1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Copyright 2019 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
       html_favicon_url = "https://www.rust-lang.org/favicon.ico",
       html_root_url = "https://rust-random.github.io/rand/")]

#![deny(missing_docs)]
#![deny(missing_debug_implementations)]

#![allow(clippy::excessive_precision, clippy::float_cmp, clippy::unreadable_literal)]
#![allow(clippy::neg_cmp_op_on_partial_ord)]  // suggested fix too verbose

//! Generating random samples from probability distributions.
//!
//! ## Re-exports
//!
//! This crate is a super-set of the [`rand::distributions`] module. See the
//! [`rand::distributions`] module documentation for an overview of the core
//! [`Distribution`] trait and implementations.
//!
//! The following are re-exported:
//! 
//! - The [`Distribution`] trait and [`DistIter`] helper type
//! - The [`Standard`], [`Alphanumeric`], [`Uniform`], [`OpenClosed01`], [`Open01`] and [`Bernoulli`] distributions
//! - The [`weighted`] sub-module
//!
//! ## Distributions
//!
//! This crate provides the following probability distributions:
//!
//! - Related to real-valued quantities that grow linearly
//!   (e.g. errors, offsets):
//!   - [`Normal`] distribution, and [`StandardNormal`] as a primitive
//!   - [`Cauchy`] distribution
//! - Related to Bernoulli trials (yes/no events, with a given probability):
//!   - [`Binomial`] distribution
//! - Related to positive real-valued quantities that grow exponentially
//!   (e.g. prices, incomes, populations):
//!   - [`LogNormal`] distribution
//! - Related to the occurrence of independent events at a given rate:
//!   - [`Pareto`] distribution
//!   - [`Poisson`] distribution
//!   - [`Exp`]onential distribution, and [`Exp1`] as a primitive
//!   - [`Weibull`] distribution
//! - Gamma and derived distributions:
//!   - [`Gamma`] distribution
//!   - [`ChiSquared`] distribution
//!   - [`StudentT`] distribution
//!   - [`FisherF`] distribution
//! - Triangular distribution:
//!   - [`Beta`] distribution
//!   - [`Triangular`] distribution
//! - Multivariate probability distributions
//!   - [`Dirichlet`] distribution
//!   - [`UnitSphere`] distribution
//!   - [`UnitBall`] distribution
//!   - [`UnitCircle`] distribution
//!   - [`UnitDisc`] distribution

pub use rand::distributions::{Distribution, DistIter, Standard,
    Alphanumeric, Uniform, OpenClosed01, Open01, Bernoulli, uniform, weighted};

pub use self::unit_sphere::UnitSphere;
pub use self::unit_ball::UnitBall;
pub use self::unit_circle::UnitCircle;
pub use self::unit_disc::UnitDisc;
pub use self::gamma::{Gamma, Error as GammaError, ChiSquared, ChiSquaredError,
    FisherF, FisherFError, StudentT, Beta, BetaError};
pub use self::normal::{Normal, Error as NormalError, LogNormal, StandardNormal};
pub use self::exponential::{Exp, Error as ExpError, Exp1};
pub use self::pareto::{Pareto, Error as ParetoError};
pub use self::pert::{Pert, PertError};
pub use self::poisson::{Poisson, Error as PoissonError};
pub use self::binomial::{Binomial, Error as BinomialError};
pub use self::cauchy::{Cauchy, Error as CauchyError};
pub use self::dirichlet::{Dirichlet, Error as DirichletError};
pub use self::triangular::{Triangular, TriangularError};
pub use self::weibull::{Weibull, Error as WeibullError};
pub use self::utils::Float;

mod unit_sphere;
mod unit_ball;
mod unit_circle;
mod unit_disc;
mod gamma;
mod normal;
mod exponential;
mod pareto;
mod pert;
mod poisson;
mod binomial;
mod cauchy;
mod dirichlet;
mod triangular;
mod weibull;
mod utils;
mod ziggurat_tables;

#[cfg(test)]
mod test {
    // Notes on testing
    // 
    // Testing random number distributions correctly is hard. The following
    // testing is desired:
    // 
    // - Construction: test initialisation with a few valid parameter sets.
    // - Erroneous usage: test that incorrect usage generates an error.
    // - Vector: test that usage with fixed inputs (including RNG) generates a
    //   fixed output sequence on all platforms.
    // - Correctness at fixed points (optional): using a specific mock RNG,
    //   check that specific values are sampled (e.g. end-points and median of
    //   distribution).
    // - Correctness of PDF (extra): generate a histogram of samples within a
    //   certain range, and check this approximates the PDF. These tests are
    //   expected to be expensive, and should be behind a feature-gate.
    //
    // TODO: Vector and correctness tests are largely absent so far.
    // NOTE: Some distributions have tests checking only that samples can be
    // generated. This is redundant with vector and correctness tests.

    /// Construct a deterministic RNG with the given seed
    pub fn rng(seed: u64) -> impl rand::RngCore {
        // For tests, we want a statistically good, fast, reproducible RNG.
        // PCG32 will do fine, and will be easy to embed if we ever need to.
        const INC: u64 = 11634580027462260723;
        rand_pcg::Pcg32::new(seed, INC)
    }
}