read_fonts/collections/int_set/
sparse_bit_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//! Provides serialization of [`IntSet`]'s to a highly compact bitset format as defined in the
//! IFT specification:
//!
//! <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>

use std::collections::VecDeque;
use std::error::Error;
use std::fmt;

use super::bitset::BitSetBuilder;
use super::input_bit_stream::InputBitStream;
use super::output_bit_stream::OutputBitStream;
use super::BitSet;
use super::IntSet;

#[derive(Debug, PartialEq)]
pub struct DecodingError;

impl Error for DecodingError {}

impl fmt::Display for DecodingError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "The input data stream was too short to be a valid sparse bit set."
        )
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum BranchFactor {
    Two,
    Four,
    Eight,
    ThirtyTwo,
}

impl IntSet<u32> {
    /// Populate this set with the values obtained from decoding the provided sparse bit set bytes.
    ///
    /// Sparse bit sets are a specialized, compact encoding of bit sets defined in the IFT specification:
    /// <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
    pub fn from_sparse_bit_set(data: &[u8]) -> Result<IntSet<u32>, DecodingError> {
        Self::from_sparse_bit_set_bounded(data, 0, u32::MAX).map(|(set, _)| set)
    }

    /// Populate this set with the values obtained from decoding the provided sparse bit set bytes.
    ///
    /// During decoding bias will be added to each decoded set members value. The final set will not contain
    /// any values larger than max_value: any encoded values larger than max_value after the bias is applied
    /// are ignored.
    ///
    /// Sparse bit sets are a specialized, compact encoding of bit sets defined in the IFT specification:
    /// <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
    pub fn from_sparse_bit_set_bounded(
        data: &[u8],
        bias: u32,
        max_value: u32,
    ) -> Result<(IntSet<u32>, &[u8]), DecodingError> {
        // This is a direct port of the decoding algorithm from:
        // <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
        let Some((branch_factor, height)) = InputBitStream::<0>::decode_header(data) else {
            return Err(DecodingError);
        };

        if height > branch_factor.max_height() {
            // TODO(garretrieger): the spec says nothing about this depth limit, we need to update the spec
            // to match.
            return Err(DecodingError);
        }

        let result = match branch_factor {
            BranchFactor::Two => {
                Self::decode_sparse_bit_set_nodes::<2>(data, height, bias, max_value)
            }
            BranchFactor::Four => {
                Self::decode_sparse_bit_set_nodes::<4>(data, height, bias, max_value)
            }
            BranchFactor::Eight => {
                Self::decode_sparse_bit_set_nodes::<8>(data, height, bias, max_value)
            }
            BranchFactor::ThirtyTwo => {
                Self::decode_sparse_bit_set_nodes::<32>(data, height, bias, max_value)
            }
        };

        result.map(|(bitset, data)| (IntSet::<u32>::from_bitset(bitset), data))
    }

    fn decode_sparse_bit_set_nodes<const BF: u8>(
        data: &[u8],
        height: u8,
        bias: u32,
        max_value: u32,
    ) -> Result<(BitSet, &[u8]), DecodingError> {
        let mut out = BitSet::empty();
        if height == 0 {
            // 1 byte was used for the header.
            return Ok((out, &data[1..]));
        }

        let mut builder = BitSetBuilder::start(&mut out);
        let mut bits = InputBitStream::<BF>::from(data);
        // TODO(garretrieger): estimate initial capacity (maximum is a function of the number of nodes in the bit stream).
        let mut queue = VecDeque::<NextNode>::new();
        queue.push_back(NextNode { start: 0, depth: 1 });

        'outer: while let Some(next) = queue.pop_front() {
            let mut bits = bits.next().ok_or(DecodingError)?;
            if bits == 0 {
                // all bits were zeroes which is a special command to completely fill in
                // all integers covered by this node.
                let exp = (height as u32) - next.depth + 1;
                let node_size = (BF as u64).pow(exp);

                let Some(start) = u32::try_from(next.start)
                    .ok()
                    .and_then(|start| start.checked_add(bias))
                    .filter(|start| *start <= max_value)
                else {
                    // start is outside the valid range of the set, so skip this range.
                    continue;
                };

                let end = u32::try_from(next.start + node_size - 1)
                    .unwrap_or(u32::MAX)
                    .saturating_add(bias)
                    .min(max_value);

                // TODO(garretrieger): implement special insert_range on the builder as well.
                builder.set.insert_range(start..=end);
                continue;
            }

            let height = height as u32;

            let exp = height - next.depth;
            let next_node_size = (BF as u64).pow(exp);
            loop {
                let bit_index = bits.trailing_zeros();
                if bit_index == 32 {
                    break;
                }

                // TODO(garretrieger): possible optimization by having two versions of this loop
                //                     as next.depth == height has the same value for each of the outer iterations.
                if next.depth == height {
                    // TODO(garretrieger): this has a few branches, is it faster to do all the math in u64
                    //                     then check only once for > max_value? Will need to check with a benchmark.
                    let Some(start) = u32::try_from(next.start)
                        .ok()
                        .and_then(|start| start.checked_add(bit_index))
                        .and_then(|start| start.checked_add(bias))
                        .filter(|start| *start <= max_value)
                    else {
                        // At the lowest depth values are encountered in order, so if this is out of range so will be
                        // all future values. We can break early.
                        break 'outer;
                    };

                    // TODO(garretrieger): further optimize by inserting entire nodes at once (as a bit field).
                    builder.insert(start);
                } else {
                    let start_delta = bit_index as u64 * next_node_size;
                    queue.push_back(NextNode {
                        start: next.start + start_delta,
                        depth: next.depth + 1,
                    });
                }

                bits &= !(1 << bit_index); // clear the bit that was just read.
            }
        }

        builder.finish();

        // If the max value was reached the loop above may have terminated early leaving some unprocessed nodes
        // in the queue. The loop can only break once we are at the lowest depth which means that each remaining queue node
        // will consume only one node from the bit stream. Advance the bit stream by the remaining number of nodes to
        // correctly count the number of bytes consumed.
        if !bits.skip_nodes(queue.len() as u32) {
            // We ran out of bits to consume before decoding would have been finished.
            return Err(DecodingError);
        }

        Ok((out, &data[bits.bytes_consumed()..]))
    }

    /// Encode this set as a sparse bit set byte encoding.
    ///
    /// Sparse bit sets are a specialized, compact encoding of bit sets defined in the IFT specification:
    /// <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
    pub fn to_sparse_bit_set(&self) -> Vec<u8> {
        // TODO(garretrieger): use the heuristic approach from the incxfer
        // implementation to guess the optimal size. Building the set 4 times
        // is costly.
        let mut candidates: Vec<Vec<u8>> = vec![];

        let Some(max_value) = self.last() else {
            return OutputBitStream::new(BranchFactor::Two, 0).into_bytes();
        };

        if BranchFactor::Two.tree_height_for(max_value) <= BranchFactor::Two.max_height() {
            candidates.push(to_sparse_bit_set_with_bf::<2>(self));
        }

        if BranchFactor::Four.tree_height_for(max_value) <= BranchFactor::Four.max_height() {
            candidates.push(to_sparse_bit_set_with_bf::<4>(self));
        }

        if BranchFactor::Eight.tree_height_for(max_value) <= BranchFactor::Eight.max_height() {
            candidates.push(to_sparse_bit_set_with_bf::<8>(self));
        }

        if BranchFactor::ThirtyTwo.tree_height_for(max_value)
            <= BranchFactor::ThirtyTwo.max_height()
        {
            candidates.push(to_sparse_bit_set_with_bf::<32>(self));
        }

        candidates.into_iter().min_by_key(|f| f.len()).unwrap()
    }
}

/// Encode this set as a sparse bit set byte encoding with a specified branch factor.
///
/// Branch factor can be 2, 4, 8 or 32. It's a compile time constant so that optimized decoding implementations
/// can be generated by the compiler.
///
/// Sparse bit sets are a specialized, compact encoding of bit sets defined in the IFT specification:
/// <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
pub fn to_sparse_bit_set_with_bf<const BF: u8>(set: &IntSet<u32>) -> Vec<u8> {
    let branch_factor = BranchFactor::from_val(BF);
    let Some(max_value) = set.last() else {
        return OutputBitStream::new(branch_factor, 0).into_bytes();
    };
    let mut height = branch_factor.tree_height_for(max_value);
    if height > branch_factor.max_height() {
        if BF == 2 {
            // Branch factor 2 cannot encode all possible u32 values, so upgrade to a BF4 set in that case.
            return to_sparse_bit_set_with_bf::<4>(set);
        }
        // This shouldn't be reachable for any possible u32 values.
        panic!("Height value exceeds the maximum for this branch factor.");
    }
    let mut os = OutputBitStream::new(branch_factor, height);
    let mut nodes: Vec<Node> = vec![];

    // We build the nodes that will comprise the bit stream in reverse order
    // from the last value in the last layer up to the first layer. Then
    // when generating the final stream the order is reversed.
    // The reverse order construction is needed since nodes at the lower layer
    // affect the values in the parent layers.
    let mut indices = set.clone();
    let mut filled_indices = IntSet::<u32>::all();
    while height > 0 {
        (indices, filled_indices) =
            create_layer(branch_factor, indices, filled_indices, &mut nodes);
        height -= 1;
    }

    for node in nodes.iter().rev() {
        match node.node_type {
            NodeType::Standard => os.write_node(node.bits),
            NodeType::Filled => os.write_node(0),
            NodeType::Skip => {}
        };
    }

    os.into_bytes()
}

struct CreateLayerState<'a> {
    // This is the set of indices which are to be set in the layer above this one
    upper_indices: IntSet<u32>,
    // Similarly, this is the set of indices in the layer above this one which are fully filled.
    upper_filled_indices: IntSet<u32>,

    current_node: Option<Node>,
    current_node_filled_bits: u32,
    nodes: &'a mut Vec<Node>,
    child_count: u64,
    nodes_init_length: u64,
    branch_factor: BranchFactor,
}

impl CreateLayerState<'_> {
    fn commit_current_node(&mut self) {
        let Some(mut node) = self.current_node.take() else {
            // noop if there isn't a node to commit.
            return;
        };
        self.upper_indices.insert(node.parent_index);

        if self.current_node_filled_bits == self.branch_factor.u32_mask() {
            // This node is filled and can thus be represented by a node that is '0'.
            // It's index is recorded so that the parent node can also check if they are filled.
            self.upper_filled_indices.insert(node.parent_index);
            node.node_type = NodeType::Filled;

            if self.nodes_init_length >= self.child_count {
                // Since this node is filled, find all nodes which are children and set them to be skipped in
                // the encoding.
                let children_start_index = self.nodes_init_length.saturating_sub(self.child_count);
                let children_end_index = self.nodes_init_length;
                // TODO(garretrieger): this scans all nodes of the previous layer to find those which are children,
                //   but we can likely limit it to just the children of this node with some extra book keeping.
                for child in
                    &mut self.nodes[children_start_index as usize..children_end_index as usize]
                {
                    if child.parent_index >= node.parent_index * self.branch_factor.value()
                        && child.parent_index < (node.parent_index + 1) * self.branch_factor.value()
                    {
                        child.node_type = NodeType::Skip;
                    }
                }
            }
        }

        self.nodes.push(node);
        self.current_node_filled_bits = 0;
    }
}

/// Compute the nodes for a layer of the sparse bit set.
///
/// Computes the nodes needed for the layer which contains the indices in
/// 'iter'. The new nodes are appended to 'nodes'. 'iter' must be sorted
/// in ascending order.
///
/// Returns the set of indices for the layer above.
fn create_layer(
    branch_factor: BranchFactor,
    values: IntSet<u32>,
    filled_values: IntSet<u32>,
    nodes: &mut Vec<Node>,
) -> (IntSet<u32>, IntSet<u32>) {
    let mut state = CreateLayerState {
        upper_indices: IntSet::<u32>::empty(),
        upper_filled_indices: IntSet::<u32>::empty(),
        current_node: None,
        current_node_filled_bits: 0,
        child_count: values.len(),
        nodes_init_length: nodes.len() as u64,
        nodes,
        branch_factor,
    };

    // The nodes array is produced in reverse order and then reversed before final output.
    for v in values.iter().rev() {
        let parent_index = v / branch_factor.value();
        let prev_parent_index = state
            .current_node
            .as_ref()
            .map_or(parent_index, |node| node.parent_index);
        if prev_parent_index != parent_index {
            state.commit_current_node();
        }

        let current_node = state.current_node.get_or_insert(Node {
            bits: 0,
            parent_index,
            node_type: NodeType::Standard,
        });

        let mask = 0b1 << (v % branch_factor.value());
        current_node.bits |= mask;
        if filled_values.contains(v) {
            state.current_node_filled_bits |= mask;
        }
    }

    state.commit_current_node();
    (state.upper_indices, state.upper_filled_indices)
}

enum NodeType {
    Standard,
    Filled,
    Skip,
}

struct Node {
    bits: u32,
    parent_index: u32,
    node_type: NodeType,
}

impl BranchFactor {
    pub(crate) fn value(&self) -> u32 {
        match self {
            BranchFactor::Two => 2,
            BranchFactor::Four => 4,
            BranchFactor::Eight => 8,
            BranchFactor::ThirtyTwo => 32,
        }
    }

    /// The maximum height that can be used for a given branch factor without the risk of encountering overflows
    pub(crate) fn max_height(&self) -> u8 {
        match self {
            BranchFactor::Two => 31,
            BranchFactor::Four => 16,
            BranchFactor::Eight => 11,
            BranchFactor::ThirtyTwo => 7,
        }
    }

    fn tree_height_for(&self, max_value: u32) -> u8 {
        // height H, can represent up to (BF^height) - 1
        let mut height: u32 = 0;
        let mut max_value = max_value;
        loop {
            height += 1;
            max_value >>= self.node_size_log2();
            if max_value == 0 {
                break height as u8;
            }
        }
    }

    fn from_val(val: u8) -> BranchFactor {
        match val {
            2 => BranchFactor::Two,
            4 => BranchFactor::Four,
            8 => BranchFactor::Eight,
            32 => BranchFactor::ThirtyTwo,
            // This should never happen as this is only used internally.
            _ => panic!("Invalid branch factor."),
        }
    }

    fn node_size_log2(&self) -> u32 {
        match self {
            BranchFactor::Two => 1,
            BranchFactor::Four => 2,
            BranchFactor::Eight => 3,
            BranchFactor::ThirtyTwo => 5,
        }
    }

    pub(crate) fn byte_mask(&self) -> u32 {
        match self {
            BranchFactor::Two => 0b00000011,
            BranchFactor::Four => 0b00001111,
            BranchFactor::Eight => 0b11111111,
            BranchFactor::ThirtyTwo => 0b11111111,
        }
    }

    fn u32_mask(&self) -> u32 {
        match self {
            BranchFactor::Two => 0b00000000_00000000_00000000_00000011,
            BranchFactor::Four => 0b00000000_00000000_00000000_00001111,
            BranchFactor::Eight => 0b00000000_00000000_00000000_11111111,
            BranchFactor::ThirtyTwo => 0b11111111_11111111_11111111_11111111,
        }
    }
}

struct NextNode {
    start: u64,
    depth: u32,
}

#[cfg(test)]
#[allow(clippy::unusual_byte_groupings)]
mod test {
    use super::*;

    #[test]
    fn spec_example_2() {
        // Test of decoding the example 2 given in the specification.
        // See: <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
        let bytes = [
            0b00001110, 0b00100001, 0b00010001, 0b00000001, 0b00000100, 0b00000010, 0b00001000,
        ];

        let set = IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap();
        let expected: IntSet<u32> = [2, 33, 323].iter().copied().collect();
        assert_eq!(set, expected);
    }

    #[test]
    fn spec_example_3() {
        // Test of decoding the example 3 given in the specification.
        // See: <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
        let bytes = [0b00000000];

        let set = IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap();
        let expected: IntSet<u32> = [].iter().copied().collect();
        assert_eq!(set, expected);
    }

    #[test]
    fn spec_example_4() {
        // Test of decoding the example 4 given in the specification.
        // See: <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>
        let bytes = [0b00001101, 0b00000011, 0b00110001];

        let set = IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap();

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(0..=17);

        assert_eq!(set, expected);
    }

    #[test]
    fn invalid() {
        // Spec example 2 with one byte missing.
        let bytes = [
            0b00001110, 0b00100001, 0b00010001, 0b00000001, 0b00000100, 0b00000010,
        ];
        assert!(IntSet::<u32>::from_sparse_bit_set(&bytes).is_err());

        // Max height exceeded.
        let bytes = [
            0b0_01000_11, // BF 32, Depth 8
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L1
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L2
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L3
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L4
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L5
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L6
            0b00000000,
            0b00000000,
            0b00000000,
            0b00000001, // L7
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L8
        ];
        assert!(IntSet::<u32>::from_sparse_bit_set(&bytes).is_err());
    }

    #[test]
    fn invalid_biased_and_bounded() {
        let bytes = [0b0_00011_01, 0b0000_0011, 0b1111_0011];

        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, u32::MAX).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 20).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 19).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 18).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 15).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 14).is_err());

        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 1, 20).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 2, 20).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 3, 20).is_err());
        assert!(IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 6, 20).is_err());
    }

    #[test]
    fn larger_than_u32() {
        // Set with values beyond u32
        let bytes = [
            0b0_00111_11, // BF 32, Depth 7
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L1
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L2
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L3
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L4
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L5
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L6
            0b00000000,
            0b00000000,
            0b00000000,
            0b00000001, // L7
        ];
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap(),
            IntSet::<u32>::empty()
        );

        // Set with filled node values beyond u32
        let bytes = [
            0b0_00111_11, // BF 32, Depth 7
            0b00000000,
            0b00000000,
            0b00000000,
            0b10000000, // L1
            0b00000000,
            0b00000000,
            0b00000000,
            0b00000000, // L2
        ];

        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap(),
            IntSet::<u32>::empty()
        );
    }

    #[test]
    fn from_sparse_bit_set_bounded_with_remaining_data() {
        let bytes = [0b00001101, 0b00000011, 0b00110001, 0b10101010];
        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(0..=17);

        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 19).unwrap(),
            (expected.clone(), &bytes[3..]),
        );
    }

    #[test]
    fn from_sparse_bit_set_biased_and_bounded() {
        let bytes = [0b0_00011_01, 0b0000_0011, 0b1111_0011, 0b0000_0001];
        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(0..=20);

        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 20).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(0..=19);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 19).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(1..=20);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 1, 20).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(1..=18);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 1, 18).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(0..=14);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 14).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert_range(6..=20);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 6, 20).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        let mut expected: IntSet<u32> = IntSet::<u32>::empty();
        expected.insert(0);
        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 0, 0).unwrap(),
            (expected.clone(), &bytes[4..])
        );

        assert_eq!(
            IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 1, 0).unwrap(),
            (IntSet::<u32>::empty().clone(), &bytes[4..])
        );

        let bytes = [0b00000000];
        let set = IntSet::<u32>::from_sparse_bit_set_bounded(&bytes, 5, 0)
            .unwrap()
            .0;
        assert_eq!(set, IntSet::<u32>::empty());
    }

    #[test]
    fn test_tree_height_for() {
        assert_eq!(BranchFactor::Two.tree_height_for(0), 1);
        assert_eq!(BranchFactor::Two.tree_height_for(1), 1);
        assert_eq!(BranchFactor::Two.tree_height_for(2), 2);
        assert_eq!(BranchFactor::Two.tree_height_for(117), 7);

        assert_eq!(BranchFactor::Four.tree_height_for(0), 1);
        assert_eq!(BranchFactor::Four.tree_height_for(3), 1);
        assert_eq!(BranchFactor::Four.tree_height_for(4), 2);
        assert_eq!(BranchFactor::Four.tree_height_for(63), 3);
        assert_eq!(BranchFactor::Four.tree_height_for(64), 4);

        assert_eq!(BranchFactor::Eight.tree_height_for(0), 1);
        assert_eq!(BranchFactor::Eight.tree_height_for(7), 1);
        assert_eq!(BranchFactor::Eight.tree_height_for(8), 2);
        assert_eq!(BranchFactor::Eight.tree_height_for(32767), 5);
        assert_eq!(BranchFactor::Eight.tree_height_for(32768), 6);

        assert_eq!(BranchFactor::ThirtyTwo.tree_height_for(0), 1);
        assert_eq!(BranchFactor::ThirtyTwo.tree_height_for(31), 1);
        assert_eq!(BranchFactor::ThirtyTwo.tree_height_for(32), 2);
        assert_eq!(BranchFactor::ThirtyTwo.tree_height_for(1_048_575), 4);
        assert_eq!(BranchFactor::ThirtyTwo.tree_height_for(1_048_576), 5);
    }

    #[test]
    fn generate_spec_example_2() {
        // Test of reproducing the encoding of example 2 given
        // in the specification. See:
        // <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>

        let actual_bytes = to_sparse_bit_set_with_bf::<8>(&[2, 33, 323].iter().copied().collect());
        let expected_bytes = [
            0b00001110, 0b00100001, 0b00010001, 0b00000001, 0b00000100, 0b00000010, 0b00001000,
        ];

        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn generate_spec_example_3() {
        // Test of reproducing the encoding of example 3 given
        // in the specification. See:
        // <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>

        let actual_bytes = to_sparse_bit_set_with_bf::<2>(&IntSet::<u32>::empty());
        let expected_bytes = [0b00000000];

        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn generate_spec_example_4() {
        // Test of reproducing the encoding of example 3 given
        // in the specification. See:
        // <https://w3c.github.io/IFT/Overview.html#sparse-bit-set-decoding>

        let actual_bytes = to_sparse_bit_set_with_bf::<4>(&(0..=17).collect());
        let expected_bytes = [0b00001101, 0b0000_0011, 0b0011_0001];

        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_one_level() {
        let actual_bytes = to_sparse_bit_set_with_bf::<8>(&[2, 6].iter().copied().collect());
        let expected_bytes = [0b0_00001_10, 0b01000100];
        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_one_level_filled() {
        let actual_bytes = to_sparse_bit_set_with_bf::<8>(&(0..=7).collect());
        let expected_bytes = [0b0_00001_10, 0b00000000];
        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_two_level_filled() {
        let actual_bytes = to_sparse_bit_set_with_bf::<8>(&(3..=21).collect());
        let expected_bytes = [0b0_00010_10, 0b00000111, 0b11111000, 0b00000000, 0b00111111];
        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_two_level_not_filled() {
        let actual_bytes = to_sparse_bit_set_with_bf::<4>(&[0, 4, 8, 12].iter().copied().collect());
        let expected_bytes = [0b0_00010_01, 0b0001_1111, 0b0001_0001, 0b0000_0001];
        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_four_level_filled() {
        let mut s = IntSet::<u32>::empty();
        s.insert_range(64..=127); // Filled node on level 3
        s.insert_range(512..=1023); // Filled node on level 2
        s.insert(4000);

        let actual_bytes = to_sparse_bit_set_with_bf::<8>(&s);
        let expected_bytes = [
            // Header
            0b0_00100_10,
            // L1
            0b10000011,
            // L2
            0b00000010,
            0b00000000,
            0b01000000,
            // L3,
            0b00000000,
            0b00010000,
            // L4
            0b00000001,
        ];
        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn encode_bf32() {
        let actual_bytes = to_sparse_bit_set_with_bf::<32>(&[2, 31, 323].iter().copied().collect());
        let expected_bytes = [
            0b0_00010_11,
            // node 0
            0b00000001,
            0b00000100,
            0b00000000,
            0b00000000,
            // node 1
            0b00000100,
            0b00000000,
            0b00000000,
            0b10000000,
            // node 2
            0b00001000,
            0b00000000,
            0b00000000,
            0b00000000,
        ];

        assert_eq!(actual_bytes, expected_bytes);
    }

    #[test]
    fn round_trip() {
        let s1: IntSet<u32> = [11, 74, 9358].iter().copied().collect();
        let mut s2: IntSet<u32> = s1.clone();
        s2.insert_range(67..=412);

        check_round_trip::<2>(&s1);
        check_round_trip::<4>(&s1);
        check_round_trip::<8>(&s1);
        check_round_trip::<32>(&s1);

        check_round_trip::<2>(&s2);
        check_round_trip::<4>(&s2);
        check_round_trip::<8>(&s2);
        check_round_trip::<32>(&s2);
    }

    fn check_round_trip<const BF: u8>(s: &IntSet<u32>) {
        let bytes = to_sparse_bit_set_with_bf::<BF>(s);
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes).unwrap();
        assert_eq!(*s, s_prime);
    }

    #[test]
    fn find_smallest_bf() {
        let s: IntSet<u32> = [11, 74, 9358].iter().copied().collect();
        let bytes = s.to_sparse_bit_set();
        // BF4
        assert_eq!(vec![0b0_00111_01], bytes[0..1]);

        let s: IntSet<u32> = [
            16, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
        ]
        .iter()
        .copied()
        .collect();
        let bytes = s.to_sparse_bit_set();
        // BF32
        assert_eq!(vec![0b0_00001_11], bytes[0..1]);
    }

    #[test]
    fn encode_maxu32() {
        let s: IntSet<u32> = [1, u32::MAX].iter().copied().collect();

        let bytes = s.to_sparse_bit_set();
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes);
        assert_eq!(s, s_prime.unwrap());

        let s: IntSet<u32> = [1, u32::MAX].iter().copied().collect();
        let bytes = to_sparse_bit_set_with_bf::<2>(&s);
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes);
        assert_eq!(s, s_prime.unwrap());

        let s: IntSet<u32> = [1, u32::MAX].iter().copied().collect();
        let bytes = to_sparse_bit_set_with_bf::<4>(&s);
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes);
        assert_eq!(s, s_prime.unwrap());

        let s: IntSet<u32> = [1, u32::MAX].iter().copied().collect();
        let bytes = to_sparse_bit_set_with_bf::<8>(&s);
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes);
        assert_eq!(s, s_prime.unwrap());

        let s: IntSet<u32> = [1, u32::MAX].iter().copied().collect();
        let bytes = to_sparse_bit_set_with_bf::<32>(&s);
        let s_prime = IntSet::<u32>::from_sparse_bit_set(&bytes);
        assert_eq!(s, s_prime.unwrap());
    }
}