1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//! Parsing for PostScript INDEX objects.
//!
//! See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#5-index-data>

use super::{Error, Index1, Index2};
use crate::codegen_prelude::*;

/// Common type for uniform access to CFF and CFF2 index formats.
#[derive(Clone)]
pub enum Index<'a> {
    Format1(Index1<'a>),
    Format2(Index2<'a>),
}

impl<'a> Index<'a> {
    /// Creates a new index from the given data.
    ///
    /// The caller must specify whether the data comes from a `CFF2` table.
    pub fn new(data: &'a [u8], is_cff2: bool) -> Result<Self, Error> {
        let data = FontData::new(data);
        Ok(if is_cff2 {
            Index2::read(data).map(|ix| ix.into())?
        } else {
            Index1::read(data).map(|ix| ix.into())?
        })
    }

    /// Returns the number of objects in the index.
    pub fn count(&self) -> u32 {
        match self {
            Self::Format1(ix) => ix.count() as u32,
            Self::Format2(ix) => ix.count(),
        }
    }

    /// Computes a bias that is added to a subroutine operator in a
    /// charstring.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#9-local-and-global-subr-indexes>
    pub fn subr_bias(&self) -> i32 {
        let count = self.count();
        if count < 1240 {
            107
        } else if count < 33900 {
            1131
        } else {
            32768
        }
    }

    /// Returns the total size in bytes of the index table.
    pub fn size_in_bytes(&self) -> Result<usize, ReadError> {
        match self {
            Self::Format1(ix) => ix.size_in_bytes(),
            Self::Format2(ix) => ix.size_in_bytes(),
        }
    }

    /// Returns the offset at the given index.
    pub fn get_offset(&self, index: usize) -> Result<usize, Error> {
        match self {
            Self::Format1(ix) => ix.get_offset(index),
            Self::Format2(ix) => ix.get_offset(index),
        }
    }

    /// Returns the data for the object at the given index.
    pub fn get(&self, index: usize) -> Result<&'a [u8], Error> {
        match self {
            Self::Format1(ix) => ix.get(index),
            Self::Format2(ix) => ix.get(index),
        }
    }
}

impl<'a> From<Index1<'a>> for Index<'a> {
    fn from(value: Index1<'a>) -> Self {
        Self::Format1(value)
    }
}

impl<'a> From<Index2<'a>> for Index<'a> {
    fn from(value: Index2<'a>) -> Self {
        Self::Format2(value)
    }
}

impl<'a> Index1<'a> {
    /// Returns the total size in bytes of the index table.
    pub fn size_in_bytes(&self) -> Result<usize, ReadError> {
        // 2 byte count + 1 byte off_size
        const HEADER_SIZE: usize = 3;
        // An empty CFF index contains only a 2 byte count field
        const EMPTY_SIZE: usize = 2;
        let count = self.count() as usize;
        Ok(match count {
            0 => EMPTY_SIZE,
            _ => {
                HEADER_SIZE
                    + self.offsets().len()
                    + self.get_offset(count).map_err(|_| ReadError::OutOfBounds)?
            }
        })
    }

    /// Returns the offset of the object at the given index.
    pub fn get_offset(&self, index: usize) -> Result<usize, Error> {
        read_offset(
            index,
            self.count() as usize,
            self.off_size(),
            self.offsets(),
        )
    }

    /// Returns the data for the object at the given index.
    pub fn get(&self, index: usize) -> Result<&'a [u8], Error> {
        self.data()
            .get(self.get_offset(index)?..self.get_offset(index + 1)?)
            .ok_or(ReadError::OutOfBounds.into())
    }
}

impl<'a> Index2<'a> {
    /// Returns the total size in bytes of the index table.
    pub fn size_in_bytes(&self) -> Result<usize, ReadError> {
        // 4 byte count + 1 byte off_size
        const HEADER_SIZE: usize = 5;
        // An empty CFF2 index contains only a 4 byte count field
        const EMPTY_SIZE: usize = 4;
        let count = self.count() as usize;
        Ok(match count {
            0 => EMPTY_SIZE,
            _ => {
                HEADER_SIZE
                    + self.offsets().len()
                    + self.get_offset(count).map_err(|_| ReadError::OutOfBounds)?
            }
        })
    }

    /// Returns the offset of the object at the given index.
    pub fn get_offset(&self, index: usize) -> Result<usize, Error> {
        read_offset(
            index,
            self.count() as usize,
            self.off_size(),
            self.offsets(),
        )
    }

    /// Returns the data for the object at the given index.
    pub fn get(&self, index: usize) -> Result<&'a [u8], Error> {
        self.data()
            .get(self.get_offset(index)?..self.get_offset(index + 1)?)
            .ok_or(ReadError::OutOfBounds.into())
    }
}

/// Reads an offset which is encoded as a variable sized integer.
fn read_offset(
    index: usize,
    count: usize,
    offset_size: u8,
    offset_data: &[u8],
) -> Result<usize, Error> {
    // There are actually count + 1 entries in the offset array.
    //
    // "Offsets in the offset array are relative to the byte that precedes
    // the object data. Therefore the first element of the offset array is
    // always 1. (This ensures that every object has a corresponding offset
    // which is always nonzero and permits the efficient implementation of
    // dynamic object loading.)"
    //
    // See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#table-7-index-format>
    if index > count {
        Err(ReadError::OutOfBounds)?;
    }
    let data_offset = index * offset_size as usize;
    let offset_data = FontData::new(offset_data);
    match offset_size {
        1 => offset_data.read_at::<u8>(data_offset)? as usize,
        2 => offset_data.read_at::<u16>(data_offset)? as usize,
        3 => offset_data.read_at::<Uint24>(data_offset)?.to_u32() as usize,
        4 => offset_data.read_at::<u32>(data_offset)? as usize,
        _ => return Err(Error::InvalidIndexOffsetSize(offset_size)),
    }
    // As above, subtract one to get the actual offset.
    .checked_sub(1)
    .ok_or(Error::ZeroOffsetInIndex)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_helpers::BeBuffer;

    enum IndexParams {
        Format1 { off_size: u8, count: usize },
        Format2 { off_size: u8, count: usize },
    }

    #[test]
    fn index_format1_offsize1_count4() {
        test_index(IndexParams::Format1 {
            off_size: 1,
            count: 4,
        });
    }

    #[test]
    fn index_format1_offsize2_count64() {
        test_index(IndexParams::Format1 {
            off_size: 2,
            count: 64,
        });
    }

    #[test]
    fn index_format1_offsize3_count128() {
        test_index(IndexParams::Format1 {
            off_size: 3,
            count: 128,
        });
    }

    #[test]
    fn index_format1_offsize4_count256() {
        test_index(IndexParams::Format1 {
            off_size: 4,
            count: 256,
        });
    }

    #[test]
    fn index_format2_offsize1_count4() {
        test_index(IndexParams::Format2 {
            off_size: 4,
            count: 256,
        });
    }

    #[test]
    fn index_format2_offsize2_count64() {
        test_index(IndexParams::Format2 {
            off_size: 2,
            count: 64,
        });
    }

    #[test]
    fn index_format2_offsize3_count128() {
        test_index(IndexParams::Format2 {
            off_size: 3,
            count: 128,
        });
    }

    #[test]
    fn index_format2_offsize4_count256() {
        test_index(IndexParams::Format2 {
            off_size: 4,
            count: 256,
        });
    }

    fn test_index(params: IndexParams) {
        let (fmt, off_size, count) = match params {
            IndexParams::Format1 { off_size, count } => (1, off_size, count),
            IndexParams::Format2 { off_size, count } => (2, off_size, count),
        };
        let buf = make_index(fmt, off_size, count);
        let index = Index::new(buf.font_data().as_bytes(), fmt == 2).unwrap();
        let built_off_size = match &index {
            Index::Format1(v1) => v1.off_size(),
            Index::Format2(v2) => v2.off_size(),
        };
        assert_eq!(built_off_size, off_size);
        assert_eq!(index.count(), count as u32);
        for i in 0..count {
            let object = index.get(i).unwrap();
            let expected_len = (i + 1) * 10;
            let expected_bytes = vec![i as u8; expected_len];
            assert_eq!(object, expected_bytes);
        }
    }

    fn make_index(fmt: u8, off_size: u8, count: usize) -> BeBuffer {
        // We'll add `count` objects to the INDEX, each containing
        // `(i + 1) * 10` bytes of the value `i`.
        let mut buf = BeBuffer::new();
        match fmt {
            1 => buf = buf.push(count as u16),
            2 => buf = buf.push(count as u32),
            _ => panic!("INDEX fmt should be 1 or 2"),
        }
        if count == 0 {
            return buf;
        }
        buf = buf.push(off_size);
        // Offsets start at 1.
        let mut offset = 1usize;
        for i in 0..count + 1 {
            buf = match off_size {
                1 => buf.push(offset as u8),
                2 => buf.push(offset as u16),
                3 => buf.push(Uint24::checked_new(offset as u32).unwrap()),
                4 => buf.push(offset as u32),
                _ => panic!("off_size should be 1-4"),
            };
            offset += (i + 1) * 10;
        }
        // Now the data
        for i in 0..count {
            buf = buf.extend(std::iter::repeat(i as u8).take((i + 1) * 10));
        }
        buf
    }
}