pub mod bytecode;
use bytemuck::AnyBitPattern;
use core::ops::{Add, AddAssign, Div, Mul, MulAssign, Sub};
use types::{F26Dot6, Point};
include!("../../generated/generated_glyf.rs");
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
pub struct PointMarker(u8);
impl PointMarker {
pub const HAS_DELTA: Self = Self(0x4);
pub const TOUCHED_X: Self = Self(0x10);
pub const TOUCHED_Y: Self = Self(0x20);
pub const TOUCHED: Self = Self(Self::TOUCHED_X.0 | Self::TOUCHED_Y.0);
pub const WEAK_INTERPOLATION: Self = Self(0x2);
pub const NEAR: PointMarker = Self(0x8);
}
impl core::ops::BitOr for PointMarker {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
#[derive(
Copy, Clone, PartialEq, Eq, Default, Debug, bytemuck::AnyBitPattern, bytemuck::NoUninit,
)]
#[repr(transparent)]
pub struct PointFlags(u8);
impl PointFlags {
const ON_CURVE: u8 = SimpleGlyphFlags::ON_CURVE_POINT.bits;
const OFF_CURVE_CUBIC: u8 = SimpleGlyphFlags::CUBIC.bits;
const CURVE_MASK: u8 = Self::ON_CURVE | Self::OFF_CURVE_CUBIC;
pub const fn on_curve() -> Self {
Self(Self::ON_CURVE)
}
pub const fn off_curve_quad() -> Self {
Self(0)
}
pub const fn off_curve_cubic() -> Self {
Self(Self::OFF_CURVE_CUBIC)
}
pub const fn from_bits(bits: u8) -> Self {
Self(bits & Self::CURVE_MASK)
}
#[inline]
pub const fn is_on_curve(self) -> bool {
self.0 & Self::ON_CURVE != 0
}
#[inline]
pub const fn is_off_curve_quad(self) -> bool {
self.0 & Self::CURVE_MASK == 0
}
#[inline]
pub const fn is_off_curve_cubic(self) -> bool {
self.0 & Self::OFF_CURVE_CUBIC != 0
}
pub const fn is_off_curve(self) -> bool {
self.is_off_curve_quad() || self.is_off_curve_cubic()
}
pub fn flip_on_curve(&mut self) {
self.0 ^= 1;
}
pub fn set_on_curve(&mut self) {
self.0 |= Self::ON_CURVE;
}
pub fn clear_on_curve(&mut self) {
self.0 &= !Self::ON_CURVE;
}
pub fn has_marker(self, marker: PointMarker) -> bool {
self.0 & marker.0 != 0
}
pub fn set_marker(&mut self, marker: PointMarker) {
self.0 |= marker.0;
}
pub fn clear_marker(&mut self, marker: PointMarker) {
self.0 &= !marker.0
}
pub const fn without_markers(self) -> Self {
Self(self.0 & Self::CURVE_MASK)
}
pub const fn to_bits(self) -> u8 {
self.0
}
}
pub trait PointCoord:
Copy
+ Default
+ AnyBitPattern
+ PartialEq
+ PartialOrd
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ Div<Output = Self>
+ Mul<Output = Self>
+ MulAssign {
fn from_fixed(x: Fixed) -> Self;
fn from_i32(x: i32) -> Self;
fn to_f32(self) -> f32;
fn midpoint(self, other: Self) -> Self;
}
impl<'a> SimpleGlyph<'a> {
pub fn num_points(&self) -> usize {
self.end_pts_of_contours()
.last()
.map(|last| last.get() as usize + 1)
.unwrap_or(0)
}
pub fn has_overlapping_contours(&self) -> bool {
FontData::new(self.glyph_data())
.read_at::<SimpleGlyphFlags>(0)
.map(|flag| flag.contains(SimpleGlyphFlags::OVERLAP_SIMPLE))
.unwrap_or_default()
}
pub fn read_points_fast<C: PointCoord>(
&self,
points: &mut [Point<C>],
flags: &mut [PointFlags],
) -> Result<(), ReadError> {
let n_points = self.num_points();
if points.len() != n_points || flags.len() != n_points {
return Err(ReadError::InvalidArrayLen);
}
let mut cursor = FontData::new(self.glyph_data()).cursor();
let mut i = 0;
while i < n_points {
let flag = cursor.read::<SimpleGlyphFlags>()?;
let flag_bits = flag.bits();
if flag.contains(SimpleGlyphFlags::REPEAT_FLAG) {
let count = (cursor.read::<u8>()? as usize + 1).min(n_points - i);
for f in &mut flags[i..i + count] {
f.0 = flag_bits;
}
i += count;
} else {
flags[i].0 = flag_bits;
i += 1;
}
}
let mut x = 0i32;
for (&point_flags, point) in flags.iter().zip(points.as_mut()) {
let mut delta = 0i32;
let flag = SimpleGlyphFlags::from_bits_truncate(point_flags.0);
if flag.contains(SimpleGlyphFlags::X_SHORT_VECTOR) {
delta = cursor.read::<u8>()? as i32;
if !flag.contains(SimpleGlyphFlags::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR) {
delta = -delta;
}
} else if !flag.contains(SimpleGlyphFlags::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR) {
delta = cursor.read::<i16>()? as i32;
}
x = x.wrapping_add(delta);
point.x = C::from_i32(x);
}
let mut y = 0i32;
for (point_flags, point) in flags.iter_mut().zip(points.as_mut()) {
let mut delta = 0i32;
let flag = SimpleGlyphFlags::from_bits_truncate(point_flags.0);
if flag.contains(SimpleGlyphFlags::Y_SHORT_VECTOR) {
delta = cursor.read::<u8>()? as i32;
if !flag.contains(SimpleGlyphFlags::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR) {
delta = -delta;
}
} else if !flag.contains(SimpleGlyphFlags::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR) {
delta = cursor.read::<i16>()? as i32;
}
y = y.wrapping_add(delta);
point.y = C::from_i32(y);
let flags_mask = if cfg!(feature = "spec_next") {
PointFlags::CURVE_MASK
} else {
PointFlags::ON_CURVE
};
point_flags.0 &= flags_mask;
}
Ok(())
}
pub fn points(&self) -> impl Iterator<Item = CurvePoint> + 'a + Clone {
self.points_impl()
.unwrap_or_else(|| PointIter::new(&[], &[], &[]))
}
fn points_impl(&self) -> Option<PointIter<'a>> {
let end_points = self.end_pts_of_contours();
let n_points = end_points.last()?.get().checked_add(1)?;
let data = self.glyph_data();
let lens = resolve_coords_len(data, n_points).ok()?;
let total_len = lens.flags + lens.x_coords + lens.y_coords;
if data.len() < total_len as usize {
return None;
}
let (flags, data) = data.split_at(lens.flags as usize);
let (x_coords, y_coords) = data.split_at(lens.x_coords as usize);
Some(PointIter::new(flags, x_coords, y_coords))
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CurvePoint {
pub x: i16,
pub y: i16,
pub on_curve: bool,
}
impl CurvePoint {
pub fn new(x: i16, y: i16, on_curve: bool) -> Self {
Self { x, y, on_curve }
}
pub fn on_curve(x: i16, y: i16) -> Self {
Self::new(x, y, true)
}
pub fn off_curve(x: i16, y: i16) -> Self {
Self::new(x, y, false)
}
}
#[derive(Clone)]
struct PointIter<'a> {
flags: Cursor<'a>,
x_coords: Cursor<'a>,
y_coords: Cursor<'a>,
flag_repeats: u8,
cur_flags: SimpleGlyphFlags,
cur_x: i16,
cur_y: i16,
}
impl Iterator for PointIter<'_> {
type Item = CurvePoint;
fn next(&mut self) -> Option<Self::Item> {
self.advance_flags()?;
self.advance_points();
let is_on_curve = self.cur_flags.contains(SimpleGlyphFlags::ON_CURVE_POINT);
Some(CurvePoint::new(self.cur_x, self.cur_y, is_on_curve))
}
}
impl<'a> PointIter<'a> {
fn new(flags: &'a [u8], x_coords: &'a [u8], y_coords: &'a [u8]) -> Self {
Self {
flags: FontData::new(flags).cursor(),
x_coords: FontData::new(x_coords).cursor(),
y_coords: FontData::new(y_coords).cursor(),
flag_repeats: 0,
cur_flags: SimpleGlyphFlags::empty(),
cur_x: 0,
cur_y: 0,
}
}
fn advance_flags(&mut self) -> Option<()> {
if self.flag_repeats == 0 {
self.cur_flags = SimpleGlyphFlags::from_bits_truncate(self.flags.read().ok()?);
self.flag_repeats = self
.cur_flags
.contains(SimpleGlyphFlags::REPEAT_FLAG)
.then(|| self.flags.read().ok())
.flatten()
.unwrap_or(0)
+ 1;
}
self.flag_repeats -= 1;
Some(())
}
fn advance_points(&mut self) {
let x_short = self.cur_flags.contains(SimpleGlyphFlags::X_SHORT_VECTOR);
let x_same_or_pos = self
.cur_flags
.contains(SimpleGlyphFlags::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR);
let y_short = self.cur_flags.contains(SimpleGlyphFlags::Y_SHORT_VECTOR);
let y_same_or_pos = self
.cur_flags
.contains(SimpleGlyphFlags::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR);
let delta_x = match (x_short, x_same_or_pos) {
(true, false) => -(self.x_coords.read::<u8>().unwrap_or(0) as i16),
(true, true) => self.x_coords.read::<u8>().unwrap_or(0) as i16,
(false, false) => self.x_coords.read::<i16>().unwrap_or(0),
_ => 0,
};
let delta_y = match (y_short, y_same_or_pos) {
(true, false) => -(self.y_coords.read::<u8>().unwrap_or(0) as i16),
(true, true) => self.y_coords.read::<u8>().unwrap_or(0) as i16,
(false, false) => self.y_coords.read::<i16>().unwrap_or(0),
_ => 0,
};
self.cur_x = self.cur_x.wrapping_add(delta_x);
self.cur_y = self.cur_y.wrapping_add(delta_y);
}
}
fn resolve_coords_len(data: &[u8], points_total: u16) -> Result<FieldLengths, ReadError> {
let mut cursor = FontData::new(data).cursor();
let mut flags_left = u32::from(points_total);
let mut x_coords_len = 0;
let mut y_coords_len = 0;
while flags_left > 0 {
let flags: SimpleGlyphFlags = cursor.read()?;
let repeats = if flags.contains(SimpleGlyphFlags::REPEAT_FLAG) {
let repeats: u8 = cursor.read()?;
u32::from(repeats) + 1
} else {
1
};
if repeats > flags_left {
return Err(ReadError::MalformedData("repeat count too large in glyf"));
}
let x_short = SimpleGlyphFlags::X_SHORT_VECTOR;
let x_long = SimpleGlyphFlags::X_SHORT_VECTOR
| SimpleGlyphFlags::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR;
let y_short = SimpleGlyphFlags::Y_SHORT_VECTOR;
let y_long = SimpleGlyphFlags::Y_SHORT_VECTOR
| SimpleGlyphFlags::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR;
x_coords_len += ((flags & x_short).bits() != 0) as u32 * repeats;
x_coords_len += ((flags & x_long).bits() == 0) as u32 * repeats * 2;
y_coords_len += ((flags & y_short).bits() != 0) as u32 * repeats;
y_coords_len += ((flags & y_long).bits() == 0) as u32 * repeats * 2;
flags_left -= repeats;
}
Ok(FieldLengths {
flags: cursor.position()? as u32,
x_coords: x_coords_len,
y_coords: y_coords_len,
})
}
struct FieldLengths {
flags: u32,
x_coords: u32,
y_coords: u32,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Transform {
pub xx: F2Dot14,
pub yx: F2Dot14,
pub xy: F2Dot14,
pub yy: F2Dot14,
}
impl Default for Transform {
fn default() -> Self {
Self {
xx: F2Dot14::from_f32(1.0),
yx: F2Dot14::from_f32(0.0),
xy: F2Dot14::from_f32(0.0),
yy: F2Dot14::from_f32(1.0),
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Component {
pub flags: CompositeGlyphFlags,
pub glyph: GlyphId16,
pub anchor: Anchor,
pub transform: Transform,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Anchor {
Offset { x: i16, y: i16 },
Point { base: u16, component: u16 },
}
impl<'a> CompositeGlyph<'a> {
pub fn components(&self) -> impl Iterator<Item = Component> + 'a + Clone {
ComponentIter {
cur_flags: CompositeGlyphFlags::empty(),
done: false,
cursor: FontData::new(self.component_data()).cursor(),
}
}
pub fn component_glyphs_and_flags(
&self,
) -> impl Iterator<Item = (GlyphId16, CompositeGlyphFlags)> + 'a + Clone {
ComponentGlyphIdFlagsIter {
cur_flags: CompositeGlyphFlags::empty(),
done: false,
cursor: FontData::new(self.component_data()).cursor(),
}
}
pub fn count_and_instructions(&self) -> (usize, Option<&'a [u8]>) {
let mut iter = ComponentGlyphIdFlagsIter {
cur_flags: CompositeGlyphFlags::empty(),
done: false,
cursor: FontData::new(self.component_data()).cursor(),
};
let mut count = 0;
while iter.by_ref().next().is_some() {
count += 1;
}
let instructions = if iter
.cur_flags
.contains(CompositeGlyphFlags::WE_HAVE_INSTRUCTIONS)
{
iter.cursor
.read::<u16>()
.ok()
.map(|len| len as usize)
.and_then(|len| iter.cursor.read_array(len).ok())
} else {
None
};
(count, instructions)
}
pub fn instructions(&self) -> Option<&'a [u8]> {
self.count_and_instructions().1
}
}
#[derive(Clone)]
struct ComponentIter<'a> {
cur_flags: CompositeGlyphFlags,
done: bool,
cursor: Cursor<'a>,
}
impl Iterator for ComponentIter<'_> {
type Item = Component;
fn next(&mut self) -> Option<Self::Item> {
if self.done {
return None;
}
let flags: CompositeGlyphFlags = self.cursor.read().ok()?;
self.cur_flags = flags;
let glyph = self.cursor.read::<GlyphId16>().ok()?;
let args_are_words = flags.contains(CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS);
let args_are_xy_values = flags.contains(CompositeGlyphFlags::ARGS_ARE_XY_VALUES);
let anchor = match (args_are_xy_values, args_are_words) {
(true, true) => Anchor::Offset {
x: self.cursor.read().ok()?,
y: self.cursor.read().ok()?,
},
(true, false) => Anchor::Offset {
x: self.cursor.read::<i8>().ok()? as _,
y: self.cursor.read::<i8>().ok()? as _,
},
(false, true) => Anchor::Point {
base: self.cursor.read().ok()?,
component: self.cursor.read().ok()?,
},
(false, false) => Anchor::Point {
base: self.cursor.read::<u8>().ok()? as _,
component: self.cursor.read::<u8>().ok()? as _,
},
};
let mut transform = Transform::default();
if flags.contains(CompositeGlyphFlags::WE_HAVE_A_SCALE) {
transform.xx = self.cursor.read().ok()?;
transform.yy = transform.xx;
} else if flags.contains(CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE) {
transform.xx = self.cursor.read().ok()?;
transform.yy = self.cursor.read().ok()?;
} else if flags.contains(CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO) {
transform.xx = self.cursor.read().ok()?;
transform.yx = self.cursor.read().ok()?;
transform.xy = self.cursor.read().ok()?;
transform.yy = self.cursor.read().ok()?;
}
self.done = !flags.contains(CompositeGlyphFlags::MORE_COMPONENTS);
Some(Component {
flags,
glyph,
anchor,
transform,
})
}
}
#[derive(Clone)]
struct ComponentGlyphIdFlagsIter<'a> {
cur_flags: CompositeGlyphFlags,
done: bool,
cursor: Cursor<'a>,
}
impl Iterator for ComponentGlyphIdFlagsIter<'_> {
type Item = (GlyphId16, CompositeGlyphFlags);
fn next(&mut self) -> Option<Self::Item> {
if self.done {
return None;
}
let flags: CompositeGlyphFlags = self.cursor.read().ok()?;
self.cur_flags = flags;
let glyph = self.cursor.read::<GlyphId16>().ok()?;
let args_are_words = flags.contains(CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS);
if args_are_words {
self.cursor.advance_by(4);
} else {
self.cursor.advance_by(2);
}
if flags.contains(CompositeGlyphFlags::WE_HAVE_A_SCALE) {
self.cursor.advance_by(2);
} else if flags.contains(CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE) {
self.cursor.advance_by(4);
} else if flags.contains(CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO) {
self.cursor.advance_by(8);
}
self.done = !flags.contains(CompositeGlyphFlags::MORE_COMPONENTS);
Some((glyph, flags))
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for Component {
fn type_name(&self) -> &str {
"Component"
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
0 => Some(Field::new("flags", self.flags.bits())),
1 => Some(Field::new("glyph", self.glyph)),
2 => match self.anchor {
Anchor::Point { base, .. } => Some(Field::new("base", base)),
Anchor::Offset { x, .. } => Some(Field::new("x", x)),
},
3 => match self.anchor {
Anchor::Point { component, .. } => Some(Field::new("component", component)),
Anchor::Offset { y, .. } => Some(Field::new("y", y)),
},
_ => None,
}
}
}
impl Anchor {
pub fn compute_flags(&self) -> CompositeGlyphFlags {
const I8_RANGE: Range<i16> = i8::MIN as i16..i8::MAX as i16 + 1;
const U8_MAX: u16 = u8::MAX as u16;
let mut flags = CompositeGlyphFlags::empty();
match self {
Anchor::Offset { x, y } => {
flags |= CompositeGlyphFlags::ARGS_ARE_XY_VALUES;
if !I8_RANGE.contains(x) || !I8_RANGE.contains(y) {
flags |= CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS;
}
}
Anchor::Point { base, component } => {
if base > &U8_MAX || component > &U8_MAX {
flags |= CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS;
}
}
}
flags
}
}
impl Transform {
pub fn compute_flags(&self) -> CompositeGlyphFlags {
if self.yx != F2Dot14::ZERO || self.xy != F2Dot14::ZERO {
CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO
} else if self.xx != self.yy {
CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE
} else if self.xx != F2Dot14::ONE {
CompositeGlyphFlags::WE_HAVE_A_SCALE
} else {
CompositeGlyphFlags::empty()
}
}
}
impl PointCoord for F26Dot6 {
fn from_fixed(x: Fixed) -> Self {
x.to_f26dot6()
}
#[inline]
fn from_i32(x: i32) -> Self {
Self::from_i32(x)
}
#[inline]
fn to_f32(self) -> f32 {
self.to_f32()
}
#[inline]
fn midpoint(self, other: Self) -> Self {
Self::from_bits(midpoint_i32(self.to_bits(), other.to_bits()))
}
}
impl PointCoord for Fixed {
fn from_fixed(x: Fixed) -> Self {
x
}
fn from_i32(x: i32) -> Self {
Self::from_i32(x)
}
fn to_f32(self) -> f32 {
self.to_f32()
}
fn midpoint(self, other: Self) -> Self {
Self::from_bits(midpoint_i32(self.to_bits(), other.to_bits()))
}
}
impl PointCoord for i32 {
fn from_fixed(x: Fixed) -> Self {
x.to_i32()
}
fn from_i32(x: i32) -> Self {
x
}
fn to_f32(self) -> f32 {
self as f32
}
fn midpoint(self, other: Self) -> Self {
midpoint_i32(self, other)
}
}
fn midpoint_i32(a: i32, b: i32) -> i32 {
a.wrapping_add(b.wrapping_sub(a) / 2)
}
impl PointCoord for f32 {
fn from_fixed(x: Fixed) -> Self {
x.to_f32()
}
fn from_i32(x: i32) -> Self {
x as f32
}
fn to_f32(self) -> f32 {
self
}
fn midpoint(self, other: Self) -> Self {
self + 0.5 * (other - self)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{FontRef, GlyphId, TableProvider};
#[test]
fn simple_glyph() {
let font = FontRef::new(font_test_data::COLR_GRADIENT_RECT).unwrap();
let loca = font.loca(None).unwrap();
let glyf = font.glyf().unwrap();
let glyph = loca.get_glyf(GlyphId::new(0), &glyf).unwrap().unwrap();
assert_eq!(glyph.number_of_contours(), 2);
let simple_glyph = if let Glyph::Simple(simple) = glyph {
simple
} else {
panic!("expected simple glyph");
};
assert_eq!(
simple_glyph
.end_pts_of_contours()
.iter()
.map(|x| x.get())
.collect::<Vec<_>>(),
&[3, 7]
);
assert_eq!(
simple_glyph
.points()
.map(|pt| (pt.x, pt.y, pt.on_curve))
.collect::<Vec<_>>(),
&[
(5, 0, true),
(5, 100, true),
(45, 100, true),
(45, 0, true),
(10, 5, true),
(40, 5, true),
(40, 95, true),
(10, 95, true),
]
);
}
fn all_glyphs(font_data: &[u8]) -> impl Iterator<Item = Option<Glyph>> {
let font = FontRef::new(font_data).unwrap();
let loca = font.loca(None).unwrap();
let glyf = font.glyf().unwrap();
let glyph_count = font.maxp().unwrap().num_glyphs() as u32;
(0..glyph_count).map(move |gid| loca.get_glyf(GlyphId::new(gid), &glyf).unwrap())
}
#[test]
fn simple_glyph_overlapping_contour_flag() {
let gids_with_overlap: Vec<_> = all_glyphs(font_test_data::VAZIRMATN_VAR)
.enumerate()
.filter_map(|(gid, glyph)| match glyph {
Some(Glyph::Simple(glyph)) if glyph.has_overlapping_contours() => Some(gid),
_ => None,
})
.collect();
let expected_gids_with_overlap = vec![3];
assert_eq!(expected_gids_with_overlap, gids_with_overlap);
}
#[test]
fn composite_glyph_overlapping_contour_flag() {
let gids_components_with_overlap: Vec<_> = all_glyphs(font_test_data::VAZIRMATN_VAR)
.enumerate()
.filter_map(|(gid, glyph)| match glyph {
Some(Glyph::Composite(glyph)) => Some((gid, glyph)),
_ => None,
})
.flat_map(|(gid, glyph)| {
glyph
.components()
.enumerate()
.filter_map(move |(comp_ix, comp)| {
comp.flags
.contains(CompositeGlyphFlags::OVERLAP_COMPOUND)
.then_some((gid, comp_ix))
})
})
.collect();
let expected_gids_components_with_overlap = vec![(2, 1)];
assert_eq!(
expected_gids_components_with_overlap,
gids_components_with_overlap
);
}
#[test]
fn compute_anchor_flags() {
let anchor = Anchor::Offset { x: -128, y: 127 };
assert_eq!(
anchor.compute_flags(),
CompositeGlyphFlags::ARGS_ARE_XY_VALUES
);
let anchor = Anchor::Offset { x: -129, y: 127 };
assert_eq!(
anchor.compute_flags(),
CompositeGlyphFlags::ARGS_ARE_XY_VALUES | CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS
);
let anchor = Anchor::Offset { x: -1, y: 128 };
assert_eq!(
anchor.compute_flags(),
CompositeGlyphFlags::ARGS_ARE_XY_VALUES | CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS
);
let anchor = Anchor::Point {
base: 255,
component: 20,
};
assert_eq!(anchor.compute_flags(), CompositeGlyphFlags::empty());
let anchor = Anchor::Point {
base: 256,
component: 20,
};
assert_eq!(
anchor.compute_flags(),
CompositeGlyphFlags::ARG_1_AND_2_ARE_WORDS
)
}
#[test]
fn compute_transform_flags() {
fn make_xform(xx: f32, yx: f32, xy: f32, yy: f32) -> Transform {
Transform {
xx: F2Dot14::from_f32(xx),
yx: F2Dot14::from_f32(yx),
xy: F2Dot14::from_f32(xy),
yy: F2Dot14::from_f32(yy),
}
}
assert_eq!(
make_xform(1.0, 0., 0., 1.0).compute_flags(),
CompositeGlyphFlags::empty()
);
assert_eq!(
make_xform(2.0, 0., 0., 2.0).compute_flags(),
CompositeGlyphFlags::WE_HAVE_A_SCALE
);
assert_eq!(
make_xform(2.0, 0., 0., 1.0).compute_flags(),
CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE
);
assert_eq!(
make_xform(2.0, 0., 1.0, 1.0).compute_flags(),
CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO
);
}
#[test]
fn point_flags_and_marker_bits() {
let bits = [
PointFlags::OFF_CURVE_CUBIC,
PointFlags::ON_CURVE,
PointMarker::HAS_DELTA.0,
PointMarker::TOUCHED_X.0,
PointMarker::TOUCHED_Y.0,
];
for (i, a) in bits.iter().enumerate() {
for b in &bits[i + 1..] {
assert_eq!(a & b, 0);
}
}
}
#[test]
fn cubic_glyf() {
let font = FontRef::new(font_test_data::CUBIC_GLYF).unwrap();
let loca = font.loca(None).unwrap();
let glyf = font.glyf().unwrap();
let glyph = loca.get_glyf(GlyphId::new(2), &glyf).unwrap().unwrap();
assert_eq!(glyph.number_of_contours(), 1);
let simple_glyph = if let Glyph::Simple(simple) = glyph {
simple
} else {
panic!("expected simple glyph");
};
assert_eq!(
simple_glyph
.points()
.map(|pt| (pt.x, pt.y, pt.on_curve))
.collect::<Vec<_>>(),
&[
(278, 710, true),
(278, 470, true),
(300, 500, false),
(800, 500, false),
(998, 470, true),
(998, 710, true),
]
);
}
#[test]
fn avoid_midpoint_overflow() {
let a = F26Dot6::from_bits(1084092352);
let b = F26Dot6::from_bits(1085243712);
let expected = a.to_bits() + (b.to_bits() - a.to_bits()) / 2;
let midpoint = a.midpoint(b);
assert_eq!(midpoint.to_bits(), expected);
}
}