1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use std::any::Any;
use std::sync::Arc;
use std::time::Instant;

use super::{Controller, ControllerFactory};
use crate::connection::RttEstimator;

/// A simple, standard congestion controller
#[derive(Debug, Clone)]
pub struct NewReno {
    config: Arc<NewRenoConfig>,
    /// Maximum number of bytes in flight that may be sent.
    window: u64,
    /// Slow start threshold in bytes. When the congestion window is below ssthresh, the mode is
    /// slow start and the window grows by the number of bytes acknowledged.
    ssthresh: u64,
    /// The time when QUIC first detects a loss, causing it to enter recovery. When a packet sent
    /// after this time is acknowledged, QUIC exits recovery.
    recovery_start_time: Instant,
    /// Bytes which had been acked by the peer since leaving slow start
    bytes_acked: u64,
}

impl NewReno {
    /// Construct a state using the given `config` and current time `now`
    pub fn new(config: Arc<NewRenoConfig>, now: Instant) -> Self {
        Self {
            window: config.initial_window,
            ssthresh: u64::max_value(),
            recovery_start_time: now,
            config,
            bytes_acked: 0,
        }
    }
}

impl Controller for NewReno {
    fn on_ack(
        &mut self,
        _now: Instant,
        sent: Instant,
        bytes: u64,
        app_limited: bool,
        _rtt: &RttEstimator,
    ) {
        if app_limited || sent <= self.recovery_start_time {
            return;
        }

        if self.window < self.ssthresh {
            // Slow start
            self.window += bytes;

            if self.window >= self.ssthresh {
                // Exiting slow start
                // Initialize `bytes_acked` for congestion avoidance. The idea
                // here is that any bytes over `sshthresh` will already be counted
                // towards the congestion avoidance phase - independent of when
                // how close to `sshthresh` the `window` was when switching states,
                // and independent of datagram sizes.
                self.bytes_acked = self.window - self.ssthresh;
            }
        } else {
            // Congestion avoidance
            // This implementation uses the method which does not require
            // floating point math, which also increases the window by 1 datagram
            // for every round trip.
            // This mechanism is called Appropriate Byte Counting in
            // https://tools.ietf.org/html/rfc3465
            self.bytes_acked += bytes;

            if self.bytes_acked >= self.window {
                self.bytes_acked -= self.window;
                self.window += self.config.max_datagram_size;
            }
        }
    }

    fn on_congestion_event(
        &mut self,
        now: Instant,
        sent: Instant,
        is_persistent_congestion: bool,
        _lost_bytes: u64,
    ) {
        if sent <= self.recovery_start_time {
            return;
        }

        self.recovery_start_time = now;
        self.window = (self.window as f32 * self.config.loss_reduction_factor) as u64;
        self.window = self.window.max(self.config.minimum_window);
        self.ssthresh = self.window;

        if is_persistent_congestion {
            self.window = self.config.minimum_window;
        }
    }

    fn window(&self) -> u64 {
        self.window
    }

    fn clone_box(&self) -> Box<dyn Controller> {
        Box::new(self.clone())
    }

    fn initial_window(&self) -> u64 {
        self.config.initial_window
    }

    fn into_any(self: Box<Self>) -> Box<dyn Any> {
        self
    }
}

/// Configuration for the `NewReno` congestion controller
#[derive(Debug, Clone)]
pub struct NewRenoConfig {
    max_datagram_size: u64,
    initial_window: u64,
    minimum_window: u64,
    loss_reduction_factor: f32,
}

impl NewRenoConfig {
    /// The sender’s maximum UDP payload size. Does not include UDP or IP overhead.
    ///
    /// Used for calculating initial and minimum congestion windows.
    pub fn max_datagram_size(&mut self, value: u64) -> &mut Self {
        self.max_datagram_size = value;
        self
    }

    /// Default limit on the amount of outstanding data in bytes.
    ///
    /// Recommended value: `min(10 * max_datagram_size, max(2 * max_datagram_size, 14720))`
    pub fn initial_window(&mut self, value: u64) -> &mut Self {
        self.initial_window = value;
        self
    }

    /// Default minimum congestion window.
    ///
    /// Recommended value: `2 * max_datagram_size`.
    pub fn minimum_window(&mut self, value: u64) -> &mut Self {
        self.minimum_window = value;
        self
    }

    /// Reduction in congestion window when a new loss event is detected.
    pub fn loss_reduction_factor(&mut self, value: f32) -> &mut Self {
        self.loss_reduction_factor = value;
        self
    }
}

impl Default for NewRenoConfig {
    fn default() -> Self {
        const MAX_DATAGRAM_SIZE: u64 = 1232;
        Self {
            max_datagram_size: MAX_DATAGRAM_SIZE,
            initial_window: 14720.max(2 * MAX_DATAGRAM_SIZE).min(10 * MAX_DATAGRAM_SIZE),
            minimum_window: 2 * MAX_DATAGRAM_SIZE,
            loss_reduction_factor: 0.5,
        }
    }
}

impl ControllerFactory for Arc<NewRenoConfig> {
    fn build(&self, now: Instant) -> Box<dyn Controller> {
        Box::new(NewReno::new(self.clone(), now))
    }
}