radicle_ci_broker/
timeoutcmd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//! Run a command (an external program) as a sub-process, capturing
//! its output in real time, with a maximum duration.
//!
//! This is meant for the CI broker to run a CI adapter and process
//! the single-line messages the adapter writes to its standard
//! output, as well as capture stderr output, which the adapter uses
//! for logging. If the adapter runs for too long, it gets terminated.
//!
//! Note that if the [`Command`] that is created to run the command
//! invokes a shell, the shell **must** `exec` the command it runs, or
//! in some other way make sure the processes the shell launches get
//! terminated when the shell process ends. Otherwise the time out
//! management here does not work reliably.
//!
//! The child can be given some data via its stdin.
//!
//! This module is not entirely generic, as it assumes textual output with
//! lines, instead of arbitrary byte strings.
//!
//! # Example
//! ```
//! # use std::{process::Command, time::Duration};
//! # use radicle_ci_broker::timeoutcmd::{RunningProcess, TimeoutCommand};
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let mut cmd = Command::new("bash");
//! cmd.arg("-c").arg("exec cat"); // Note exec!
//!
//! let mut to = TimeoutCommand::new(Duration::from_secs(10));
//! to.feed_stdin(b"hello, world\n");
//! let running = to.spawn(cmd)?;
//!
//! // Capture stdout output. We ignore stderr output.
//! let stdout = running.stdout();
//! let mut captured = vec![];
//! while let Some(line) = stdout.line() {
//!     captured.push(line);
//! }
//!
//! // Wait for child process to terminate.
//! let tor = running.wait()?;
//! assert_eq!(tor.status().code(), Some(0));
//! assert_eq!(captured, ["hello, world\n"]);
//! # Ok(())
//! # }
//! ```

#![allow(unused_imports)]

use std::{
    io::{Read, Write},
    process::{Child, Command, ExitStatus, Stdio},
    sync::{
        mpsc::{sync_channel, Receiver, RecvTimeoutError, SyncSender, TryRecvError},
        Arc, Mutex,
    },
    thread::{sleep, spawn, JoinHandle},
    time::{Duration, Instant},
};

use crate::logger;

const WAIT_FOR_IDLE_CHILD: Duration = Duration::from_millis(1000);
const WAIT_FOR_OUTPUT: Duration = Duration::from_millis(100);
const KIB: usize = 1024;
const MIB: usize = 1024 * KIB;
const MAX_OUTPUT_BYTES: usize = 10 * MIB;

/// Spawn a child process, with a maximum duration and capture its
/// output. See also [`RunningProcess`].
pub struct TimeoutCommand {
    max_duration: Duration,
    stdin_data: Vec<u8>,
}

// This works by using multiple threads.
//
// * a thread to send data to child's stdin
// * a thread to read child's stdout, as bytes
// * a thread to read child's stderr, as bytes
// * a thread to monitor how long the child runs
// * the calling thread waits for the monitor thread to tell it the
//   child has ended or needs to be terminate
//
// Communication between the threads happens via
// [`std::sync::mpsc::sync_channel`] channels. In performance tests,
// these are quite fast if the channel buffer is sufficiently large:
// throughput of over 2 MiB/s have been measured.
//
// Output from the child is collected into lines, which can be passed
// to the caller. For the CI broker we only care about lines.

impl TimeoutCommand {
    /// Create a new time-limited command. The sub-process will run at
    /// most as long as the argument specifies. See
    /// [`TimeoutCommand::spawn`] for actually creating the
    /// sub-process.
    pub fn new(max_duration: Duration) -> Self {
        Self {
            max_duration,
            stdin_data: vec![],
        }
    }

    /// Feed the sub-process the specified binary data via its
    /// standard input. If this method is not used, the sub-process
    /// stdin will be fed no data. The sub-process stdin always comes
    /// from a pipe, however, so if this method is not used, the
    /// effect is that stdin comes from `/dev/null` or another empty
    /// file.
    pub fn feed_stdin(&mut self, data: &[u8]) {
        self.stdin_data = data.to_vec();
    }

    /// Start a new sub-process to execute the specified command.
    ///
    /// The caller should set up the [`std::process::Command`] value.
    /// This method will redirect stdin, stdout, and stderr to use
    /// pipes.
    pub fn spawn(&self, mut command: Command) -> Result<RunningProcess, TimeoutError> {
        // Set up child stdin/stdout/stderr redirection.
        let mut child = command
            .stdin(Stdio::piped())
            .stdout(Stdio::piped())
            .stderr(Stdio::piped())
            .spawn()
            .map_err(|err| TimeoutError::Spawn(command, err))?;

        // Set up thread to write data to child stdin.
        let stdin = child.stdin.take().ok_or(TimeoutError::TakeStdin)?;
        let stdin_data = self.stdin_data.clone();
        let stdin_writer = spawn(move || writer(stdin, stdin_data));

        // Set up thread to capture child stdout.
        let stdout = child.stdout.take().ok_or(TimeoutError::TakeStdout)?;
        let (stdout_termination_tx, stdout_termination_rx) = sync_channel(1);
        let (stdout_lines_tx, stdout_lines_rx) = sync_channel(MAX_OUTPUT_BYTES);
        let stdout_reader =
            spawn(move || NonBlockingReader::new("stdout", stdout, stdout_lines_tx).read_to_end());
        let stdout_lines = LineReceiver::new("stdout", stdout_lines_rx, stdout_termination_rx);

        // Set up thread to capture child stdout.
        let stderr = child.stderr.take().ok_or(TimeoutError::TakeStderr)?;
        let (stderr_termination_tx, stderr_termination_rx) = sync_channel(1);
        let (stderr_lines_tx, stderr_lines_rx) = sync_channel(MAX_OUTPUT_BYTES);
        let stderr_reader =
            spawn(move || NonBlockingReader::new("stderr", stderr, stderr_lines_tx).read_to_end());
        let stderr_lines = LineReceiver::new("stderr", stderr_lines_rx, stderr_termination_rx);

        // Set up thread to monitor child termination or overlong run time.
        let (tx, timed_out_rx) = sync_channel(1);
        let (kill_tx, kill_rx) = sync_channel(1);
        let nanny = Nanny::new(
            self.max_duration,
            child,
            tx,
            kill_rx,
            vec![stdout_termination_tx, stderr_termination_tx],
        );
        let monitor = spawn(move || nanny.monitor());

        Ok(RunningProcess {
            child_monitor: Some(monitor),
            timed_out_rx,
            stdin_writer,
            stdout_lines,
            stdout_reader,
            stderr_lines,
            stderr_reader,
            kill_tx,
        })
    }
}

/// Manage a running child process and capture its output.
///
/// This is created by [`TimeoutCommand::spawn`].
pub struct RunningProcess {
    child_monitor: Option<JoinHandle<Result<(), TimeoutError>>>,
    timed_out_rx: NannyReceiver,
    stdin_writer: JoinHandle<Result<(), std::io::Error>>,
    stdout_lines: LineReceiver,
    stdout_reader: JoinHandle<Result<(), TimeoutError>>,
    stderr_lines: LineReceiver,
    stderr_reader: JoinHandle<Result<(), TimeoutError>>,
    kill_tx: KillSender,
}

impl RunningProcess {
    /// Return a [`LineReceiver`] that returns lines from the
    /// sub-process standard output.
    pub fn stdout(&self) -> &LineReceiver {
        &self.stdout_lines
    }

    /// Return a [`LineReceiver`] that returns lines from the
    /// sub-process standard error output.
    pub fn stderr(&self) -> &LineReceiver {
        &self.stderr_lines
    }

    /// Terminate sub-process with extreme prejudice.
    pub fn kill(&self) -> Result<(), TimeoutError> {
        let x = self.kill_tx.send(());
        logger::timeoutcmd_request_termination(x);
        Ok(())
    }

    /// Wait for child process to terminate. It may terminate because
    /// it ends normally, or because it has run for longer than the
    /// limit set with [`TimeoutCommand::new`]. The return value of
    /// this method will specify why, see
    /// [`TimeoutResult::timed_out`].
    ///
    /// Note that if the sub-process produces a lot of output, you
    /// must read it to avoid the process getting stuck; see
    /// [`RunningProcess::stdout`] and [`RunningProcess::stderr`]. If
    /// you don't read the output, the sub-process will fill its
    /// output pipe buffer, or the inter-thread communication channel
    /// buffer, and the sub-process will block on output, and not
    /// progress. This may be unwanted. The blocking won't affect the
    /// sub-process getting terminated due to running for too long.
    pub fn wait(mut self) -> Result<TimeoutResult, TimeoutError> {
        logger::timeoutcmd_wait_word_from_nanny();
        let (mut child, timed_out) = self.timed_out_rx.recv().map_err(TimeoutError::ChildRecv)?;
        logger::timeoutcmd_wait_got_word_from_nanny();
        if let Some(monitor) = self.child_monitor.take() {
            logger::timeoutcmd_wait_on_nanny_to_end();
            monitor
                .join()
                .map_err(|_| TimeoutError::JoinChildMonitor)??;
        }

        logger::timeoutcmd_wait_on_stdin_writer_to_end();
        self.stdin_writer.join().ok();

        logger::timeoutcmd_wait_on_stdout_reader_to_end();
        self.stdout_reader.join().ok();

        logger::timeoutcmd_wait_on_stderr_reader_to_end();
        self.stderr_reader.join().ok();

        logger::timeoutcmd_wait_on_child_to_end();
        let status = child.wait().map_err(TimeoutError::Wait)?;
        logger::timeoutcmd_wait_status(status);
        logger::timeoutcmd_ok();
        Ok(TimeoutResult { timed_out, status })
    }
}

/// Did the sub-process started with [`TimeoutCommand::spawn`]
/// terminate normally, or did it get terminated unilaterally for
/// running too long? What was its exit code?
#[derive(Debug)]
pub struct TimeoutResult {
    timed_out: bool,
    status: ExitStatus,
}

impl TimeoutResult {
    /// Exit code of the of the sub-process. There is always an exit
    /// code: [`RunningProcess::wait`] does not return until the
    /// sub-process has exited.
    pub fn status(&self) -> ExitStatus {
        self.status
    }

    /// Did the sub-process get terminated for running too long?
    pub fn timed_out(&self) -> bool {
        self.timed_out
    }
}

type NannySender = SyncSender<(Child, bool)>;
type NannyReceiver = Receiver<(Child, bool)>;

type KillSender = SyncSender<()>;
type KillReceiver = Receiver<()>;

struct Nanny {
    max_duration: Duration,
    child: Option<Child>,
    tx: NannySender,
    term_tx: Vec<TerminationSender>,
    kill_rx: KillReceiver,
}

impl Nanny {
    fn new(
        max_duration: Duration,
        child: Child,
        tx: NannySender,
        kill_rx: KillReceiver,
        term_tx: Vec<TerminationSender>,
    ) -> Self {
        Self {
            max_duration,
            child: Some(child),
            tx,
            term_tx,
            kill_rx,
        }
    }

    fn monitor(mut self) -> Result<(), TimeoutError> {
        let mut child = if let Some(child) = self.child.take() {
            child
        } else {
            panic!("programming error: Nanny does not have a child to monitor");
        };
        let started = Instant::now();
        let mut timed_out = false;
        logger::timeoutcmd_nanny_start();
        loop {
            let elapsed = started.elapsed();

            if self.kill_rx.try_recv().is_ok() {
                let x = child.kill();
                logger::timeoutcmd_nanny_terminated_as_requested(x);
                break;
            } else if elapsed > self.max_duration {
                let x = child.kill();
                logger::timeoutcmd_nanny_too_long(child.id(), elapsed, self.max_duration, x);
                timed_out = true;
                break;
            }

            if matches!(child.try_wait(), Ok(None)) {
                sleep(WAIT_FOR_IDLE_CHILD);
            } else {
                logger::timeoutcmd_nanny_child_died();
                break;
            }
        }

        logger::timeoutcmd_nanny_time_to_end();
        self.tx
            .send((child, timed_out))
            .map_err(TimeoutError::ChildSend)?;
        for tx in self.term_tx.iter() {
            tx.send(()).map_err(TimeoutError::ChildSendToLine)?;
        }

        logger::timeoutcmd_nanny_ends();
        Ok(())
    }
}

fn writer(mut stream: impl Write, data: Vec<u8>) -> Result<(), std::io::Error> {
    let mut written = 0;
    while written < data.len() {
        // We write one byte at a time. This lets us avoid doing
        // non-blocking I/O, but is less efficient. by only writing
        // one byte at a time, we only block when we can't write to
        // the stream. When the stream is a pipe, this happens when
        // the pipe buffer fills up. This function should be in its
        // own thread, and so it doesn't matter if it blocks, but
        // measurements are more useful when they're taken after each
        // byte.
        //
        // When, inevitably, byte-at-a-time becomes too inefficient,
        // this will need to be rewritten to use non-blocking I/O.
        //
        // Or async.
        let n = stream.write(&data[written..written + 1])?;
        written += n;
        stream.flush()?;
    }

    Ok(())
}

type TerminationSender = SyncSender<()>;
type TerminationReceiver = Receiver<()>;

/// Receive one line of output at time.
///
/// See the [module description](index.html) for an example.
pub struct LineReceiver {
    name: &'static str,
    child_terminated: TerminationReceiver,
    bytes: OutputReader,
}

impl LineReceiver {
    fn new(name: &'static str, bytes: OutputReader, child_terminated: TerminationReceiver) -> Self {
        Self {
            name,
            child_terminated,
            bytes,
        }
    }

    /// Return the next line, if any, or `None` if there will be no
    /// more lines. Note that this blocks until there is a line, or
    /// the child process terminates.
    pub fn line(&self) -> Option<String> {
        let mut line = vec![];

        loop {
            // Get a byte if there is one.
            logger::timeoutcmd_line_reader_try_byte(self.name);
            let y = self.bytes.try_recv();
            logger::timeoutcmd_line_reader_tried_byte(self.name, y);
            match y {
                Ok(byte) => {
                    line.push(byte);
                    if byte == b'\n' {
                        let line = String::from_utf8_lossy(&line).to_string();
                        logger::timeoutcmd_line_reader_got_line(self.name, &line);
                        return Some(line);
                    }
                }
                Err(TryRecvError::Empty) => {
                    sleep(WAIT_FOR_OUTPUT);
                }
                Err(TryRecvError::Disconnected) => {
                    if line.is_empty() {
                        // Sender has closed the channel, there will be no more lines.
                        logger::timeoutcmd_line_reader_got_disconnected(self.name);
                        return None;
                    } else {
                        let line = String::from_utf8_lossy(&line).to_string();
                        logger::timeoutcmd_line_reader_got_line(self.name, &line);
                        return Some(line);
                    }
                }
            }

            logger::timeoutcmd_line_reader_did_child_die(self.name);
            let x = self.child_terminated.try_recv();
            match x {
                Ok(_) => {
                    logger::timeoutcmd_line_reader_child_died(self.name);
                }
                Err(std::sync::mpsc::TryRecvError::Disconnected) => {
                    logger::timeoutcmd_line_reader_child_channel_disconnected(self.name);
                }
                _ => {}
            }
        }
    }
}

type OutputSender = SyncSender<u8>;
type OutputReader = Receiver<u8>;

struct NonBlockingReader<R: Read> {
    name: &'static str,
    stream: R,
    tx: OutputSender,
}

impl<R: Read> NonBlockingReader<R> {
    fn new(name: &'static str, stream: R, tx: OutputSender) -> Self {
        Self { name, stream, tx }
    }

    fn read_to_end(mut self) -> Result<(), TimeoutError> {
        let mut count = 0;
        loop {
            // We read one byte at a time. This lets us avoid doing
            // non-blocking I/O but is less efficient. We want to
            // avoid blocking for an arbitrary amount of time, if
            // reading one byte at a time. When reading from a pipe,
            // the pipe writer end may not get closed until the child
            // process writing to the pipe ends, and we may not want
            // to wait that long.
            //
            // If this becomes too inefficient, this needs to be
            // rewritten to use non-blocking I/O or async.

            logger::timeoutcmd_nonblocking_try_byte(self.name, count);
            let mut byte = vec![0; 1];
            let x = self.stream.read(&mut byte);
            logger::timeoutcmd_nonblocking_tried_byte(self.name, &x, &byte);
            match x {
                Ok(0) => {
                    logger::timeoutcmd_nonblocking_eof(self.name);
                    break;
                }
                Ok(1) => {
                    count += 1;
                    self.tx
                        .try_send(byte[0])
                        .map_err(|_| TimeoutError::TooMuch(self.name))?;
                }
                Ok(_) => {
                    logger::timeoutcmd_nonblocking_got_too_much(self.name, x, &byte);
                    return Err(TimeoutError::ReadMucn);
                }
                Err(err) => {
                    logger::timeoutcmd_nonblocking_read_error(self.name, &err);
                    return Err(TimeoutError::Read(err));
                }
            }
        }

        logger::timeoutcmd_nonblocking_ends(self.name);
        Ok(())
    }
}

#[derive(Debug, thiserror::Error)]
pub enum TimeoutError {
    /// Couldn't spawn child process.
    #[error("failed to spawn command: {0:?}")]
    Spawn(Command, #[source] std::io::Error),

    /// Couldn't get file descriptor of child process stdin.
    #[error("failed to extract stdin stream from child")]
    TakeStdin,

    /// Couldn't get file descriptor of child process stdout.
    #[error("failed to extract stdout stream from child")]
    TakeStdout,

    /// Couldn't get file descriptor of child process stderr.
    #[error("failed to extract stderr stream from child")]
    TakeStderr,

    /// Couldn't check if child process is still running.
    #[error("failed to check whether command is still running")]
    TryWait(#[source] std::io::Error),

    /// Reading from child stdout or stderr returned too much data.
    #[error("read from command standard output returned more data than requested")]
    ReadMucn,

    /// Reading from child stdout or stderr failed.
    #[error("problem reading from command output (stdout or stderr)")]
    Read(#[source] std::io::Error),

    /// Channel buffer got full, which means child process wrote too much output.
    #[error("sub-process produces too much to {0}")]
    TooMuch(&'static str),

    /// Couldn't join thread that feeds data to child stdin.
    #[error("problem waiting for thread that writes to command standard input")]
    JoinStdinFeeder,

    /// Couldn't write to child stdin.
    #[error("problem writing to command standard input")]
    FeedStdin(#[source] std::io::Error),

    #[error("problem waiting for thread that monitors command")]
    JoinChildMonitor,

    /// Couldn't join thread that reads child stdout.
    #[error("problem waiting for thread that reads command standard output")]
    JoinStdoutReader,

    /// Couldn't join thread that reads child stderr.
    #[error("problem waiting for thread that reads command standard error output")]
    JoinStderrReader,

    /// Couldn't terminate child process.
    #[error("problem forcing child process to terminate")]
    Kill(#[source] std::io::Error),

    /// Couldn't wait for child process to terminate.
    #[error("problem waiting for child process to terminate")]
    Wait(#[source] std::io::Error),

    /// Mutex lock error.
    #[error("failed to lock command output buffer")]
    MutexLock,

    #[error("failed to receive notification from child monitor")]
    ChildRecv(#[source] std::sync::mpsc::RecvError),

    #[error("failed to send notification from child monitor")]
    ChildSend(#[source] std::sync::mpsc::SendError<(Child, bool)>),

    #[error("failed to send notification from child monitor to line receiver")]
    ChildSendToLine(#[source] std::sync::mpsc::SendError<()>),
}

#[cfg(test)]
mod tests {
    use super::*;

    const LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES: Duration = Duration::from_secs(100);
    const SHORT_TIMEOUT: Duration = Duration::from_secs(3);

    fn setup(
        script: &str,
        timeout: Duration,
        stdin: Option<&'static str>,
    ) -> Result<RunningProcess, Box<dyn std::error::Error>> {
        let mut cmd = Command::new("bash");
        cmd.arg("-c").arg(script);
        let mut to = TimeoutCommand::new(timeout);
        if let Some(stdin) = stdin {
            to.feed_stdin(stdin.as_bytes());
        }
        Ok(to.spawn(cmd)?)
    }

    #[test]
    fn bin_true() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec /bin/true",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(0));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn bin_false() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec /bin/false",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(1));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn sleep_1() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec sleep 1",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(0));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn sleep_for_too_long() -> Result<(), Box<dyn std::error::Error>> {
        let started = Instant::now();
        let running = setup("exec sleep 1000", SHORT_TIMEOUT, None)?;
        let tor = running.wait()?;
        eprintln!("duration: {} ms", started.elapsed().as_millis());
        assert_eq!(tor.status().code(), None);
        assert!(tor.timed_out());
        Ok(())
    }

    #[test]
    fn hello_world() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec echo hello, world",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        let stdout = running.stdout();
        let stderr = running.stderr();

        assert_eq!(stdout.line(), Some("hello, world\n".into()));
        assert_eq!(stdout.line(), None);

        assert_eq!(stderr.line(), None);

        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(0));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn hello_world_to_stderr() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec echo hello, world 1>&2",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        let stdout = running.stdout();
        let stderr = running.stderr();

        assert_eq!(stdout.line(), None);

        assert_eq!(stderr.line(), Some("hello, world\n".into()));
        assert_eq!(stderr.line(), None);

        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(0));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn pipe_through_cat() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec cat",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            Some("hello, world"),
        )?;
        let stdout = running.stdout();
        let stderr = running.stderr();

        assert_eq!(stdout.line(), Some("hello, world".into()));
        assert_eq!(stdout.line(), None);

        assert_eq!(stderr.line(), None);

        let tor = running.wait()?;
        assert_eq!(tor.status().code(), Some(0));
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn yes_to_stdout() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup("exec yes", SHORT_TIMEOUT, None)?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), None);
        assert!(tor.timed_out());
        Ok(())
    }

    #[test]
    fn yes_to_stderr() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup("exec yes 1>&2", SHORT_TIMEOUT, None)?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), None);
        assert!(tor.timed_out());
        Ok(())
    }

    #[test]
    fn kill() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec sleep 1000",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        sleep(Duration::from_millis(5000));
        running.kill()?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), None);
        assert!(!tor.timed_out());
        Ok(())
    }

    #[test]
    fn kill_stderr() -> Result<(), Box<dyn std::error::Error>> {
        let running = setup(
            "exec sleep 1000 1>&2",
            LONG_ENOUGH_THAT_SCRIPT_SURELY_FINISHES,
            None,
        )?;
        sleep(Duration::from_millis(5000));
        running.kill()?;
        let tor = running.wait()?;
        assert_eq!(tor.status().code(), None);
        assert!(!tor.timed_out());
        Ok(())
    }
}