ra_ap_rustc_lexer/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
//! Low-level Rust lexer.
//!
//! The idea with `rustc_lexer` is to make a reusable library,
//! by separating out pure lexing and rustc-specific concerns, like spans,
//! error reporting, and interning. So, rustc_lexer operates directly on `&str`,
//! produces simple tokens which are a pair of type-tag and a bit of original text,
//! and does not report errors, instead storing them as flags on the token.
//!
//! Tokens produced by this lexer are not yet ready for parsing the Rust syntax.
//! For that see [`rustc_parse::lexer`], which converts this basic token stream
//! into wide tokens used by actual parser.
//!
//! The purpose of this crate is to convert raw sources into a labeled sequence
//! of well-known token types, so building an actual Rust token stream will
//! be easier.
//!
//! The main entity of this crate is the [`TokenKind`] enum which represents common
//! lexeme types.
//!
//! [`rustc_parse::lexer`]: ../rustc_parse/lexer/index.html
// tidy-alphabetical-start
// We want to be able to build this crate with a stable compiler,
// so no `#![feature]` attributes should be added.
#![deny(unstable_features)]
#![warn(unreachable_pub)]
// tidy-alphabetical-end
mod cursor;
pub mod unescape;
#[cfg(test)]
mod tests;
use unicode_properties::UnicodeEmoji;
use self::LiteralKind::*;
use self::TokenKind::*;
pub use crate::cursor::Cursor;
use crate::cursor::EOF_CHAR;
/// Parsed token.
/// It doesn't contain information about data that has been parsed,
/// only the type of the token and its size.
#[derive(Debug)]
pub struct Token {
pub kind: TokenKind,
pub len: u32,
}
impl Token {
fn new(kind: TokenKind, len: u32) -> Token {
Token { kind, len }
}
}
/// Enum representing common lexeme types.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TokenKind {
// Multi-char tokens:
/// "// comment"
LineComment { doc_style: Option<DocStyle> },
/// `/* block comment */`
///
/// Block comments can be recursive, so a sequence like `/* /* */`
/// will not be considered terminated and will result in a parsing error.
BlockComment { doc_style: Option<DocStyle>, terminated: bool },
/// Any whitespace character sequence.
Whitespace,
/// "ident" or "continue"
///
/// At this step, keywords are also considered identifiers.
Ident,
/// Like the above, but containing invalid unicode codepoints.
InvalidIdent,
/// "r#ident"
RawIdent,
/// An unknown prefix, like `foo#`, `foo'`, `foo"`.
///
/// Note that only the
/// prefix (`foo`) is included in the token, not the separator (which is
/// lexed as its own distinct token). In Rust 2021 and later, reserved
/// prefixes are reported as errors; in earlier editions, they result in a
/// (allowed by default) lint, and are treated as regular identifier
/// tokens.
UnknownPrefix,
/// An unknown prefix in a lifetime, like `'foo#`.
///
/// Note that like above, only the `'` and prefix are included in the token
/// and not the separator.
UnknownPrefixLifetime,
/// `'r#lt`, which in edition < 2021 is split into several tokens: `'r # lt`.
RawLifetime,
/// Similar to the above, but *always* an error on every edition. This is used
/// for emoji identifier recovery, as those are not meant to be ever accepted.
InvalidPrefix,
/// Guarded string literal prefix: `#"` or `##`.
///
/// Used for reserving "guarded strings" (RFC 3598) in edition 2024.
/// Split into the component tokens on older editions.
GuardedStrPrefix,
/// Examples: `12u8`, `1.0e-40`, `b"123"`. Note that `_` is an invalid
/// suffix, but may be present here on string and float literals. Users of
/// this type will need to check for and reject that case.
///
/// See [LiteralKind] for more details.
Literal { kind: LiteralKind, suffix_start: u32 },
/// "'a"
Lifetime { starts_with_number: bool },
// One-char tokens:
/// ";"
Semi,
/// ","
Comma,
/// "."
Dot,
/// "("
OpenParen,
/// ")"
CloseParen,
/// "{"
OpenBrace,
/// "}"
CloseBrace,
/// "["
OpenBracket,
/// "]"
CloseBracket,
/// "@"
At,
/// "#"
Pound,
/// "~"
Tilde,
/// "?"
Question,
/// ":"
Colon,
/// "$"
Dollar,
/// "="
Eq,
/// "!"
Bang,
/// "<"
Lt,
/// ">"
Gt,
/// "-"
Minus,
/// "&"
And,
/// "|"
Or,
/// "+"
Plus,
/// "*"
Star,
/// "/"
Slash,
/// "^"
Caret,
/// "%"
Percent,
/// Unknown token, not expected by the lexer, e.g. "№"
Unknown,
/// End of input.
Eof,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DocStyle {
Outer,
Inner,
}
/// Enum representing the literal types supported by the lexer.
///
/// Note that the suffix is *not* considered when deciding the `LiteralKind` in
/// this type. This means that float literals like `1f32` are classified by this
/// type as `Int`. (Compare against `rustc_ast::token::LitKind` and
/// `rustc_ast::ast::LitKind`).
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum LiteralKind {
/// `12_u8`, `0o100`, `0b120i99`, `1f32`.
Int { base: Base, empty_int: bool },
/// `12.34f32`, `1e3`, but not `1f32`.
Float { base: Base, empty_exponent: bool },
/// `'a'`, `'\\'`, `'''`, `';`
Char { terminated: bool },
/// `b'a'`, `b'\\'`, `b'''`, `b';`
Byte { terminated: bool },
/// `"abc"`, `"abc`
Str { terminated: bool },
/// `b"abc"`, `b"abc`
ByteStr { terminated: bool },
/// `c"abc"`, `c"abc`
CStr { terminated: bool },
/// `r"abc"`, `r#"abc"#`, `r####"ab"###"c"####`, `r#"a`. `None` indicates
/// an invalid literal.
RawStr { n_hashes: Option<u8> },
/// `br"abc"`, `br#"abc"#`, `br####"ab"###"c"####`, `br#"a`. `None`
/// indicates an invalid literal.
RawByteStr { n_hashes: Option<u8> },
/// `cr"abc"`, "cr#"abc"#", `cr#"a`. `None` indicates an invalid literal.
RawCStr { n_hashes: Option<u8> },
}
/// `#"abc"#`, `##"a"` (fewer closing), or even `#"a` (unterminated).
///
/// Can capture fewer closing hashes than starting hashes,
/// for more efficient lexing and better backwards diagnostics.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct GuardedStr {
pub n_hashes: u32,
pub terminated: bool,
pub token_len: u32,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum RawStrError {
/// Non `#` characters exist between `r` and `"`, e.g. `r##~"abcde"##`
InvalidStarter { bad_char: char },
/// The string was not terminated, e.g. `r###"abcde"##`.
/// `possible_terminator_offset` is the number of characters after `r` or
/// `br` where they may have intended to terminate it.
NoTerminator { expected: u32, found: u32, possible_terminator_offset: Option<u32> },
/// More than 255 `#`s exist.
TooManyDelimiters { found: u32 },
}
/// Base of numeric literal encoding according to its prefix.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Base {
/// Literal starts with "0b".
Binary = 2,
/// Literal starts with "0o".
Octal = 8,
/// Literal doesn't contain a prefix.
Decimal = 10,
/// Literal starts with "0x".
Hexadecimal = 16,
}
/// `rustc` allows files to have a shebang, e.g. "#!/usr/bin/rustrun",
/// but shebang isn't a part of rust syntax.
pub fn strip_shebang(input: &str) -> Option<usize> {
// Shebang must start with `#!` literally, without any preceding whitespace.
// For simplicity we consider any line starting with `#!` a shebang,
// regardless of restrictions put on shebangs by specific platforms.
if let Some(input_tail) = input.strip_prefix("#!") {
// Ok, this is a shebang but if the next non-whitespace token is `[`,
// then it may be valid Rust code, so consider it Rust code.
let next_non_whitespace_token = tokenize(input_tail).map(|tok| tok.kind).find(|tok| {
!matches!(
tok,
TokenKind::Whitespace
| TokenKind::LineComment { doc_style: None }
| TokenKind::BlockComment { doc_style: None, .. }
)
});
if next_non_whitespace_token != Some(TokenKind::OpenBracket) {
// No other choice than to consider this a shebang.
return Some(2 + input_tail.lines().next().unwrap_or_default().len());
}
}
None
}
/// Validates a raw string literal. Used for getting more information about a
/// problem with a `RawStr`/`RawByteStr` with a `None` field.
#[inline]
pub fn validate_raw_str(input: &str, prefix_len: u32) -> Result<(), RawStrError> {
debug_assert!(!input.is_empty());
let mut cursor = Cursor::new(input);
// Move past the leading `r` or `br`.
for _ in 0..prefix_len {
cursor.bump().unwrap();
}
cursor.raw_double_quoted_string(prefix_len).map(|_| ())
}
/// Creates an iterator that produces tokens from the input string.
pub fn tokenize(input: &str) -> impl Iterator<Item = Token> + '_ {
let mut cursor = Cursor::new(input);
std::iter::from_fn(move || {
let token = cursor.advance_token();
if token.kind != TokenKind::Eof { Some(token) } else { None }
})
}
/// True if `c` is considered a whitespace according to Rust language definition.
/// See [Rust language reference](https://doc.rust-lang.org/reference/whitespace.html)
/// for definitions of these classes.
pub fn is_whitespace(c: char) -> bool {
// This is Pattern_White_Space.
//
// Note that this set is stable (ie, it doesn't change with different
// Unicode versions), so it's ok to just hard-code the values.
matches!(
c,
// Usual ASCII suspects
'\u{0009}' // \t
| '\u{000A}' // \n
| '\u{000B}' // vertical tab
| '\u{000C}' // form feed
| '\u{000D}' // \r
| '\u{0020}' // space
// NEXT LINE from latin1
| '\u{0085}'
// Bidi markers
| '\u{200E}' // LEFT-TO-RIGHT MARK
| '\u{200F}' // RIGHT-TO-LEFT MARK
// Dedicated whitespace characters from Unicode
| '\u{2028}' // LINE SEPARATOR
| '\u{2029}' // PARAGRAPH SEPARATOR
)
}
/// True if `c` is valid as a first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_start(c: char) -> bool {
// This is XID_Start OR '_' (which formally is not a XID_Start).
c == '_' || unicode_xid::UnicodeXID::is_xid_start(c)
}
/// True if `c` is valid as a non-first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_continue(c: char) -> bool {
unicode_xid::UnicodeXID::is_xid_continue(c)
}
/// The passed string is lexically an identifier.
pub fn is_ident(string: &str) -> bool {
let mut chars = string.chars();
if let Some(start) = chars.next() {
is_id_start(start) && chars.all(is_id_continue)
} else {
false
}
}
impl Cursor<'_> {
/// Parses a token from the input string.
pub fn advance_token(&mut self) -> Token {
let first_char = match self.bump() {
Some(c) => c,
None => return Token::new(TokenKind::Eof, 0),
};
let token_kind = match first_char {
// Slash, comment or block comment.
'/' => match self.first() {
'/' => self.line_comment(),
'*' => self.block_comment(),
_ => Slash,
},
// Whitespace sequence.
c if is_whitespace(c) => self.whitespace(),
// Raw identifier, raw string literal or identifier.
'r' => match (self.first(), self.second()) {
('#', c1) if is_id_start(c1) => self.raw_ident(),
('#', _) | ('"', _) => {
let res = self.raw_double_quoted_string(1);
let suffix_start = self.pos_within_token();
if res.is_ok() {
self.eat_literal_suffix();
}
let kind = RawStr { n_hashes: res.ok() };
Literal { kind, suffix_start }
}
_ => self.ident_or_unknown_prefix(),
},
// Byte literal, byte string literal, raw byte string literal or identifier.
'b' => self.c_or_byte_string(
|terminated| ByteStr { terminated },
|n_hashes| RawByteStr { n_hashes },
Some(|terminated| Byte { terminated }),
),
// c-string literal, raw c-string literal or identifier.
'c' => self.c_or_byte_string(
|terminated| CStr { terminated },
|n_hashes| RawCStr { n_hashes },
None,
),
// Identifier (this should be checked after other variant that can
// start as identifier).
c if is_id_start(c) => self.ident_or_unknown_prefix(),
// Numeric literal.
c @ '0'..='9' => {
let literal_kind = self.number(c);
let suffix_start = self.pos_within_token();
self.eat_literal_suffix();
TokenKind::Literal { kind: literal_kind, suffix_start }
}
// Guarded string literal prefix: `#"` or `##`
'#' if matches!(self.first(), '"' | '#') => {
self.bump();
TokenKind::GuardedStrPrefix
}
// One-symbol tokens.
';' => Semi,
',' => Comma,
'.' => Dot,
'(' => OpenParen,
')' => CloseParen,
'{' => OpenBrace,
'}' => CloseBrace,
'[' => OpenBracket,
']' => CloseBracket,
'@' => At,
'#' => Pound,
'~' => Tilde,
'?' => Question,
':' => Colon,
'$' => Dollar,
'=' => Eq,
'!' => Bang,
'<' => Lt,
'>' => Gt,
'-' => Minus,
'&' => And,
'|' => Or,
'+' => Plus,
'*' => Star,
'^' => Caret,
'%' => Percent,
// Lifetime or character literal.
'\'' => self.lifetime_or_char(),
// String literal.
'"' => {
let terminated = self.double_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = Str { terminated };
Literal { kind, suffix_start }
}
// Identifier starting with an emoji. Only lexed for graceful error recovery.
c if !c.is_ascii() && c.is_emoji_char() => self.fake_ident_or_unknown_prefix(),
_ => Unknown,
};
let res = Token::new(token_kind, self.pos_within_token());
self.reset_pos_within_token();
res
}
fn line_comment(&mut self) -> TokenKind {
debug_assert!(self.prev() == '/' && self.first() == '/');
self.bump();
let doc_style = match self.first() {
// `//!` is an inner line doc comment.
'!' => Some(DocStyle::Inner),
// `////` (more than 3 slashes) is not considered a doc comment.
'/' if self.second() != '/' => Some(DocStyle::Outer),
_ => None,
};
self.eat_while(|c| c != '\n');
LineComment { doc_style }
}
fn block_comment(&mut self) -> TokenKind {
debug_assert!(self.prev() == '/' && self.first() == '*');
self.bump();
let doc_style = match self.first() {
// `/*!` is an inner block doc comment.
'!' => Some(DocStyle::Inner),
// `/***` (more than 2 stars) is not considered a doc comment.
// `/**/` is not considered a doc comment.
'*' if !matches!(self.second(), '*' | '/') => Some(DocStyle::Outer),
_ => None,
};
let mut depth = 1usize;
while let Some(c) = self.bump() {
match c {
'/' if self.first() == '*' => {
self.bump();
depth += 1;
}
'*' if self.first() == '/' => {
self.bump();
depth -= 1;
if depth == 0 {
// This block comment is closed, so for a construction like "/* */ */"
// there will be a successfully parsed block comment "/* */"
// and " */" will be processed separately.
break;
}
}
_ => (),
}
}
BlockComment { doc_style, terminated: depth == 0 }
}
fn whitespace(&mut self) -> TokenKind {
debug_assert!(is_whitespace(self.prev()));
self.eat_while(is_whitespace);
Whitespace
}
fn raw_ident(&mut self) -> TokenKind {
debug_assert!(self.prev() == 'r' && self.first() == '#' && is_id_start(self.second()));
// Eat "#" symbol.
self.bump();
// Eat the identifier part of RawIdent.
self.eat_identifier();
RawIdent
}
fn ident_or_unknown_prefix(&mut self) -> TokenKind {
debug_assert!(is_id_start(self.prev()));
// Start is already eaten, eat the rest of identifier.
self.eat_while(is_id_continue);
// Known prefixes must have been handled earlier. So if
// we see a prefix here, it is definitely an unknown prefix.
match self.first() {
'#' | '"' | '\'' => UnknownPrefix,
c if !c.is_ascii() && c.is_emoji_char() => self.fake_ident_or_unknown_prefix(),
_ => Ident,
}
}
fn fake_ident_or_unknown_prefix(&mut self) -> TokenKind {
// Start is already eaten, eat the rest of identifier.
self.eat_while(|c| {
unicode_xid::UnicodeXID::is_xid_continue(c)
|| (!c.is_ascii() && c.is_emoji_char())
|| c == '\u{200d}'
});
// Known prefixes must have been handled earlier. So if
// we see a prefix here, it is definitely an unknown prefix.
match self.first() {
'#' | '"' | '\'' => InvalidPrefix,
_ => InvalidIdent,
}
}
fn c_or_byte_string(
&mut self,
mk_kind: impl FnOnce(bool) -> LiteralKind,
mk_kind_raw: impl FnOnce(Option<u8>) -> LiteralKind,
single_quoted: Option<fn(bool) -> LiteralKind>,
) -> TokenKind {
match (self.first(), self.second(), single_quoted) {
('\'', _, Some(mk_kind)) => {
self.bump();
let terminated = self.single_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = mk_kind(terminated);
Literal { kind, suffix_start }
}
('"', _, _) => {
self.bump();
let terminated = self.double_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = mk_kind(terminated);
Literal { kind, suffix_start }
}
('r', '"', _) | ('r', '#', _) => {
self.bump();
let res = self.raw_double_quoted_string(2);
let suffix_start = self.pos_within_token();
if res.is_ok() {
self.eat_literal_suffix();
}
let kind = mk_kind_raw(res.ok());
Literal { kind, suffix_start }
}
_ => self.ident_or_unknown_prefix(),
}
}
fn number(&mut self, first_digit: char) -> LiteralKind {
debug_assert!('0' <= self.prev() && self.prev() <= '9');
let mut base = Base::Decimal;
if first_digit == '0' {
// Attempt to parse encoding base.
match self.first() {
'b' => {
base = Base::Binary;
self.bump();
if !self.eat_decimal_digits() {
return Int { base, empty_int: true };
}
}
'o' => {
base = Base::Octal;
self.bump();
if !self.eat_decimal_digits() {
return Int { base, empty_int: true };
}
}
'x' => {
base = Base::Hexadecimal;
self.bump();
if !self.eat_hexadecimal_digits() {
return Int { base, empty_int: true };
}
}
// Not a base prefix; consume additional digits.
'0'..='9' | '_' => {
self.eat_decimal_digits();
}
// Also not a base prefix; nothing more to do here.
'.' | 'e' | 'E' => {}
// Just a 0.
_ => return Int { base, empty_int: false },
}
} else {
// No base prefix, parse number in the usual way.
self.eat_decimal_digits();
};
match self.first() {
// Don't be greedy if this is actually an
// integer literal followed by field/method access or a range pattern
// (`0..2` and `12.foo()`)
'.' if self.second() != '.' && !is_id_start(self.second()) => {
// might have stuff after the ., and if it does, it needs to start
// with a number
self.bump();
let mut empty_exponent = false;
if self.first().is_ascii_digit() {
self.eat_decimal_digits();
match self.first() {
'e' | 'E' => {
self.bump();
empty_exponent = !self.eat_float_exponent();
}
_ => (),
}
}
Float { base, empty_exponent }
}
'e' | 'E' => {
self.bump();
let empty_exponent = !self.eat_float_exponent();
Float { base, empty_exponent }
}
_ => Int { base, empty_int: false },
}
}
fn lifetime_or_char(&mut self) -> TokenKind {
debug_assert!(self.prev() == '\'');
let can_be_a_lifetime = if self.second() == '\'' {
// It's surely not a lifetime.
false
} else {
// If the first symbol is valid for identifier, it can be a lifetime.
// Also check if it's a number for a better error reporting (so '0 will
// be reported as invalid lifetime and not as unterminated char literal).
is_id_start(self.first()) || self.first().is_ascii_digit()
};
if !can_be_a_lifetime {
let terminated = self.single_quoted_string();
let suffix_start = self.pos_within_token();
if terminated {
self.eat_literal_suffix();
}
let kind = Char { terminated };
return Literal { kind, suffix_start };
}
if self.first() == 'r' && self.second() == '#' && is_id_start(self.third()) {
// Eat "r" and `#`, and identifier start characters.
self.bump();
self.bump();
self.bump();
self.eat_while(is_id_continue);
match self.first() {
'\'' => {
// Check if after skipping literal contents we've met a closing
// single quote (which means that user attempted to create a
// string with single quotes).
self.bump();
let kind = Char { terminated: true };
return Literal { kind, suffix_start: self.pos_within_token() };
}
_ => return RawLifetime,
}
}
// Either a lifetime or a character literal with
// length greater than 1.
let starts_with_number = self.first().is_ascii_digit();
// Skip the literal contents.
// First symbol can be a number (which isn't a valid identifier start),
// so skip it without any checks.
self.bump();
self.eat_while(is_id_continue);
match self.first() {
// Check if after skipping literal contents we've met a closing
// single quote (which means that user attempted to create a
// string with single quotes).
'\'' => {
self.bump();
let kind = Char { terminated: true };
Literal { kind, suffix_start: self.pos_within_token() }
}
'#' if !starts_with_number => UnknownPrefixLifetime,
_ => Lifetime { starts_with_number },
}
}
fn single_quoted_string(&mut self) -> bool {
debug_assert!(self.prev() == '\'');
// Check if it's a one-symbol literal.
if self.second() == '\'' && self.first() != '\\' {
self.bump();
self.bump();
return true;
}
// Literal has more than one symbol.
// Parse until either quotes are terminated or error is detected.
loop {
match self.first() {
// Quotes are terminated, finish parsing.
'\'' => {
self.bump();
return true;
}
// Probably beginning of the comment, which we don't want to include
// to the error report.
'/' => break,
// Newline without following '\'' means unclosed quote, stop parsing.
'\n' if self.second() != '\'' => break,
// End of file, stop parsing.
EOF_CHAR if self.is_eof() => break,
// Escaped slash is considered one character, so bump twice.
'\\' => {
self.bump();
self.bump();
}
// Skip the character.
_ => {
self.bump();
}
}
}
// String was not terminated.
false
}
/// Eats double-quoted string and returns true
/// if string is terminated.
fn double_quoted_string(&mut self) -> bool {
debug_assert!(self.prev() == '"');
while let Some(c) = self.bump() {
match c {
'"' => {
return true;
}
'\\' if self.first() == '\\' || self.first() == '"' => {
// Bump again to skip escaped character.
self.bump();
}
_ => (),
}
}
// End of file reached.
false
}
/// Attempt to lex for a guarded string literal.
///
/// Used by `rustc_parse::lexer` to lex for guarded strings
/// conditionally based on edition.
///
/// Note: this will not reset the `Cursor` when a
/// guarded string is not found. It is the caller's
/// responsibility to do so.
pub fn guarded_double_quoted_string(&mut self) -> Option<GuardedStr> {
debug_assert!(self.prev() != '#');
let mut n_start_hashes: u32 = 0;
while self.first() == '#' {
n_start_hashes += 1;
self.bump();
}
if self.first() != '"' {
return None;
}
self.bump();
debug_assert!(self.prev() == '"');
// Lex the string itself as a normal string literal
// so we can recover that for older editions later.
let terminated = self.double_quoted_string();
if !terminated {
let token_len = self.pos_within_token();
self.reset_pos_within_token();
return Some(GuardedStr { n_hashes: n_start_hashes, terminated: false, token_len });
}
// Consume closing '#' symbols.
// Note that this will not consume extra trailing `#` characters:
// `###"abcde"####` is lexed as a `GuardedStr { n_end_hashes: 3, .. }`
// followed by a `#` token.
let mut n_end_hashes = 0;
while self.first() == '#' && n_end_hashes < n_start_hashes {
n_end_hashes += 1;
self.bump();
}
// Reserved syntax, always an error, so it doesn't matter if
// `n_start_hashes != n_end_hashes`.
self.eat_literal_suffix();
let token_len = self.pos_within_token();
self.reset_pos_within_token();
Some(GuardedStr { n_hashes: n_start_hashes, terminated: true, token_len })
}
/// Eats the double-quoted string and returns `n_hashes` and an error if encountered.
fn raw_double_quoted_string(&mut self, prefix_len: u32) -> Result<u8, RawStrError> {
// Wrap the actual function to handle the error with too many hashes.
// This way, it eats the whole raw string.
let n_hashes = self.raw_string_unvalidated(prefix_len)?;
// Only up to 255 `#`s are allowed in raw strings
match u8::try_from(n_hashes) {
Ok(num) => Ok(num),
Err(_) => Err(RawStrError::TooManyDelimiters { found: n_hashes }),
}
}
fn raw_string_unvalidated(&mut self, prefix_len: u32) -> Result<u32, RawStrError> {
debug_assert!(self.prev() == 'r');
let start_pos = self.pos_within_token();
let mut possible_terminator_offset = None;
let mut max_hashes = 0;
// Count opening '#' symbols.
let mut eaten = 0;
while self.first() == '#' {
eaten += 1;
self.bump();
}
let n_start_hashes = eaten;
// Check that string is started.
match self.bump() {
Some('"') => (),
c => {
let c = c.unwrap_or(EOF_CHAR);
return Err(RawStrError::InvalidStarter { bad_char: c });
}
}
// Skip the string contents and on each '#' character met, check if this is
// a raw string termination.
loop {
self.eat_while(|c| c != '"');
if self.is_eof() {
return Err(RawStrError::NoTerminator {
expected: n_start_hashes,
found: max_hashes,
possible_terminator_offset,
});
}
// Eat closing double quote.
self.bump();
// Check that amount of closing '#' symbols
// is equal to the amount of opening ones.
// Note that this will not consume extra trailing `#` characters:
// `r###"abcde"####` is lexed as a `RawStr { n_hashes: 3 }`
// followed by a `#` token.
let mut n_end_hashes = 0;
while self.first() == '#' && n_end_hashes < n_start_hashes {
n_end_hashes += 1;
self.bump();
}
if n_end_hashes == n_start_hashes {
return Ok(n_start_hashes);
} else if n_end_hashes > max_hashes {
// Keep track of possible terminators to give a hint about
// where there might be a missing terminator
possible_terminator_offset =
Some(self.pos_within_token() - start_pos - n_end_hashes + prefix_len);
max_hashes = n_end_hashes;
}
}
}
fn eat_decimal_digits(&mut self) -> bool {
let mut has_digits = false;
loop {
match self.first() {
'_' => {
self.bump();
}
'0'..='9' => {
has_digits = true;
self.bump();
}
_ => break,
}
}
has_digits
}
fn eat_hexadecimal_digits(&mut self) -> bool {
let mut has_digits = false;
loop {
match self.first() {
'_' => {
self.bump();
}
'0'..='9' | 'a'..='f' | 'A'..='F' => {
has_digits = true;
self.bump();
}
_ => break,
}
}
has_digits
}
/// Eats the float exponent. Returns true if at least one digit was met,
/// and returns false otherwise.
fn eat_float_exponent(&mut self) -> bool {
debug_assert!(self.prev() == 'e' || self.prev() == 'E');
if self.first() == '-' || self.first() == '+' {
self.bump();
}
self.eat_decimal_digits()
}
// Eats the suffix of the literal, e.g. "u8".
fn eat_literal_suffix(&mut self) {
self.eat_identifier();
}
// Eats the identifier. Note: succeeds on `_`, which isn't a valid
// identifier.
fn eat_identifier(&mut self) {
if !is_id_start(self.first()) {
return;
}
self.bump();
self.eat_while(is_id_continue);
}
}