
Send,
Recv,
}