colors_rgb/colors_rgb.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
//! # [Ratatui] `Colors_RGB` example
//!
//! The latest version of this example is available in the [examples] folder in the repository.
//!
//! Please note that the examples are designed to be run against the `main` branch of the Github
//! repository. This means that you may not be able to compile with the latest release version on
//! crates.io, or the one that you have installed locally.
//!
//! See the [examples readme] for more information on finding examples that match the version of the
//! library you are using.
//!
//! [Ratatui]: https://github.com/ratatui/ratatui
//! [examples]: https://github.com/ratatui/ratatui/blob/main/examples
//! [examples readme]: https://github.com/ratatui/ratatui/blob/main/examples/README.md
// This example shows the full range of RGB colors that can be displayed in the terminal.
//
// Requires a terminal that supports 24-bit color (true color) and unicode.
//
// This example also demonstrates how implementing the Widget trait on a mutable reference
// allows the widget to update its state while it is being rendered. This allows the fps
// widget to update the fps calculation and the colors widget to update a cached version of
// the colors to render instead of recalculating them every frame.
//
// This is an alternative to using the `StatefulWidget` trait and a separate state struct. It
// is useful when the state is only used by the widget and doesn't need to be shared with
// other widgets.
use std::time::{Duration, Instant};
use color_eyre::Result;
use palette::{convert::FromColorUnclamped, Okhsv, Srgb};
use ratatui::{
buffer::Buffer,
crossterm::event::{self, Event, KeyCode, KeyEventKind},
layout::{Constraint, Layout, Position, Rect},
style::Color,
text::Text,
widgets::Widget,
DefaultTerminal,
};
fn main() -> Result<()> {
color_eyre::install()?;
let terminal = ratatui::init();
let app_result = App::default().run(terminal);
ratatui::restore();
app_result
}
#[derive(Debug, Default)]
struct App {
/// The current state of the app (running or quit)
state: AppState,
/// A widget that displays the current frames per second
fps_widget: FpsWidget,
/// A widget that displays the full range of RGB colors that can be displayed in the terminal.
colors_widget: ColorsWidget,
}
#[derive(Debug, Default, PartialEq, Eq)]
enum AppState {
/// The app is running
#[default]
Running,
/// The user has requested the app to quit
Quit,
}
/// A widget that displays the current frames per second
#[derive(Debug)]
struct FpsWidget {
/// The number of elapsed frames that have passed - used to calculate the fps
frame_count: usize,
/// The last instant that the fps was calculated
last_instant: Instant,
/// The current frames per second
fps: Option<f32>,
}
/// A widget that displays the full range of RGB colors that can be displayed in the terminal.
///
/// This widget is animated and will change colors over time.
#[derive(Debug, Default)]
struct ColorsWidget {
/// The colors to render - should be double the height of the area as we render two rows of
/// pixels for each row of the widget using the half block character. This is computed any time
/// the size of the widget changes.
colors: Vec<Vec<Color>>,
/// the number of elapsed frames that have passed - used to animate the colors by shifting the
/// x index by the frame number
frame_count: usize,
}
impl App {
/// Run the app
///
/// This is the main event loop for the app.
pub fn run(mut self, mut terminal: DefaultTerminal) -> Result<()> {
while self.is_running() {
terminal.draw(|frame| frame.render_widget(&mut self, frame.area()))?;
self.handle_events()?;
}
Ok(())
}
const fn is_running(&self) -> bool {
matches!(self.state, AppState::Running)
}
/// Handle any events that have occurred since the last time the app was rendered.
///
/// Currently, this only handles the q key to quit the app.
fn handle_events(&mut self) -> Result<()> {
// Ensure that the app only blocks for a period that allows the app to render at
// approximately 60 FPS (this doesn't account for the time to render the frame, and will
// also update the app immediately any time an event occurs)
let timeout = Duration::from_secs_f32(1.0 / 60.0);
if event::poll(timeout)? {
if let Event::Key(key) = event::read()? {
if key.kind == KeyEventKind::Press && key.code == KeyCode::Char('q') {
self.state = AppState::Quit;
};
}
}
Ok(())
}
}
/// Implement the Widget trait for &mut App so that it can be rendered
///
/// This is implemented on a mutable reference so that the app can update its state while it is
/// being rendered. This allows the fps widget to update the fps calculation and the colors widget
/// to update the colors to render.
impl Widget for &mut App {
fn render(self, area: Rect, buf: &mut Buffer) {
use Constraint::{Length, Min};
let [top, colors] = Layout::vertical([Length(1), Min(0)]).areas(area);
let [title, fps] = Layout::horizontal([Min(0), Length(8)]).areas(top);
Text::from("colors_rgb example. Press q to quit")
.centered()
.render(title, buf);
self.fps_widget.render(fps, buf);
self.colors_widget.render(colors, buf);
}
}
/// Default impl for `FpsWidget`
///
/// Manual impl is required because we need to initialize the `last_instant` field to the current
/// instant.
impl Default for FpsWidget {
fn default() -> Self {
Self {
frame_count: 0,
last_instant: Instant::now(),
fps: None,
}
}
}
/// Widget impl for `FpsWidget`
///
/// This is implemented on a mutable reference so that we can update the frame count and fps
/// calculation while rendering.
impl Widget for &mut FpsWidget {
fn render(self, area: Rect, buf: &mut Buffer) {
self.calculate_fps();
if let Some(fps) = self.fps {
let text = format!("{fps:.1} fps");
Text::from(text).render(area, buf);
}
}
}
impl FpsWidget {
/// Update the fps calculation.
///
/// This updates the fps once a second, but only if the widget has rendered at least 2 frames
/// since the last calculation. This avoids noise in the fps calculation when rendering on slow
/// machines that can't render at least 2 frames per second.
#[allow(clippy::cast_precision_loss)]
fn calculate_fps(&mut self) {
self.frame_count += 1;
let elapsed = self.last_instant.elapsed();
if elapsed > Duration::from_secs(1) && self.frame_count > 2 {
self.fps = Some(self.frame_count as f32 / elapsed.as_secs_f32());
self.frame_count = 0;
self.last_instant = Instant::now();
}
}
}
/// Widget impl for `ColorsWidget`
///
/// This is implemented on a mutable reference so that we can update the frame count and store a
/// cached version of the colors to render instead of recalculating them every frame.
impl Widget for &mut ColorsWidget {
/// Render the widget
fn render(self, area: Rect, buf: &mut Buffer) {
self.setup_colors(area);
let colors = &self.colors;
for (xi, x) in (area.left()..area.right()).enumerate() {
// animate the colors by shifting the x index by the frame number
let xi = (xi + self.frame_count) % (area.width as usize);
for (yi, y) in (area.top()..area.bottom()).enumerate() {
// render a half block character for each row of pixels with the foreground color
// set to the color of the pixel and the background color set to the color of the
// pixel below it
let fg = colors[yi * 2][xi];
let bg = colors[yi * 2 + 1][xi];
buf[Position::new(x, y)].set_char('▀').set_fg(fg).set_bg(bg);
}
}
self.frame_count += 1;
}
}
impl ColorsWidget {
/// Setup the colors to render.
///
/// This is called once per frame to setup the colors to render. It caches the colors so that
/// they don't need to be recalculated every frame.
#[allow(clippy::cast_precision_loss)]
fn setup_colors(&mut self, size: Rect) {
let Rect { width, height, .. } = size;
// double the height because each screen row has two rows of half block pixels
let height = height as usize * 2;
let width = width as usize;
// only update the colors if the size has changed since the last time we rendered
if self.colors.len() == height && self.colors[0].len() == width {
return;
}
self.colors = Vec::with_capacity(height);
for y in 0..height {
let mut row = Vec::with_capacity(width);
for x in 0..width {
let hue = x as f32 * 360.0 / width as f32;
let value = (height - y) as f32 / height as f32;
let saturation = Okhsv::max_saturation();
let color = Okhsv::new(hue, saturation, value);
let color = Srgb::<f32>::from_color_unclamped(color);
let color: Srgb<u8> = color.into_format();
let color = Color::Rgb(color.red, color.green, color.blue);
row.push(color);
}
self.colors.push(row);
}
}
}