ra_ap_rustc_pattern_analysis/
usefulness.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
//! # Match exhaustiveness and redundancy algorithm
//!
//! This file contains the logic for exhaustiveness and usefulness checking for pattern-matching.
//! Specifically, given a list of patterns in a match, we can tell whether:
//! (a) a given pattern is redundant
//! (b) the patterns cover every possible value for the type (exhaustiveness)
//!
//! The algorithm implemented here is inspired from the one described in [this
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however changed it in
//! various ways to accommodate the variety of patterns that Rust supports. We thus explain our
//! version here, without being as precise.
//!
//! Fun fact: computing exhaustiveness is NP-complete, because we can encode a SAT problem as an
//! exhaustiveness problem. See [here](https://niedzejkob.p4.team/rust-np) for the fun details.
//!
//!
//! # Summary
//!
//! The algorithm is given as input a list of patterns, one for each arm of a match, and computes
//! the following:
//! - a set of values that match none of the patterns (if any),
//! - for each subpattern (taking into account or-patterns), whether removing it would change
//!     anything about how the match executes, i.e. whether it is useful/not redundant.
//!
//! To a first approximation, the algorithm works by exploring all possible values for the type
//! being matched on, and determining which arm(s) catch which value. To make this tractable we
//! cleverly group together values, as we'll see below.
//!
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
//! usefulness for each subpattern and exhaustiveness for the whole match.
//!
//! In this page we explain the necessary concepts to understand how the algorithm works.
//!
//!
//! # Usefulness
//!
//! The central concept of this file is the notion of "usefulness". Given some patterns `p_1 ..
//! p_n`, a pattern `q` is said to be *useful* if there is a value that is matched by `q` and by
//! none of the `p_i`. We write `usefulness(p_1 .. p_n, q)` for a function that returns a list of
//! such values. The aim of this file is to compute it efficiently.
//!
//! This is enough to compute usefulness: a pattern in a `match` expression is redundant iff it is
//! not useful w.r.t. the patterns above it:
//! ```compile_fail,E0004
//! # fn foo() {
//! match Some(0u32) {
//!     Some(0..100) => {},
//!     Some(90..190) => {}, // useful: `Some(150)` is matched by this but not the branch above
//!     Some(50..150) => {}, // redundant: all the values this matches are already matched by
//!                          //   the branches above
//!     None => {},          // useful: `None` is matched by this but not the branches above
//! }
//! # }
//! ```
//!
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
//! are used to tell the user which values are missing.
//! ```compile_fail,E0004
//! # fn foo(x: Option<u32>) {
//! match x {
//!     None => {},
//!     Some(0) => {},
//!     // not exhaustive: `_` is useful because it matches `Some(1)`
//! }
//! # }
//! ```
//!
//!
//! # Constructors and fields
//!
//! In the value `Pair(Some(0), true)`, `Pair` is called the constructor of the value, and `Some(0)`
//! and `true` are its fields. Every matcheable value can be decomposed in this way. Examples of
//! constructors are: `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor
//! for a struct `Foo`), and `2` (the constructor for the number `2`).
//!
//! Each constructor takes a fixed number of fields; this is called its arity. `Pair` and `(,)` have
//! arity 2, `Some` has arity 1, `None` and `42` have arity 0. Each type has a known set of
//! constructors. Some types have many constructors (like `u64`) or even an infinitely many (like
//! `&str` and `&[T]`).
//!
//! Patterns are similar: `Pair(Some(_), _)` has constructor `Pair` and two fields. The difference
//! is that we get some extra pattern-only constructors, namely: the wildcard `_`, variable
//! bindings, integer ranges like `0..=10`, and variable-length slices like `[_, .., _]`. We treat
//! or-patterns separately, see the dedicated section below.
//!
//! Now to check if a value `v` matches a pattern `p`, we check if `v`'s constructor matches `p`'s
//! constructor, then recursively compare their fields if necessary. A few representative examples:
//!
//! - `matches!(v, _) := true`
//! - `matches!((v0,  v1), (p0,  p1)) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
//!
//! Constructors and relevant operations are defined in the [`crate::constructor`] module. A
//! representation of patterns that uses constructors is available in [`crate::pat`]. The question
//! of whether a constructor is matched by another one is answered by
//! [`Constructor::is_covered_by`].
//!
//! Note 1: variable bindings (like the `x` in `Some(x)`) match anything, so we treat them as wildcards.
//! Note 2: this only applies to matcheable values. For example a value of type `Rc<u64>` can't be
//! deconstructed that way.
//!
//!
//!
//! # Specialization
//!
//! The examples in the previous section motivate the operation at the heart of the algorithm:
//! "specialization". It captures this idea of "removing one layer of constructor".
//!
//! `specialize(c, p)` takes a value-only constructor `c` and a pattern `p`, and returns a
//! pattern-tuple or nothing. It works as follows:
//!
//! - Specializing for the wrong constructor returns nothing
//!
//!   - `specialize(None, Some(p0)) := <nothing>`
//!   - `specialize([,,,], [p0]) := <nothing>`
//!
//! - Specializing for the correct constructor returns a tuple of the fields
//!
//!   - `specialize(Variant1, Variant1(p0, p1, p2)) := (p0, p1, p2)`
//!   - `specialize(Foo{ bar, baz, quz }, Foo { bar: p0, baz: p1, .. }) := (p0, p1, _)`
//!   - `specialize([,,,], [p0, .., p1]) := (p0, _, _, p1)`
//!
//! We get the following property: for any values `v_1, .., v_n` of appropriate types, we have:
//! ```text
//! matches!(c(v_1, .., v_n), p)
//! <=> specialize(c, p) returns something
//!     && matches!((v_1, .., v_n), specialize(c, p))
//! ```
//!
//! We also extend specialization to pattern-tuples by applying it to the first pattern:
//! `specialize(c, (p_0, .., p_n)) := specialize(c, p_0) ++ (p_1, .., p_m)`
//! where `++` is concatenation of tuples.
//!
//!
//! The previous property extends to pattern-tuples:
//! ```text
//! matches!((c(v_1, .., v_n), w_1, .., w_m), (p_0, p_1, .., p_m))
//! <=> specialize(c, p_0) does not error
//!     && matches!((v_1, .., v_n, w_1, .., w_m), specialize(c, (p_0, p_1, .., p_m)))
//! ```
//!
//! Whether specialization returns something or not is given by [`Constructor::is_covered_by`].
//! Specialization of a pattern is computed in [`DeconstructedPat::specialize`]. Specialization for
//! a pattern-tuple is computed in [`PatStack::pop_head_constructor`]. Finally, specialization for a
//! set of pattern-tuples is computed in [`Matrix::specialize_constructor`].
//!
//!
//!
//! # Undoing specialization
//!
//! To construct witnesses we will need an inverse of specialization. If `c` is a constructor of
//! arity `n`, we define `unspecialize` as:
//! `unspecialize(c, (p_1, .., p_n, q_1, .., q_m)) := (c(p_1, .., p_n), q_1, .., q_m)`.
//!
//! This is done for a single witness-tuple in [`WitnessStack::apply_constructor`], and for a set of
//! witness-tuples in [`WitnessMatrix::apply_constructor`].
//!
//!
//!
//! # Computing usefulness
//!
//! We now present a naive version of the algorithm for computing usefulness. From now on we operate
//! on pattern-tuples.
//!
//! Let `pt_1, .., pt_n` and `qt` be length-m tuples of patterns for the same type `(T_1, .., T_m)`.
//! We compute `usefulness(tp_1, .., tp_n, tq)` as follows:
//!
//! - Base case: `m == 0`.
//!     The pattern-tuples are all empty, i.e. they're all `()`. Thus `tq` is useful iff there are
//!     no rows above it, i.e. if `n == 0`. In that case we return `()` as a witness-tuple of
//!     usefulness of `tq`.
//!
//! - Inductive case: `m > 0`.
//!     In this naive version, we list all the possible constructors for values of type `T1` (we
//!     will be more clever in the next section).
//!
//!     - For each such constructor `c` for which `specialize(c, tq)` is not nothing:
//!         - We recursively compute `usefulness(specialize(c, tp_1) ... specialize(c, tp_n), specialize(c, tq))`,
//!             where we discard any `specialize(c, p_i)` that returns nothing.
//!         - For each witness-tuple `w` found, we apply `unspecialize(c, w)` to it.
//!
//!     - We return the all the witnesses found, if any.
//!
//!
//! Let's take the following example:
//! ```compile_fail,E0004
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
//! # use Enum::*;
//! # fn foo(x: Enum) {
//! match x {
//!     Variant1(_) => {} // `p1`
//!     Variant2(None, 0) => {} // `p2`
//!     Variant2(Some(_), 0) => {} // `q`
//! }
//! # }
//! ```
//!
//! To compute the usefulness of `q`, we would proceed as follows:
//! ```text
//! Start:
//!   `tp1 = [Variant1(_)]`
//!   `tp2 = [Variant2(None, 0)]`
//!   `tq  = [Variant2(Some(true), 0)]`
//!
//!   Constructors are `Variant1` and `Variant2`. Only `Variant2` can specialize `tq`.
//!   Specialize with `Variant2`:
//!     `tp2 = [None, 0]`
//!     `tq  = [Some(true), 0]`
//!
//!     Constructors are `None` and `Some`. Only `Some` can specialize `tq`.
//!     Specialize with `Some`:
//!       `tq  = [true, 0]`
//!
//!       Constructors are `false` and `true`. Only `true` can specialize `tq`.
//!       Specialize with `true`:
//!         `tq  = [0]`
//!
//!         Constructors are `0`, `1`, .. up to infinity. Only `0` can specialize `tq`.
//!         Specialize with `0`:
//!           `tq  = []`
//!
//!           m == 0 and n == 0, so `tq` is useful with witness `[]`.
//!             `witness  = []`
//!
//!         Unspecialize with `0`:
//!           `witness  = [0]`
//!       Unspecialize with `true`:
//!         `witness  = [true, 0]`
//!     Unspecialize with `Some`:
//!       `witness  = [Some(true), 0]`
//!   Unspecialize with `Variant2`:
//!     `witness  = [Variant2(Some(true), 0)]`
//! ```
//!
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
//!
//! # Computing usefulness and exhaustiveness in one go
//!
//! The algorithm we have described so far computes usefulness of each pattern in turn, and ends by
//! checking if `_` is useful to determine exhaustiveness of the whole match. In practice, instead
//! of doing "for each pattern { for each constructor { ... } }", we do "for each constructor { for
//! each pattern { ... } }". This allows us to compute everything in one go.
//!
//! [`Matrix`] stores the set of pattern-tuples under consideration. We track usefulness of each
//! row mutably in the matrix as we go along. We ignore witnesses of usefulness of the match rows.
//! We gather witnesses of the usefulness of `_` in [`WitnessMatrix`]. The algorithm that computes
//! all this is in [`compute_exhaustiveness_and_usefulness`].
//!
//! See the full example at the bottom of this documentation.
//!
//!
//!
//! # Making usefulness tractable: constructor splitting
//!
//! We're missing one last detail: which constructors do we list? Naively listing all value
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The final
//! clever idea for this algorithm is that we can group together constructors that behave the same.
//!
//! Examples:
//! ```compile_fail,E0004
//! match (0, false) {
//!     (0 ..=100, true) => {}
//!     (50..=150, false) => {}
//!     (0 ..=200, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `0`, `1`, .., `49` will give the same specialized matrix, and
//! thus the same usefulness/exhaustiveness results. We can thus accelerate the algorithm by
//! trying them all at once. Here in fact, the only cases we need to consider are: `0..50`,
//! `50..=100`, `101..=150`,`151..=200` and `201..`.
//!
//! ```
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//!     (Direction::North, 50..) => {}
//!     (_, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `South`, `East`, `West` will give the same specialized matrix. By
//! the same reasoning, we only need to try two cases: `North`, and "everything else".
//!
//! We call _constructor splitting_ the operation that computes such a minimal set of cases to try.
//! This is done in [`ConstructorSet::split`] and explained in [`crate::constructor`].
//!
//!
//!
//! # `Missing` and relevancy
//!
//! ## Relevant values
//!
//! Take the following example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true);
//! match foo {
//!     (true, _) => 1,
//!     (_, true) => 2,
//! };
//! ```
//!
//! Consider the value `(true, true)`:
//! - Row 2 does not distinguish `(true, true)` and `(false, true)`;
//! - `false` does not show up in the first column of the match, so without knowing anything else we
//!     can deduce that `(false, true)` matches the same or fewer rows than `(true, true)`.
//!
//! Using those two facts together, we deduce that `(true, true)` will not give us more usefulness
//! information about row 2 than `(false, true)` would. We say that "`(true, true)` is made
//! irrelevant for row 2 by `(false, true)`". We will use this idea to prune the search tree.
//!
//!
//! ## Computing relevancy
//!
//! We now generalize from the above example to approximate relevancy in a simple way. Note that we
//! will only compute an approximation: we can sometimes determine when a case is irrelevant, but
//! computing this precisely is at least as hard as computing usefulness.
//!
//! Our computation of relevancy relies on the `Missing` constructor. As explained in
//! [`crate::constructor`], `Missing` represents the constructors not present in a given column. For
//! example in the following:
//!
//! ```compile_fail,E0004
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//!     (Direction::North, _) => 1,
//!     (_, 50..) => 2,
//! };
//! ```
//!
//! Here `South`, `East` and `West` are missing in the first column, and `0..50`  is missing in the
//! second. Both of these sets are represented by `Constructor::Missing` in their corresponding
//! column.
//!
//! We then compute relevancy as follows: during the course of the algorithm, for a row `r`:
//! - if `r` has a wildcard in the first column;
//! - and some constructors are missing in that column;
//! - then any `c != Missing` is considered irrelevant for row `r`.
//!
//! By this we mean that continuing the algorithm by specializing with `c` is guaranteed not to
//! contribute more information about the usefulness of row `r` than what we would get by
//! specializing with `Missing`. The argument is the same as in the previous subsection.
//!
//! Once we've specialized by a constructor `c` that is irrelevant for row `r`, we're guaranteed to
//! only explore values irrelevant for `r`. If we then ever reach a point where we're only exploring
//! values that are irrelevant to all of the rows (including the virtual wildcard row used for
//! exhaustiveness), we skip that case entirely.
//!
//!
//! ## Example
//!
//! Let's go through a variation on the first example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true, true);
//! match foo {
//!     (true, _, true) => 1,
//!     (_, true, _) => 2,
//! };
//! ```
//!
//! ```text
//!  ┐ Patterns:
//!  │   1. `[(true, _, true)]`
//!  │   2. `[(_, true, _)]`
//!  │   3. `[_]` // virtual extra wildcard row
//!  │
//!  │ Specialize with `(,,)`:
//!  ├─┐ Patterns:
//!  │ │   1. `[true, _, true]`
//!  │ │   2. `[_, true, _]`
//!  │ │   3. `[_, _, _]`
//!  │ │
//!  │ │ There are missing constructors in the first column (namely `false`), hence
//!  │ │ `true` is irrelevant for rows 2 and 3.
//!  │ │
//!  │ │ Specialize with `true`:
//!  │ ├─┐ Patterns:
//!  │ │ │   1. `[_, true]`
//!  │ │ │   2. `[true, _]` // now exploring irrelevant cases
//!  │ │ │   3. `[_, _]`    // now exploring irrelevant cases
//!  │ │ │
//!  │ │ │ There are missing constructors in the first column (namely `false`), hence
//!  │ │ │ `true` is irrelevant for rows 1 and 3.
//!  │ │ │
//!  │ │ │ Specialize with `true`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   1. `[true]` // now exploring irrelevant cases
//!  │ │ │ │   2. `[_]`    // now exploring irrelevant cases
//!  │ │ │ │   3. `[_]`    // now exploring irrelevant cases
//!  │ │ │ │
//!  │ │ │ │ The current case is irrelevant for all rows: we backtrack immediately.
//!  │ │ ├─┘
//!  │ │ │
//!  │ │ │ Specialize with `false`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   1. `[true]`
//!  │ │ │ │   3. `[_]`    // now exploring irrelevant cases
//!  │ │ │ │
//!  │ │ │ │ Specialize with `true`:
//!  │ │ │ ├─┐ Patterns:
//!  │ │ │ │ │   1. `[]`
//!  │ │ │ │ │   3. `[]`    // now exploring irrelevant cases
//!  │ │ │ │ │
//!  │ │ │ │ │ Row 1 is therefore useful.
//!  │ │ │ ├─┘
//! <etc...>
//! ```
//!
//! Relevancy allowed us to skip the case `(true, true, _)` entirely. In some cases this pruning can
//! give drastic speedups. The case this was built for is the following (#118437):
//!
//! ```ignore(illustrative)
//! match foo {
//!     (true, _, _, _, ..) => 1,
//!     (_, true, _, _, ..) => 2,
//!     (_, _, true, _, ..) => 3,
//!     (_, _, _, true, ..) => 4,
//!     ...
//! }
//! ```
//!
//! Without considering relevancy, we would explore all 2^n combinations of the `true` and `Missing`
//! constructors. Relevancy tells us that e.g. `(true, true, false, false, false, ...)` is
//! irrelevant for all the rows. This allows us to skip all cases with more than one `true`
//! constructor, changing the runtime from exponential to linear.
//!
//!
//! ## Relevancy and exhaustiveness
//!
//! For exhaustiveness, we do something slightly different w.r.t relevancy: we do not report
//! witnesses of non-exhaustiveness that are irrelevant for the virtual wildcard row. For example,
//! in:
//!
//! ```ignore(illustrative)
//! match foo {
//!     (true, true) => {}
//! }
//! ```
//!
//! we only report `(false, _)` as missing. This was a deliberate choice made early in the
//! development of rust, for diagnostic and performance purposes. As showed in the previous section,
//! ignoring irrelevant cases preserves usefulness, so this choice still correctly computes whether
//! a match is exhaustive.
//!
//!
//!
//! # Or-patterns
//!
//! What we have described so far works well if there are no or-patterns. To handle them, if the
//! first pattern of any row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. For code reuse, this is implemented as "specializing with the `Or`
//! constructor".
//!
//! This makes usefulness tracking subtle, because we also want to compute whether an alternative of
//! an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We therefore track usefulness of each
//! subpattern of the match.
//!
//!
//!
//! # Constants and opaques
//!
//! There are two kinds of constants in patterns:
//!
//! * literals (`1`, `true`, `"foo"`)
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
//!
//! The latter are converted into the corresponding patterns by a previous phase. For example
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
//! from matching on the constant converted to a pattern. The situation around this is currently
//! unclear and the lang team is working on clarifying what we want to do there. In any case, there
//! are constants we will not turn into patterns. We capture these with `Constructor::Opaque`. These
//! `Opaque` patterns do not participate in exhaustiveness, specialization or overlap checking.
//!
//!
//!
//! # Usefulness vs reachability, validity, and empty patterns
//!
//! This is likely the subtlest aspect of the algorithm. To be fully precise, a match doesn't
//! operate on a value, it operates on a place. In certain unsafe circumstances, it is possible for
//! a place to not contain valid data for its type. This has subtle consequences for empty types.
//! Take the following:
//!
//! ```rust
//! enum Void {}
//! let x: u8 = 0;
//! let ptr: *const Void = &x as *const u8 as *const Void;
//! unsafe {
//!     match *ptr {
//!         _ => println!("Reachable!"),
//!     }
//! }
//! ```
//!
//! In this example, `ptr` is a valid pointer pointing to a place with invalid data. The `_` pattern
//! does not look at the contents of `*ptr`, so this is ok and the arm is taken. In other words,
//! despite the place we are inspecting being of type `Void`, there is a reachable arm. If the
//! arm had a binding however:
//!
//! ```rust
//! # #[derive(Copy, Clone)]
//! # enum Void {}
//! # let x: u8 = 0;
//! # let ptr: *const Void = &x as *const u8 as *const Void;
//! # unsafe {
//! match *ptr {
//!     _a => println!("Unreachable!"),
//! }
//! # }
//! ```
//!
//! Here the binding loads the value of type `Void` from the `*ptr` place. In this example, this
//! causes UB since the data is not valid. In the general case, this asserts validity of the data at
//! `*ptr`. Either way, this arm will never be taken.
//!
//! Finally, let's consider the empty match `match *ptr {}`. If we consider this exhaustive, then
//! having invalid data at `*ptr` is invalid. In other words, the empty match is semantically
//! equivalent to the `_a => ...` match. In the interest of explicitness, we prefer the case with an
//! arm, hence we won't tell the user to remove the `_a` arm. In other words, the `_a` arm is
//! unreachable yet not redundant. This is why we lint on redundant arms rather than unreachable
//! arms, despite the fact that the lint says "unreachable".
//!
//! These considerations only affects certain places, namely those that can contain non-valid data
//! without UB. These are: pointer dereferences, reference dereferences, and union field accesses.
//! We track in the algorithm whether a given place is known to contain valid data. This is done
//! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
//! then by tracking validity of each column of the matrix (which correspond to places) as we
//! recurse into subpatterns. That second part is done through [`PlaceValidity`], most notably
//! [`PlaceValidity::specialize`].
//!
//! Having said all that, we don't fully follow what's been presented in this section. For
//! backwards-compatibility, we ignore place validity when checking whether a pattern is required
//! for exhaustiveness in two cases: when the `exhaustive_patterns` feature gate is on, or when the
//! match scrutinee itself has type `!` or `EmptyEnum`. I (Nadrieril) hope to deprecate this
//! exception.
//!
//!
//!
//! # Full example
//!
//! We illustrate a full run of the algorithm on the following match.
//!
//! ```compile_fail,E0004
//! # struct Pair(Option<u32>, bool);
//! # fn foo(x: Pair) -> u32 {
//! match x {
//!     Pair(Some(0), _) => 1,
//!     Pair(_, false) => 2,
//!     Pair(Some(0), false) => 3,
//! }
//! # }
//! ```
//!
//! We keep track of the original row for illustration purposes, this is not what the algorithm
//! actually does (it tracks usefulness as a boolean on each row).
//!
//! ```text
//!  ┐ Patterns:
//!  │   1. `[Pair(Some(0), _)]`
//!  │   2. `[Pair(_, false)]`
//!  │   3. `[Pair(Some(0), false)]`
//!  │
//!  │ Specialize with `Pair`:
//!  ├─┐ Patterns:
//!  │ │   1. `[Some(0), _]`
//!  │ │   2. `[_, false]`
//!  │ │   3. `[Some(0), false]`
//!  │ │
//!  │ │ Specialize with `Some`:
//!  │ ├─┐ Patterns:
//!  │ │ │   1. `[0, _]`
//!  │ │ │   2. `[_, false]`
//!  │ │ │   3. `[0, false]`
//!  │ │ │
//!  │ │ │ Specialize with `0`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   1. `[_]`
//!  │ │ │ │   3. `[false]`
//!  │ │ │ │
//!  │ │ │ │ Specialize with `true`:
//!  │ │ │ ├─┐ Patterns:
//!  │ │ │ │ │   1. `[]`
//!  │ │ │ │ │
//!  │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), true)`).
//!  │ │ │ ├─┘
//!  │ │ │ │
//!  │ │ │ │ Specialize with `false`:
//!  │ │ │ ├─┐ Patterns:
//!  │ │ │ │ │   1. `[]`
//!  │ │ │ │ │   3. `[]`
//!  │ │ │ │ │
//!  │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), false)`).
//!  │ │ │ ├─┘
//!  │ │ ├─┘
//!  │ │ │
//!  │ │ │ Specialize with `1..`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   2. `[false]`
//!  │ │ │ │
//!  │ │ │ │ Specialize with `true`:
//!  │ │ │ ├─┐ Patterns:
//!  │ │ │ │ │   // no rows left
//!  │ │ │ │ │
//!  │ │ │ │ │ We have found an unmatched value (`Pair(Some(1..), true)`)! This gives us a witness.
//!  │ │ │ │ │ New witnesses:
//!  │ │ │ │ │   `[]`
//!  │ │ │ ├─┘
//!  │ │ │ │ Unspecialize new witnesses with `true`:
//!  │ │ │ │   `[true]`
//!  │ │ │ │
//!  │ │ │ │ Specialize with `false`:
//!  │ │ │ ├─┐ Patterns:
//!  │ │ │ │ │   2. `[]`
//!  │ │ │ │ │
//!  │ │ │ │ │ We note arm 2 is useful (by `Pair(Some(1..), false)`).
//!  │ │ │ ├─┘
//!  │ │ │ │
//!  │ │ │ │ Total witnesses for `1..`:
//!  │ │ │ │   `[true]`
//!  │ │ ├─┘
//!  │ │ │ Unspecialize new witnesses with `1..`:
//!  │ │ │   `[1.., true]`
//!  │ │ │
//!  │ │ │ Total witnesses for `Some`:
//!  │ │ │   `[1.., true]`
//!  │ ├─┘
//!  │ │ Unspecialize new witnesses with `Some`:
//!  │ │   `[Some(1..), true]`
//!  │ │
//!  │ │ Specialize with `None`:
//!  │ ├─┐ Patterns:
//!  │ │ │   2. `[false]`
//!  │ │ │
//!  │ │ │ Specialize with `true`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   // no rows left
//!  │ │ │ │
//!  │ │ │ │ We have found an unmatched value (`Pair(None, true)`)! This gives us a witness.
//!  │ │ │ │ New witnesses:
//!  │ │ │ │   `[]`
//!  │ │ ├─┘
//!  │ │ │ Unspecialize new witnesses with `true`:
//!  │ │ │   `[true]`
//!  │ │ │
//!  │ │ │ Specialize with `false`:
//!  │ │ ├─┐ Patterns:
//!  │ │ │ │   2. `[]`
//!  │ │ │ │
//!  │ │ │ │ We note arm 2 is useful (by `Pair(None, false)`).
//!  │ │ ├─┘
//!  │ │ │
//!  │ │ │ Total witnesses for `None`:
//!  │ │ │   `[true]`
//!  │ ├─┘
//!  │ │ Unspecialize new witnesses with `None`:
//!  │ │   `[None, true]`
//!  │ │
//!  │ │ Total witnesses for `Pair`:
//!  │ │   `[Some(1..), true]`
//!  │ │   `[None, true]`
//!  ├─┘
//!  │ Unspecialize new witnesses with `Pair`:
//!  │   `[Pair(Some(1..), true)]`
//!  │   `[Pair(None, true)]`
//!  │
//!  │ Final witnesses:
//!  │   `[Pair(Some(1..), true)]`
//!  │   `[Pair(None, true)]`
//!  ┘
//! ```
//!
//! We conclude:
//! - Arm 3 is redundant (it was never marked as useful);
//! - The match is not exhaustive;
//! - Adding arms with `Pair(Some(1..), true)` and `Pair(None, true)` would make the match exhaustive.
//!
//! Note that when we're deep in the algorithm, we don't know what specialization steps got us here.
//! We can only figure out what our witnesses correspond to by unspecializing back up the stack.
//!
//!
//! # Tests
//!
//! Note: tests specific to this file can be found in:
//!
//!   - `ui/pattern/usefulness`
//!   - `ui/or-patterns`
//!   - `ui/consts/const_in_pattern`
//!   - `ui/rfc-2008-non-exhaustive`
//!   - `ui/half-open-range-patterns`
//!   - probably many others
//!
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.

use std::fmt;

#[cfg(feature = "rustc")]
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hash::{FxHashMap, FxHashSet};
use rustc_index::bit_set::BitSet;
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};

use self::PlaceValidity::*;
use crate::constructor::{Constructor, ConstructorSet, IntRange};
use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat};
use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
#[cfg(not(feature = "rustc"))]
pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
    f()
}

/// A pattern is a "branch" if it is the immediate child of an or-pattern, or if it is the whole
/// pattern of a match arm. These are the patterns that can be meaningfully considered "redundant",
/// since e.g. `0` in `(0, 1)` cannot be redundant on its own.
///
/// We track for each branch pattern whether it is useful, and if not why.
struct BranchPatUsefulness<'p, Cx: PatCx> {
    /// Whether this pattern is useful.
    useful: bool,
    /// A set of patterns that:
    /// - come before this one in the match;
    /// - intersect this one;
    /// - at the end of the algorithm, if `!self.useful`, their union covers this pattern.
    covered_by: FxHashSet<&'p DeconstructedPat<Cx>>,
}

impl<'p, Cx: PatCx> BranchPatUsefulness<'p, Cx> {
    /// Update `self` with the usefulness information found in `row`.
    fn update(&mut self, row: &MatrixRow<'p, Cx>, matrix: &Matrix<'p, Cx>) {
        self.useful |= row.useful;
        // This deserves an explanation: `intersects_at_least` does not contain all intersections
        // because we skip irrelevant values (see the docs for `intersects_at_least` for an
        // example). Yet we claim this suffices to build a covering set.
        //
        // Let `p` be our pattern. Assume it is found not useful. For a value `v`, if the value was
        // relevant then we explored that value and found that there was another pattern `q` before
        // `p` that matches it too. We therefore recorded an intersection with `q`. If `v` was
        // irrelevant, we know there's another value `v2` that matches strictly fewer rows (while
        // still matching our row) and is relevant. Since `p` is not useful, there must have been a
        // `q` before `p` that matches `v2`, and we recorded that intersection. Since `v2` matches
        // strictly fewer rows than `v`, `q` also matches `v`. In either case, we recorded in
        // `intersects_at_least` a pattern that matches `v`. Hence using `intersects_at_least` is
        // sufficient to build a covering set.
        for row_id in row.intersects_at_least.iter() {
            let row = &matrix.rows[row_id];
            if row.useful && !row.is_under_guard {
                if let PatOrWild::Pat(intersecting) = row.head() {
                    self.covered_by.insert(intersecting);
                }
            }
        }
    }

    /// Check whether this pattern is redundant, and if so explain why.
    fn is_redundant(&self) -> Option<RedundancyExplanation<'p, Cx>> {
        if self.useful {
            None
        } else {
            // We avoid instability by sorting by `uid`. The order of `uid`s only depends on the
            // pattern structure.
            #[cfg_attr(feature = "rustc", allow(rustc::potential_query_instability))]
            let mut covered_by: Vec<_> = self.covered_by.iter().copied().collect();
            covered_by.sort_by_key(|pat| pat.uid); // sort to avoid instability
            Some(RedundancyExplanation { covered_by })
        }
    }
}

impl<'p, Cx: PatCx> Default for BranchPatUsefulness<'p, Cx> {
    fn default() -> Self {
        Self { useful: Default::default(), covered_by: Default::default() }
    }
}

/// Context that provides information for usefulness checking.
struct UsefulnessCtxt<'a, 'p, Cx: PatCx> {
    /// The context for type information.
    tycx: &'a Cx,
    /// Track information about the usefulness of branch patterns (see definition of "branch
    /// pattern" at [`BranchPatUsefulness`]).
    branch_usefulness: FxHashMap<PatId, BranchPatUsefulness<'p, Cx>>,
    complexity_limit: Option<usize>,
    complexity_level: usize,
}

impl<'a, 'p, Cx: PatCx> UsefulnessCtxt<'a, 'p, Cx> {
    fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> {
        self.complexity_level += complexity_add;
        if self
            .complexity_limit
            .is_some_and(|complexity_limit| complexity_limit < self.complexity_level)
        {
            return self.tycx.complexity_exceeded();
        }
        Ok(())
    }
}

/// Context that provides information local to a place under investigation.
struct PlaceCtxt<'a, Cx: PatCx> {
    cx: &'a Cx,
    /// Type of the place under investigation.
    ty: &'a Cx::Ty,
}

impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> {
    fn clone(&self) -> Self {
        Self { cx: self.cx, ty: self.ty }
    }
}

impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish()
    }
}

impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> {
    fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
        self.cx.ctor_arity(ctor, self.ty)
    }
    fn wild_from_ctor(&self, ctor: Constructor<Cx>) -> WitnessPat<Cx> {
        WitnessPat::wild_from_ctor(self.cx, ctor, self.ty.clone())
    }
}

/// Track whether a given place (aka column) is known to contain a valid value or not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PlaceValidity {
    ValidOnly,
    MaybeInvalid,
}

impl PlaceValidity {
    pub fn from_bool(is_valid_only: bool) -> Self {
        if is_valid_only { ValidOnly } else { MaybeInvalid }
    }

    fn is_known_valid(self) -> bool {
        matches!(self, ValidOnly)
    }

    /// If the place has validity given by `self` and we read that the value at the place has
    /// constructor `ctor`, this computes what we can assume about the validity of the constructor
    /// fields.
    ///
    /// Pending further opsem decisions, the current behavior is: validity is preserved, except
    /// inside `&` and union fields where validity is reset to `MaybeInvalid`.
    fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self {
        // We preserve validity except when we go inside a reference or a union field.
        if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
            // Validity of `x: &T` does not imply validity of `*x: T`.
            MaybeInvalid
        } else {
            self
        }
    }
}

impl fmt::Display for PlaceValidity {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = match self {
            ValidOnly => "✓",
            MaybeInvalid => "?",
        };
        write!(f, "{s}")
    }
}

/// Data about a place under investigation. Its methods contain a lot of the logic used to analyze
/// the constructors in the matrix.
struct PlaceInfo<Cx: PatCx> {
    /// The type of the place.
    ty: Cx::Ty,
    /// Whether the place is a private uninhabited field. If so we skip this field during analysis
    /// so that we don't observe its emptiness.
    private_uninhabited: bool,
    /// Whether the place is known to contain valid data.
    validity: PlaceValidity,
    /// Whether the place is the scrutinee itself or a subplace of it.
    is_scrutinee: bool,
}

impl<Cx: PatCx> PlaceInfo<Cx> {
    /// Given a constructor for the current place, we return one `PlaceInfo` for each field of the
    /// constructor.
    fn specialize<'a>(
        &'a self,
        cx: &'a Cx,
        ctor: &'a Constructor<Cx>,
    ) -> impl Iterator<Item = Self> + ExactSizeIterator + Captures<'a> {
        let ctor_sub_tys = cx.ctor_sub_tys(ctor, &self.ty);
        let ctor_sub_validity = self.validity.specialize(ctor);
        ctor_sub_tys.map(move |(ty, PrivateUninhabitedField(private_uninhabited))| PlaceInfo {
            ty,
            private_uninhabited,
            validity: ctor_sub_validity,
            is_scrutinee: false,
        })
    }

    /// This analyzes a column of constructors corresponding to the current place. It returns a pair
    /// `(split_ctors, missing_ctors)`.
    ///
    /// `split_ctors` is a splitted list of constructors that cover the whole type. This will be
    /// used to specialize the matrix.
    ///
    /// `missing_ctors` is a list of the constructors not found in the column, for reporting
    /// purposes.
    fn split_column_ctors<'a>(
        &self,
        cx: &Cx,
        ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
    ) -> Result<(SmallVec<[Constructor<Cx>; 1]>, Vec<Constructor<Cx>>), Cx::Error>
    where
        Cx: 'a,
    {
        debug!(?self.ty);
        if self.private_uninhabited {
            // Skip the whole column
            return Ok((smallvec![Constructor::PrivateUninhabited], vec![]));
        }

        if ctors.clone().any(|c| matches!(c, Constructor::Or)) {
            // If any constructor is `Or`, we expand or-patterns.
            return Ok((smallvec![Constructor::Or], vec![]));
        }

        let ctors_for_ty = cx.ctors_for_ty(&self.ty)?;
        debug!(?ctors_for_ty);

        // We treat match scrutinees of type `!` or `EmptyEnum` differently.
        let is_toplevel_exception =
            self.is_scrutinee && matches!(ctors_for_ty, ConstructorSet::NoConstructors);
        // Whether empty patterns are counted as useful or not. We only warn an empty arm unreachable if
        // it is guaranteed unreachable by the opsem (i.e. if the place is `known_valid`).
        // We don't want to warn empty patterns as unreachable by default just yet. We will in a
        // later version of rust or under a different lint name, see
        // https://github.com/rust-lang/rust/pull/129103.
        let empty_arms_are_unreachable = self.validity.is_known_valid()
            && (is_toplevel_exception || cx.is_exhaustive_patterns_feature_on());
        // Whether empty patterns can be omitted for exhaustiveness. We ignore place validity in the
        // toplevel exception and `exhaustive_patterns` cases for backwards compatibility.
        let can_omit_empty_arms = self.validity.is_known_valid()
            || is_toplevel_exception
            || cx.is_exhaustive_patterns_feature_on();

        // Analyze the constructors present in this column.
        let mut split_set = ctors_for_ty.split(ctors);
        debug!(?split_set);
        let all_missing = split_set.present.is_empty();

        // Build the set of constructors we will specialize with. It must cover the whole type, so
        // we add `Missing` to represent the missing ones. This is explained under "Constructor
        // Splitting" at the top of this file.
        let mut split_ctors = split_set.present;
        if !(split_set.missing.is_empty()
            && (split_set.missing_empty.is_empty() || empty_arms_are_unreachable))
        {
            split_ctors.push(Constructor::Missing);
        }

        // Which empty constructors are considered missing. We ensure that
        // `!missing_ctors.is_empty() => split_ctors.contains(Missing)`. The converse usually holds
        // except when `!self.validity.is_known_valid()`.
        let mut missing_ctors = split_set.missing;
        if !can_omit_empty_arms {
            missing_ctors.append(&mut split_set.missing_empty);
        }

        // Whether we should report "Enum::A and Enum::C are missing" or "_ is missing". At the top
        // level we prefer to list all constructors.
        let report_individual_missing_ctors = self.is_scrutinee || !all_missing;
        if !missing_ctors.is_empty() && !report_individual_missing_ctors {
            // Report `_` as missing.
            missing_ctors = vec![Constructor::Wildcard];
        } else if missing_ctors.iter().any(|c| c.is_non_exhaustive()) {
            // We need to report a `_` anyway, so listing other constructors would be redundant.
            // `NonExhaustive` is displayed as `_` just like `Wildcard`, but it will be picked
            // up by diagnostics to add a note about why `_` is required here.
            missing_ctors = vec![Constructor::NonExhaustive];
        }

        Ok((split_ctors, missing_ctors))
    }
}

impl<Cx: PatCx> Clone for PlaceInfo<Cx> {
    fn clone(&self) -> Self {
        Self {
            ty: self.ty.clone(),
            private_uninhabited: self.private_uninhabited,
            validity: self.validity,
            is_scrutinee: self.is_scrutinee,
        }
    }
}

/// Represents a pattern-tuple under investigation.
// The three lifetimes are:
// - 'p coming from the input
// - Cx global compilation context
struct PatStack<'p, Cx: PatCx> {
    // Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
    pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
    /// Sometimes we know that as far as this row is concerned, the current case is already handled
    /// by a different, more general, case. When the case is irrelevant for all rows this allows us
    /// to skip a case entirely. This is purely an optimization. See at the top for details.
    relevant: bool,
}

impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> {
    fn clone(&self) -> Self {
        Self { pats: self.pats.clone(), relevant: self.relevant }
    }
}

impl<'p, Cx: PatCx> PatStack<'p, Cx> {
    fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self {
        PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
    }

    fn len(&self) -> usize {
        self.pats.len()
    }

    fn head(&self) -> PatOrWild<'p, Cx> {
        self.pats[0]
    }

    fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
        self.pats.iter().copied()
    }

    // Expand the first or-pattern into its subpatterns. Only useful if the pattern is an
    // or-pattern. Panics if `self` is empty.
    fn expand_or_pat(&self) -> impl Iterator<Item = PatStack<'p, Cx>> + Captures<'_> {
        self.head().expand_or_pat().into_iter().map(move |pat| {
            let mut new = self.clone();
            new.pats[0] = pat;
            new
        })
    }

    /// This computes `specialize(ctor, self)`. See top of the file for explanations.
    /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
    fn pop_head_constructor(
        &self,
        cx: &Cx,
        ctor: &Constructor<Cx>,
        ctor_arity: usize,
        ctor_is_relevant: bool,
    ) -> Result<PatStack<'p, Cx>, Cx::Error> {
        let head_pat = self.head();
        if head_pat.as_pat().is_some_and(|pat| pat.arity() > ctor_arity) {
            // Arity can be smaller in case of variable-length slices, but mustn't be larger.
            return Err(cx.bug(format_args!(
                "uncaught type error: pattern {:?} has inconsistent arity (expected arity <= {ctor_arity})",
                head_pat.as_pat().unwrap()
            )));
        }
        // We pop the head pattern and push the new fields extracted from the arguments of
        // `self.head()`.
        let mut new_pats = head_pat.specialize(ctor, ctor_arity);
        new_pats.extend_from_slice(&self.pats[1..]);
        // `ctor` is relevant for this row if it is the actual constructor of this row, or if the
        // row has a wildcard and `ctor` is relevant for wildcards.
        let ctor_is_relevant =
            !matches!(self.head().ctor(), Constructor::Wildcard) || ctor_is_relevant;
        Ok(PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant })
    }
}

impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // We pretty-print similarly to the `Debug` impl of `Matrix`.
        write!(f, "+")?;
        for pat in self.iter() {
            write!(f, " {pat:?} +")?;
        }
        Ok(())
    }
}

/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, Cx: PatCx> {
    // The patterns in the row.
    pats: PatStack<'p, Cx>,
    /// Whether the original arm had a guard. This is inherited when specializing.
    is_under_guard: bool,
    /// When we specialize, we remember which row of the original matrix produced a given row of the
    /// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
    /// callstack. On creation, this stores the index of the original match arm.
    parent_row: usize,
    /// False when the matrix is just built. This is set to `true` by
    /// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
    /// This is reset to `false` when specializing.
    useful: bool,
    /// Tracks some rows above this one that have an intersection with this one, i.e. such that
    /// there is a value that matches both rows.
    /// Because of relevancy we may miss some intersections. The intersections we do find are
    /// correct. In other words, this is an underapproximation of the real set of intersections.
    ///
    /// For example:
    /// ```rust,ignore(illustrative)
    /// match ... {
    ///     (true, _, _) => {} // `intersects_at_least = []`
    ///     (_, true, 0..=10) => {} // `intersects_at_least = []`
    ///     (_, true, 5..15) => {} // `intersects_at_least = [1]`
    /// }
    /// ```
    /// Here the `(true, true)` case is irrelevant. Since we skip it, we will not detect that row 0
    /// intersects rows 1 and 2.
    intersects_at_least: BitSet<usize>,
    /// Whether the head pattern is a branch (see definition of "branch pattern" at
    /// [`BranchPatUsefulness`])
    head_is_branch: bool,
}

impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
    fn new(arm: &MatchArm<'p, Cx>, arm_id: usize) -> Self {
        MatrixRow {
            pats: PatStack::from_pattern(arm.pat),
            parent_row: arm_id,
            is_under_guard: arm.has_guard,
            useful: false,
            intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
            // This pattern is a branch because it comes from a match arm.
            head_is_branch: true,
        }
    }

    fn len(&self) -> usize {
        self.pats.len()
    }

    fn head(&self) -> PatOrWild<'p, Cx> {
        self.pats.head()
    }

    fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
        self.pats.iter()
    }

    // Expand the first or-pattern (if any) into its subpatterns. Panics if `self` is empty.
    fn expand_or_pat(
        &self,
        parent_row: usize,
    ) -> impl Iterator<Item = MatrixRow<'p, Cx>> + Captures<'_> {
        let is_or_pat = self.pats.head().is_or_pat();
        self.pats.expand_or_pat().map(move |patstack| MatrixRow {
            pats: patstack,
            parent_row,
            is_under_guard: self.is_under_guard,
            useful: false,
            intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
            head_is_branch: is_or_pat,
        })
    }

    /// This computes `specialize(ctor, self)`. See top of the file for explanations.
    /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
    fn pop_head_constructor(
        &self,
        cx: &Cx,
        ctor: &Constructor<Cx>,
        ctor_arity: usize,
        ctor_is_relevant: bool,
        parent_row: usize,
    ) -> Result<MatrixRow<'p, Cx>, Cx::Error> {
        Ok(MatrixRow {
            pats: self.pats.pop_head_constructor(cx, ctor, ctor_arity, ctor_is_relevant)?,
            parent_row,
            is_under_guard: self.is_under_guard,
            useful: false,
            intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
            head_is_branch: false,
        })
    }
}

impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.pats.fmt(f)
    }
}

/// A 2D matrix. Represents a list of pattern-tuples under investigation.
///
/// Invariant: each row must have the same length, and each column must have the same type.
///
/// Invariant: the first column must not contain or-patterns. This is handled by
/// [`Matrix::push`].
///
/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, Cx: PatCx> {
    /// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
    /// each column must have the same type. Each column corresponds to a place within the
    /// scrutinee.
    rows: Vec<MatrixRow<'p, Cx>>,
    /// Track info about each place. Each place corresponds to a column in `rows`, and their types
    /// must match.
    place_info: SmallVec<[PlaceInfo<Cx>; 2]>,
    /// Track whether the virtual wildcard row used to compute exhaustiveness is relevant. See top
    /// of the file for details on relevancy.
    wildcard_row_is_relevant: bool,
}

impl<'p, Cx: PatCx> Matrix<'p, Cx> {
    /// Pushes a new row to the matrix. Internal method, prefer [`Matrix::new`].
    fn push(&mut self, mut row: MatrixRow<'p, Cx>) {
        row.intersects_at_least = BitSet::new_empty(self.rows.len());
        self.rows.push(row);
    }

    /// Build a new matrix from an iterator of `MatchArm`s.
    fn new(arms: &[MatchArm<'p, Cx>], scrut_ty: Cx::Ty, scrut_validity: PlaceValidity) -> Self {
        let place_info = PlaceInfo {
            ty: scrut_ty,
            private_uninhabited: false,
            validity: scrut_validity,
            is_scrutinee: true,
        };
        let mut matrix = Matrix {
            rows: Vec::with_capacity(arms.len()),
            place_info: smallvec![place_info],
            wildcard_row_is_relevant: true,
        };
        for (arm_id, arm) in arms.iter().enumerate() {
            matrix.push(MatrixRow::new(arm, arm_id));
        }
        matrix
    }

    fn head_place(&self) -> Option<&PlaceInfo<Cx>> {
        self.place_info.first()
    }
    fn column_count(&self) -> usize {
        self.place_info.len()
    }

    fn rows(
        &self,
    ) -> impl Iterator<Item = &MatrixRow<'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
    {
        self.rows.iter()
    }
    fn rows_mut(
        &mut self,
    ) -> impl Iterator<Item = &mut MatrixRow<'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
    {
        self.rows.iter_mut()
    }

    /// Iterate over the first pattern of each row.
    fn heads(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Clone + Captures<'_> {
        self.rows().map(|r| r.head())
    }

    /// This computes `specialize(ctor, self)`. See top of the file for explanations.
    fn specialize_constructor(
        &self,
        pcx: &PlaceCtxt<'_, Cx>,
        ctor: &Constructor<Cx>,
        ctor_is_relevant: bool,
    ) -> Result<Matrix<'p, Cx>, Cx::Error> {
        if matches!(ctor, Constructor::Or) {
            // Specializing with `Or` means expanding rows with or-patterns.
            let mut matrix = Matrix {
                rows: Vec::new(),
                place_info: self.place_info.clone(),
                wildcard_row_is_relevant: self.wildcard_row_is_relevant,
            };
            for (i, row) in self.rows().enumerate() {
                for new_row in row.expand_or_pat(i) {
                    matrix.push(new_row);
                }
            }
            Ok(matrix)
        } else {
            let subfield_place_info = self.place_info[0].specialize(pcx.cx, ctor);
            let arity = subfield_place_info.len();
            let specialized_place_info =
                subfield_place_info.chain(self.place_info[1..].iter().cloned()).collect();
            let mut matrix = Matrix {
                rows: Vec::new(),
                place_info: specialized_place_info,
                wildcard_row_is_relevant: self.wildcard_row_is_relevant && ctor_is_relevant,
            };
            for (i, row) in self.rows().enumerate() {
                if ctor.is_covered_by(pcx.cx, row.head().ctor())? {
                    let new_row =
                        row.pop_head_constructor(pcx.cx, ctor, arity, ctor_is_relevant, i)?;
                    matrix.push(new_row);
                }
            }
            Ok(matrix)
        }
    }

    /// Recover row usefulness and intersection information from a processed specialized matrix.
    /// `specialized` must come from `self.specialize_constructor`.
    fn unspecialize(&mut self, specialized: Self) {
        for child_row in specialized.rows() {
            let parent_row_id = child_row.parent_row;
            let parent_row = &mut self.rows[parent_row_id];
            // A parent row is useful if any of its children is.
            parent_row.useful |= child_row.useful;
            for child_intersection in child_row.intersects_at_least.iter() {
                // Convert the intersecting ids into ids for the parent matrix.
                let parent_intersection = specialized.rows[child_intersection].parent_row;
                // Note: self-intersection can happen with or-patterns.
                if parent_intersection != parent_row_id {
                    parent_row.intersects_at_least.insert(parent_intersection);
                }
            }
        }
    }
}

/// Pretty-printer for matrices of patterns, example:
///
/// ```text
/// + _     + []                +
/// + true  + [First]           +
/// + true  + [Second(true)]    +
/// + false + [_]               +
/// + _     + [_, _, tail @ ..] +
/// | ✓     | ?                 | // validity
/// ```
impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "\n")?;

        let mut pretty_printed_matrix: Vec<Vec<String>> = self
            .rows
            .iter()
            .map(|row| row.iter().map(|pat| format!("{pat:?}")).collect())
            .collect();
        pretty_printed_matrix
            .push(self.place_info.iter().map(|place| format!("{}", place.validity)).collect());

        let column_count = self.column_count();
        assert!(self.rows.iter().all(|row| row.len() == column_count));
        assert!(self.place_info.len() == column_count);
        let column_widths: Vec<usize> = (0..column_count)
            .map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
            .collect();

        for (row_i, row) in pretty_printed_matrix.into_iter().enumerate() {
            let is_validity_row = row_i == self.rows.len();
            let sep = if is_validity_row { "|" } else { "+" };
            write!(f, "{sep}")?;
            for (column, pat_str) in row.into_iter().enumerate() {
                write!(f, " ")?;
                write!(f, "{:1$}", pat_str, column_widths[column])?;
                write!(f, " {sep}")?;
            }
            if is_validity_row {
                write!(f, " // validity")?;
            }
            write!(f, "\n")?;
        }
        Ok(())
    }
}

/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
/// reverse order of construction).
///
/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
/// FIXME(Nadrieril): use the same order of patterns for both.
///
/// A `WitnessStack` should have the same types and length as the `PatStack`s we are inspecting
/// (except we store the patterns in reverse order). The same way `PatStack` starts with length 1,
/// at the end of the algorithm this will have length 1. In the middle of the algorithm, it can
/// contain multiple patterns.
///
/// For example, if we are constructing a witness for the match against
///
/// ```compile_fail,E0004
/// struct Pair(Option<(u32, u32)>, bool);
/// # fn foo(p: Pair) {
/// match p {
///    Pair(None, _) => {}
///    Pair(_, false) => {}
/// }
/// # }
/// ```
///
/// We'll perform the following steps (among others):
/// ```text
/// - Start with a matrix representing the match
///     `PatStack(vec![Pair(None, _)])`
///     `PatStack(vec![Pair(_, false)])`
/// - Specialize with `Pair`
///     `PatStack(vec![None, _])`
///     `PatStack(vec![_, false])`
/// - Specialize with `Some`
///     `PatStack(vec![_, false])`
/// - Specialize with `_`
///     `PatStack(vec![false])`
/// - Specialize with `true`
///     // no patstacks left
/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
///     `WitnessStack(vec![])`
/// - Apply `true`
///     `WitnessStack(vec![true])`
/// - Apply `_`
///     `WitnessStack(vec![true, _])`
/// - Apply `Some`
///     `WitnessStack(vec![true, Some(_)])`
/// - Apply `Pair`
///     `WitnessStack(vec![Pair(Some(_), true)])`
/// ```
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug)]
struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>);

impl<Cx: PatCx> Clone for WitnessStack<Cx> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<Cx: PatCx> WitnessStack<Cx> {
    /// Asserts that the witness contains a single pattern, and returns it.
    fn single_pattern(self) -> WitnessPat<Cx> {
        assert_eq!(self.0.len(), 1);
        self.0.into_iter().next().unwrap()
    }

    /// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
    fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
        self.0.push(pat);
    }

    /// Reverses specialization. Given a witness obtained after specialization, this constructs a
    /// new witness valid for before specialization. See the section on `unspecialize` at the top of
    /// the file.
    ///
    /// Examples:
    /// ```text
    /// ctor: tuple of 2 elements
    /// pats: [false, "foo", _, true]
    /// result: [(false, "foo"), _, true]
    ///
    /// ctor: Enum::Variant { a: (bool, &'static str), b: usize}
    /// pats: [(false, "foo"), _, true]
    /// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
    /// ```
    fn apply_constructor(
        mut self,
        pcx: &PlaceCtxt<'_, Cx>,
        ctor: &Constructor<Cx>,
    ) -> SmallVec<[Self; 1]> {
        let len = self.0.len();
        let arity = pcx.ctor_arity(ctor);
        let fields: Vec<_> = self.0.drain((len - arity)..).rev().collect();
        if matches!(ctor, Constructor::UnionField)
            && fields.iter().filter(|p| !matches!(p.ctor(), Constructor::Wildcard)).count() >= 2
        {
            // Convert a `Union { a: p, b: q }` witness into `Union { a: p }` and `Union { b: q }`.
            // First add `Union { .. }` to `self`.
            self.0.push(WitnessPat::wild_from_ctor(pcx.cx, ctor.clone(), pcx.ty.clone()));
            fields
                .into_iter()
                .enumerate()
                .filter(|(_, p)| !matches!(p.ctor(), Constructor::Wildcard))
                .map(|(i, p)| {
                    let mut ret = self.clone();
                    // Fill the `i`th field of the union with `p`.
                    ret.0.last_mut().unwrap().fields[i] = p;
                    ret
                })
                .collect()
        } else {
            self.0.push(WitnessPat::new(ctor.clone(), fields, pcx.ty.clone()));
            smallvec![self]
        }
    }
}

/// Represents a set of pattern-tuples that are witnesses of non-exhaustiveness for error
/// reporting. This has similar invariants as `Matrix` does.
///
/// The `WitnessMatrix` returned by [`compute_exhaustiveness_and_usefulness`] obeys the invariant
/// that the union of the input `Matrix` and the output `WitnessMatrix` together matches the type
/// exhaustively.
///
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug)]
struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>);

impl<Cx: PatCx> Clone for WitnessMatrix<Cx> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<Cx: PatCx> WitnessMatrix<Cx> {
    /// New matrix with no witnesses.
    fn empty() -> Self {
        WitnessMatrix(Vec::new())
    }
    /// New matrix with one `()` witness, i.e. with no columns.
    fn unit_witness() -> Self {
        WitnessMatrix(vec![WitnessStack(Vec::new())])
    }

    /// Whether this has any witnesses.
    fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
    /// Asserts that there is a single column and returns the patterns in it.
    fn single_column(self) -> Vec<WitnessPat<Cx>> {
        self.0.into_iter().map(|w| w.single_pattern()).collect()
    }

    /// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
    fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
        for witness in self.0.iter_mut() {
            witness.push_pattern(pat.clone())
        }
    }

    /// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
    fn apply_constructor(
        &mut self,
        pcx: &PlaceCtxt<'_, Cx>,
        missing_ctors: &[Constructor<Cx>],
        ctor: &Constructor<Cx>,
    ) {
        // The `Or` constructor indicates that we expanded or-patterns. This doesn't affect
        // witnesses.
        if self.is_empty() || matches!(ctor, Constructor::Or) {
            return;
        }
        if matches!(ctor, Constructor::Missing) {
            // We got the special `Missing` constructor that stands for the constructors not present
            // in the match. For each missing constructor `c`, we add a `c(_, _, _)` witness
            // appropriately filled with wildcards.
            let mut ret = Self::empty();
            for ctor in missing_ctors {
                let pat = pcx.wild_from_ctor(ctor.clone());
                // Clone `self` and add `c(_, _, _)` to each of its witnesses.
                let mut wit_matrix = self.clone();
                wit_matrix.push_pattern(pat);
                ret.extend(wit_matrix);
            }
            *self = ret;
        } else {
            // Any other constructor we unspecialize as expected.
            for witness in std::mem::take(&mut self.0) {
                self.0.extend(witness.apply_constructor(pcx, ctor));
            }
        }
    }

    /// Merges the witnesses of two matrices. Their column types must match.
    fn extend(&mut self, other: Self) {
        self.0.extend(other.0)
    }
}

/// Collect ranges that overlap like `lo..=overlap`/`overlap..=hi`. Must be called during
/// exhaustiveness checking, if we find a singleton range after constructor splitting. This reuses
/// row intersection information to only detect ranges that truly overlap.
///
/// If two ranges overlapped, the split set will contain their intersection as a singleton.
/// Specialization will then select rows that match the overlap, and exhaustiveness will compute
/// which rows have an intersection that includes the overlap. That gives us all the info we need to
/// compute overlapping ranges without false positives.
///
/// We can however get false negatives because exhaustiveness does not explore all cases. See the
/// section on relevancy at the top of the file.
fn collect_overlapping_range_endpoints<'p, Cx: PatCx>(
    cx: &Cx,
    overlap_range: IntRange,
    matrix: &Matrix<'p, Cx>,
    specialized_matrix: &Matrix<'p, Cx>,
) {
    let overlap = overlap_range.lo;
    // Ranges that look like `lo..=overlap`.
    let mut prefixes: SmallVec<[_; 1]> = Default::default();
    // Ranges that look like `overlap..=hi`.
    let mut suffixes: SmallVec<[_; 1]> = Default::default();
    // Iterate on patterns that contained `overlap`. We iterate on `specialized_matrix` which
    // contains only rows that matched the current `ctor` as well as accurate intersection
    // information. It doesn't contain the column that contains the range; that can be found in
    // `matrix`.
    for (child_row_id, child_row) in specialized_matrix.rows().enumerate() {
        let PatOrWild::Pat(pat) = matrix.rows[child_row.parent_row].head() else { continue };
        let Constructor::IntRange(this_range) = pat.ctor() else { continue };
        // Don't lint when one of the ranges is a singleton.
        if this_range.is_singleton() {
            continue;
        }
        if this_range.lo == overlap {
            // `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
            // ranges that look like `lo..=overlap`.
            if !prefixes.is_empty() {
                let overlaps_with: Vec<_> = prefixes
                    .iter()
                    .filter(|&&(other_child_row_id, _)| {
                        child_row.intersects_at_least.contains(other_child_row_id)
                    })
                    .map(|&(_, pat)| pat)
                    .collect();
                if !overlaps_with.is_empty() {
                    cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
                }
            }
            suffixes.push((child_row_id, pat))
        } else if Some(this_range.hi) == overlap.plus_one() {
            // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
            // ranges that look like `overlap..=hi`.
            if !suffixes.is_empty() {
                let overlaps_with: Vec<_> = suffixes
                    .iter()
                    .filter(|&&(other_child_row_id, _)| {
                        child_row.intersects_at_least.contains(other_child_row_id)
                    })
                    .map(|&(_, pat)| pat)
                    .collect();
                if !overlaps_with.is_empty() {
                    cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
                }
            }
            prefixes.push((child_row_id, pat))
        }
    }
}

/// Collect ranges that have a singleton gap between them.
fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>(
    cx: &Cx,
    gap_range: &IntRange,
    matrix: &Matrix<'p, Cx>,
) {
    let gap = gap_range.lo;
    // Ranges that look like `lo..gap`.
    let mut onebefore: SmallVec<[_; 1]> = Default::default();
    // Ranges that start on `gap+1` or singletons `gap+1`.
    let mut oneafter: SmallVec<[_; 1]> = Default::default();
    // Look through the column for ranges near the gap.
    for pat in matrix.heads() {
        let PatOrWild::Pat(pat) = pat else { continue };
        let Constructor::IntRange(this_range) = pat.ctor() else { continue };
        if gap == this_range.hi {
            onebefore.push(pat)
        } else if gap.plus_one() == Some(this_range.lo) {
            oneafter.push(pat)
        }
    }

    for pat_before in onebefore {
        cx.lint_non_contiguous_range_endpoints(pat_before, *gap_range, oneafter.as_slice());
    }
}

/// The core of the algorithm.
///
/// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
/// usefulness of each row in the matrix (in `row.useful`). We track usefulness of subpatterns in
/// `mcx.branch_usefulness`.
///
/// The input `Matrix` and the output `WitnessMatrix` together match the type exhaustively.
///
/// The key steps are:
/// - specialization, where we dig into the rows that have a specific constructor and call ourselves
///     recursively;
/// - unspecialization, where we lift the results from the previous step into results for this step
///     (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(mcx), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>(
    mcx: &mut UsefulnessCtxt<'a, 'p, Cx>,
    matrix: &mut Matrix<'p, Cx>,
) -> Result<WitnessMatrix<Cx>, Cx::Error> {
    debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));

    if !matrix.wildcard_row_is_relevant && matrix.rows().all(|r| !r.pats.relevant) {
        // Here we know that nothing will contribute further to exhaustiveness or usefulness. This
        // is purely an optimization: skipping this check doesn't affect correctness. See the top of
        // the file for details.
        return Ok(WitnessMatrix::empty());
    }

    let Some(place) = matrix.head_place() else {
        mcx.increase_complexity_level(matrix.rows().len())?;
        // The base case: there are no columns in the matrix. We are morally pattern-matching on ().
        // A row is useful iff it has no (unguarded) rows above it.
        let mut useful = true; // Whether the next row is useful.
        for (i, row) in matrix.rows_mut().enumerate() {
            row.useful = useful;
            row.intersects_at_least.insert_range(0..i);
            // The next rows stays useful if this one is under a guard.
            useful &= row.is_under_guard;
        }
        return if useful && matrix.wildcard_row_is_relevant {
            // The wildcard row is useful; the match is non-exhaustive.
            Ok(WitnessMatrix::unit_witness())
        } else {
            // Either the match is exhaustive, or we choose not to report anything because of
            // relevancy. See at the top for details.
            Ok(WitnessMatrix::empty())
        };
    };

    // Analyze the constructors present in this column.
    let ctors = matrix.heads().map(|p| p.ctor());
    let (split_ctors, missing_ctors) = place.split_column_ctors(mcx.tycx, ctors)?;

    let ty = &place.ty.clone(); // Clone it out so we can mutate `matrix` later.
    let pcx = &PlaceCtxt { cx: mcx.tycx, ty };
    let mut ret = WitnessMatrix::empty();
    for ctor in split_ctors {
        // Dig into rows that match `ctor`.
        debug!("specialize({:?})", ctor);
        // `ctor` is *irrelevant* if there's another constructor in `split_ctors` that matches
        // strictly fewer rows. In that case we can sometimes skip it. See the top of the file for
        // details.
        let ctor_is_relevant = matches!(ctor, Constructor::Missing) || missing_ctors.is_empty();
        let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor, ctor_is_relevant)?;
        let mut witnesses = ensure_sufficient_stack(|| {
            compute_exhaustiveness_and_usefulness(mcx, &mut spec_matrix)
        })?;

        // Transform witnesses for `spec_matrix` into witnesses for `matrix`.
        witnesses.apply_constructor(pcx, &missing_ctors, &ctor);
        // Accumulate the found witnesses.
        ret.extend(witnesses);

        // Detect ranges that overlap on their endpoints.
        if let Constructor::IntRange(overlap_range) = ctor {
            if overlap_range.is_singleton()
                && spec_matrix.rows.len() >= 2
                && spec_matrix.rows.iter().any(|row| !row.intersects_at_least.is_empty())
            {
                collect_overlapping_range_endpoints(mcx.tycx, overlap_range, matrix, &spec_matrix);
            }
        }

        matrix.unspecialize(spec_matrix);
    }

    // Detect singleton gaps between ranges.
    if missing_ctors.iter().any(|c| matches!(c, Constructor::IntRange(..))) {
        for missing in &missing_ctors {
            if let Constructor::IntRange(gap) = missing {
                if gap.is_singleton() {
                    collect_non_contiguous_range_endpoints(mcx.tycx, gap, matrix);
                }
            }
        }
    }

    // Record usefulness of the branch patterns.
    for row in matrix.rows() {
        if row.head_is_branch {
            if let PatOrWild::Pat(pat) = row.head() {
                mcx.branch_usefulness.entry(pat.uid).or_default().update(row, matrix);
            }
        }
    }

    Ok(ret)
}

/// Indicates why a given pattern is considered redundant.
#[derive(Clone, Debug)]
pub struct RedundancyExplanation<'p, Cx: PatCx> {
    /// All the values matched by this pattern are already matched by the given set of patterns.
    /// This list is not guaranteed to be minimal but the contained patterns are at least guaranteed
    /// to intersect this pattern.
    pub covered_by: Vec<&'p DeconstructedPat<Cx>>,
}

/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness<'p, Cx: PatCx> {
    /// The arm is useful. This additionally carries a set of or-pattern branches that have been
    /// found to be redundant despite the overall arm being useful. Used only in the presence of
    /// or-patterns, otherwise it stays empty.
    Useful(Vec<(&'p DeconstructedPat<Cx>, RedundancyExplanation<'p, Cx>)>),
    /// The arm is redundant and can be removed without changing the behavior of the match
    /// expression.
    Redundant(RedundancyExplanation<'p, Cx>),
}

/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: PatCx> {
    /// For each arm of the input, whether that arm is useful after the arms above it.
    pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
    /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
    /// exhaustiveness.
    pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
    /// For each arm, a set of indices of arms above it that have non-empty intersection, i.e. there
    /// is a value matched by both arms. This may miss real intersections.
    pub arm_intersections: Vec<BitSet<usize>>,
}

/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(tycx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: PatCx>(
    tycx: &Cx,
    arms: &[MatchArm<'p, Cx>],
    scrut_ty: Cx::Ty,
    scrut_validity: PlaceValidity,
    complexity_limit: Option<usize>,
) -> Result<UsefulnessReport<'p, Cx>, Cx::Error> {
    let mut cx = UsefulnessCtxt {
        tycx,
        branch_usefulness: FxHashMap::default(),
        complexity_limit,
        complexity_level: 0,
    };
    let mut matrix = Matrix::new(arms, scrut_ty, scrut_validity);
    let non_exhaustiveness_witnesses = compute_exhaustiveness_and_usefulness(&mut cx, &mut matrix)?;

    let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
    let arm_usefulness: Vec<_> = arms
        .iter()
        .copied()
        .map(|arm| {
            debug!(?arm);
            let usefulness = cx.branch_usefulness.get(&arm.pat.uid).unwrap();
            let usefulness = if let Some(explanation) = usefulness.is_redundant() {
                Usefulness::Redundant(explanation)
            } else {
                let mut redundant_subpats = Vec::new();
                arm.pat.walk(&mut |subpat| {
                    if let Some(u) = cx.branch_usefulness.get(&subpat.uid) {
                        if let Some(explanation) = u.is_redundant() {
                            redundant_subpats.push((subpat, explanation));
                            false // stop recursing
                        } else {
                            true // keep recursing
                        }
                    } else {
                        true // keep recursing
                    }
                });
                Usefulness::Useful(redundant_subpats)
            };
            debug!(?usefulness);
            (arm, usefulness)
        })
        .collect();

    let arm_intersections: Vec<_> =
        matrix.rows().map(|row| row.intersects_at_least.clone()).collect();

    Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses, arm_intersections })
}