1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
//! Operand stack for CFF/CFF2 parsing.

use types::Fixed;

use super::{BlendState, Error};

/// Maximum size of the operand stack.
///
/// "Operators in Top DICT, Font DICTs, Private DICTs and CharStrings may be
/// preceded by up to a maximum of 513 operands."
///
/// <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#table-9-top-dict-operator-entries>
const MAX_STACK: usize = 513;

/// Operand stack for DICTs and charstrings.
///
/// The operand stack can contain either 32-bit integers or 16.16 fixed point
/// values. The type is known when pushing to the stack and the expected type
/// is also known (based on the operator) when reading from the stack, so the
/// conversion is performed on demand at read time.
///
/// Storing the entries as an enum would require 8 bytes each and since these
/// objects are created on the _stack_, we reduce the required size by storing
/// the entries in parallel arrays holding the raw 32-bit value and a flag that
/// tracks which values are fixed point.
pub struct Stack {
    values: [i32; MAX_STACK],
    value_is_fixed: [bool; MAX_STACK],
    top: usize,
}

impl Stack {
    pub fn new() -> Self {
        Self {
            values: [0; MAX_STACK],
            value_is_fixed: [false; MAX_STACK],
            top: 0,
        }
    }

    pub fn is_empty(&self) -> bool {
        self.top == 0
    }

    pub fn len(&self) -> usize {
        self.top
    }

    pub fn verify_exact_len(&self, len: usize) -> Result<(), Error> {
        if self.top != len {
            Err(Error::StackUnderflow)
        } else {
            Ok(())
        }
    }

    pub fn verify_at_least_len(&self, len: usize) -> Result<(), Error> {
        if self.top < len {
            Err(Error::StackUnderflow)
        } else {
            Ok(())
        }
    }

    /// Returns true if the number of elements on the stack is odd.
    ///
    /// Used for processing some charstring operators where an odd
    /// count represents the presence of the glyph advance width at the
    /// bottom of the stack.
    pub fn len_is_odd(&self) -> bool {
        self.top & 1 != 0
    }

    pub fn clear(&mut self) {
        self.top = 0;
    }

    /// Reverse the order of all elements on the stack.
    ///
    /// Some charstring operators are simpler to process on a reversed
    /// stack.
    pub fn reverse(&mut self) {
        self.values[..self.top].reverse();
        self.value_is_fixed[..self.top].reverse();
    }

    pub fn push(&mut self, number: impl Into<Number>) -> Result<(), Error> {
        match number.into() {
            Number::I32(value) => self.push_impl(value, false),
            Number::Fixed(value) => self.push_impl(value.to_bits(), true),
        }
    }

    /// Returns the 32-bit integer at the given index on the stack.
    ///
    /// Will return an error if the value at that index was not pushed as an
    /// integer.
    pub fn get_i32(&self, index: usize) -> Result<i32, Error> {
        let value = *self
            .values
            .get(index)
            .ok_or(Error::InvalidStackAccess(index))?;
        if self.value_is_fixed[index] {
            // FreeType returns an error here rather than converting
            // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/psaux/psstack.c#L145>
            Err(Error::ExpectedI32StackEntry(index))
        } else {
            Ok(value)
        }
    }

    /// Returns the 16.16 fixed point value at the given index on the stack.
    ///
    /// If the value was pushed as an integer, it will be automatically
    /// converted to 16.16 fixed point.
    pub fn get_fixed(&self, index: usize) -> Result<Fixed, Error> {
        let value = *self
            .values
            .get(index)
            .ok_or(Error::InvalidStackAccess(index))?;
        Ok(if self.value_is_fixed[index] {
            Fixed::from_bits(value)
        } else {
            Fixed::from_i32(value)
        })
    }

    /// Pops a 32-bit integer from the top of stack.
    ///
    /// Will return an error if the top value on the stack was not pushed as an
    /// integer.
    pub fn pop_i32(&mut self) -> Result<i32, Error> {
        let i = self.pop()?;
        self.get_i32(i)
    }

    /// Pops a 16.16 fixed point value from the top of the stack.
    ///
    /// If the value was pushed as an integer, it will be automatically
    /// converted to 16.16 fixed point.
    pub fn pop_fixed(&mut self) -> Result<Fixed, Error> {
        let i = self.pop()?;
        self.get_fixed(i)
    }

    /// Returns an iterator yielding all elements on the stack
    /// as 16.16 fixed point values.
    ///
    /// Used to read array style DICT entries such as blue values,
    /// font matrix and font bounding box.
    pub fn fixed_values(&self) -> impl Iterator<Item = Fixed> + '_ {
        self.values[..self.top]
            .iter()
            .zip(&self.value_is_fixed)
            .map(|(value, is_real)| {
                if *is_real {
                    Fixed::from_bits(*value)
                } else {
                    Fixed::from_i32(*value)
                }
            })
    }

    /// Returns an array of `N` 16.16 fixed point values starting at
    /// `first_index`.
    pub fn fixed_array<const N: usize>(&self, first_index: usize) -> Result<[Fixed; N], Error> {
        let mut result = [Fixed::ZERO; N];
        if first_index >= self.top {
            return Err(Error::InvalidStackAccess(first_index));
        }
        let end = first_index + N;
        if end > self.top {
            return Err(Error::InvalidStackAccess(end - 1));
        }
        let range = first_index..end;
        for ((src, is_fixed), dest) in self.values[range.clone()]
            .iter()
            .zip(&self.value_is_fixed[range])
            .zip(&mut result)
        {
            let value = if *is_fixed {
                Fixed::from_bits(*src)
            } else {
                Fixed::from_i32(*src)
            };
            *dest = value;
        }
        Ok(result)
    }

    /// Returns an iterator yielding all elements on the stack as number
    /// values.
    ///
    /// This is useful for capturing the current state of the stack.
    pub fn number_values(&self) -> impl Iterator<Item = Number> + '_ {
        self.values[..self.top]
            .iter()
            .zip(&self.value_is_fixed)
            .map(|(value, is_fixed)| Number::from_stack(*value, *is_fixed))
    }

    /// Apply a prefix sum to decode delta-encoded numbers.
    ///
    /// "The second and subsequent numbers in a delta are encoded as the
    /// difference between successive values."
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#table-6-operand-types>
    pub fn apply_delta_prefix_sum(&mut self) {
        if self.top > 1 {
            let mut sum = Fixed::ZERO;
            for (value, is_fixed) in self.values[..self.top]
                .iter_mut()
                .zip(&mut self.value_is_fixed)
            {
                sum += if *is_fixed {
                    // FreeType reads delta values using cff_parse_num which
                    // which truncates the fractional parts of 16.16 values
                    // See delta parsing:
                    // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/cff/cffparse.c#L1427>
                    // See cff_parse_num "binary-coded decimal is truncated to
                    // integer":
                    // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/cff/cffparse.c#L463>
                    Fixed::from_bits(*value).floor()
                } else {
                    Fixed::from_i32(*value)
                };
                *value = sum.to_bits();
                *is_fixed = true;
            }
        }
    }

    /// Apply the `blend` operator.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2charstr#syntax-for-font-variations-support-operators>
    #[inline(never)]
    pub fn apply_blend(&mut self, blend_state: &BlendState) -> Result<(), Error> {
        // When the blend operator is invoked, the stack will contain a set
        // of target values, followed by sets of deltas for those values for
        // each variation region, followed by the count of target values.
        //
        // For example, if we're blending two target values across three
        // variation regions, the stack would be setup as follows (parentheses
        // added to signify grouping of deltas):
        //
        // value_0 value_1 (delta_0_0 delta_0_1 delta_0_2) (delta_1_0 delta_1_1 delta_1_2) 2
        //
        // where delta_i_j represents the delta for value i and region j.
        //
        // We compute the scalars for each region, multiply them by the
        // associated deltas and add the result to the respective target value.
        // Then the stack is popped so only the final target values remain.
        let target_value_count = self.pop_i32()? as usize;
        if target_value_count > self.top {
            return Err(Error::StackUnderflow);
        }
        let region_count = blend_state.region_count()?;
        // We expect at least `target_value_count * (region_count + 1)`
        // elements on the stack.
        let operand_count = target_value_count * (region_count + 1);
        if self.len() < operand_count {
            return Err(Error::StackUnderflow);
        }
        // The stack may contain more elements than necessary, so keep track of
        // our active range.
        let start = self.len() - operand_count;
        let end = start + operand_count;
        // For simplicity, convert all elements to fixed up front.
        for (value, is_fixed) in self.values[start..end]
            .iter_mut()
            .zip(&mut self.value_is_fixed[start..])
        {
            if !*is_fixed {
                *value = Fixed::from_i32(*value).to_bits();
                *is_fixed = true;
            }
        }
        let (values, deltas) = self.values[start..].split_at_mut(target_value_count);
        // Note: we specifically loop over scalars in the outer loop to avoid
        // computing them more than once in the case that we overflow our
        // precomputed cache.
        for (region_ix, maybe_scalar) in blend_state.scalars()?.enumerate() {
            let scalar = maybe_scalar?;
            // We could omit these in `BlendState::scalars()` but that would
            // significantly reduce the clarity of the already complex
            // chained iterator code there. Do the simple thing here instead.
            if scalar == Fixed::ZERO {
                continue;
            }
            for (value_ix, value) in values.iter_mut().enumerate() {
                let delta_ix = (region_count * value_ix) + region_ix;
                let delta = Fixed::from_bits(deltas[delta_ix]);
                *value = (Fixed::from_bits(*value).wrapping_add(delta * scalar)).to_bits();
            }
        }
        self.top = start + target_value_count;
        Ok(())
    }

    fn push_impl(&mut self, value: i32, is_fixed: bool) -> Result<(), Error> {
        if self.top == MAX_STACK {
            return Err(Error::StackOverflow);
        }
        self.values[self.top] = value;
        self.value_is_fixed[self.top] = is_fixed;
        self.top += 1;
        Ok(())
    }

    fn pop(&mut self) -> Result<usize, Error> {
        if self.top > 0 {
            self.top -= 1;
            Ok(self.top)
        } else {
            Err(Error::StackUnderflow)
        }
    }
}

impl Default for Stack {
    fn default() -> Self {
        Self::new()
    }
}

/// Either a signed 32-bit integer or a 16.16 fixed point number.
///
/// This represents the CFF "number" operand type.
/// See "Table 6 Operand Types" at <https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf>
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum Number {
    I32(i32),
    Fixed(Fixed),
}

impl Number {
    fn from_stack(raw: i32, is_fixed: bool) -> Self {
        if is_fixed {
            Self::Fixed(Fixed::from_bits(raw))
        } else {
            Self::I32(raw)
        }
    }
}

impl From<i32> for Number {
    fn from(value: i32) -> Self {
        Self::I32(value)
    }
}

impl From<Fixed> for Number {
    fn from(value: Fixed) -> Self {
        Self::Fixed(value)
    }
}

impl std::fmt::Display for Number {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::I32(value) => value.fmt(f),
            Self::Fixed(value) => value.fmt(f),
        }
    }
}

#[cfg(test)]
mod tests {
    use types::{F2Dot14, Fixed};

    use super::Stack;
    use crate::{
        tables::{postscript::BlendState, variations::ItemVariationStore},
        FontData, FontRead,
    };

    #[test]
    fn push_pop() {
        let mut stack = Stack::new();
        stack.push(20).unwrap();
        stack.push(Fixed::from_f64(42.42)).unwrap();
        assert!(!stack.len_is_odd());
        stack.verify_exact_len(2).unwrap();
        stack.verify_at_least_len(2).unwrap();
        assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(42.42));
        assert_eq!(stack.pop_i32().unwrap(), 20);
    }

    #[test]
    fn push_fixed_pop_i32() {
        let mut stack = Stack::new();
        stack.push(Fixed::from_f64(42.42)).unwrap();
        assert!(stack.pop_i32().is_err());
    }

    #[test]
    fn push_i32_pop_fixed() {
        let mut stack = Stack::new();
        stack.push(123).unwrap();
        assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(123.0));
    }

    #[test]
    fn reverse() {
        let mut stack = Stack::new();
        stack.push(Fixed::from_f64(1.5)).unwrap();
        stack.push(42).unwrap();
        stack.push(Fixed::from_f64(4.2)).unwrap();
        stack.reverse();
        assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(1.5));
        assert_eq!(stack.pop_i32().unwrap(), 42);
        assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(4.2));
    }

    #[test]
    fn delta_prefix_sum() {
        let mut stack = Stack::new();
        stack.push(Fixed::from_f64(1.5)).unwrap();
        stack.push(42).unwrap();
        stack.push(Fixed::from_f64(4.2)).unwrap();
        stack.apply_delta_prefix_sum();
        assert!(stack.len_is_odd());
        let values: Vec<_> = stack.fixed_values().collect();
        let expected = &[
            Fixed::from_f64(1.0),
            Fixed::from_f64(43.0),
            Fixed::from_f64(47.0),
        ];
        assert_eq!(&values, expected);
    }

    #[test]
    fn blend() {
        let ivs_data = &font_test_data::cff2::EXAMPLE[18..];
        let ivs = ItemVariationStore::read(FontData::new(ivs_data)).unwrap();
        // This coordinate will generate scalars [0.5, 0.5]
        let coords = &[F2Dot14::from_f32(-0.75)];
        let blend_state = BlendState::new(ivs, coords, 0).unwrap();
        let mut stack = Stack::new();
        // Push our target values
        stack.push(10).unwrap();
        stack.push(20).unwrap();
        // Push deltas for 2 regions for the first value
        stack.push(4).unwrap();
        stack.push(-8).unwrap();
        // Push deltas for 2 regions for the second value
        stack.push(-60).unwrap();
        stack.push(2).unwrap();
        // Push target value count
        stack.push(2).unwrap();
        stack.apply_blend(&blend_state).unwrap();
        let result: Vec<_> = stack.fixed_values().collect();
        // Expected values:
        // 0: 10 + (4 * 0.5) + (-8 * 0.5) = 8
        // 1: 20 + (-60 * 0.5) + (2 * 0.5) = -9
        let expected = &[Fixed::from_f64(8.0), Fixed::from_f64(-9.0)];
        assert_eq!(&result, expected);
    }
}