read_fonts/tables/postscript/stack.rs
1//! Operand stack for CFF/CFF2 parsing.
2
3use types::Fixed;
4
5use super::{BlendState, Error};
6
7/// Maximum size of the operand stack.
8///
9/// "Operators in Top DICT, Font DICTs, Private DICTs and CharStrings may be
10/// preceded by up to a maximum of 513 operands."
11///
12/// <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#table-9-top-dict-operator-entries>
13const MAX_STACK: usize = 513;
14
15/// Operand stack for DICTs and charstrings.
16///
17/// The operand stack can contain either 32-bit integers or 16.16 fixed point
18/// values. The type is known when pushing to the stack and the expected type
19/// is also known (based on the operator) when reading from the stack, so the
20/// conversion is performed on demand at read time.
21///
22/// Storing the entries as an enum would require 8 bytes each and since these
23/// objects are created on the _stack_, we reduce the required size by storing
24/// the entries in parallel arrays holding the raw 32-bit value and a flag that
25/// tracks which values are fixed point.
26pub struct Stack {
27 values: [i32; MAX_STACK],
28 value_is_fixed: [bool; MAX_STACK],
29 top: usize,
30}
31
32impl Stack {
33 pub fn new() -> Self {
34 Self {
35 values: [0; MAX_STACK],
36 value_is_fixed: [false; MAX_STACK],
37 top: 0,
38 }
39 }
40
41 pub fn is_empty(&self) -> bool {
42 self.top == 0
43 }
44
45 pub fn len(&self) -> usize {
46 self.top
47 }
48
49 pub fn verify_exact_len(&self, len: usize) -> Result<(), Error> {
50 if self.top != len {
51 Err(Error::StackUnderflow)
52 } else {
53 Ok(())
54 }
55 }
56
57 pub fn verify_at_least_len(&self, len: usize) -> Result<(), Error> {
58 if self.top < len {
59 Err(Error::StackUnderflow)
60 } else {
61 Ok(())
62 }
63 }
64
65 /// Returns true if the number of elements on the stack is odd.
66 ///
67 /// Used for processing some charstring operators where an odd
68 /// count represents the presence of the glyph advance width at the
69 /// bottom of the stack.
70 pub fn len_is_odd(&self) -> bool {
71 self.top & 1 != 0
72 }
73
74 pub fn clear(&mut self) {
75 self.top = 0;
76 }
77
78 /// Reverse the order of all elements on the stack.
79 ///
80 /// Some charstring operators are simpler to process on a reversed
81 /// stack.
82 pub fn reverse(&mut self) {
83 self.values[..self.top].reverse();
84 self.value_is_fixed[..self.top].reverse();
85 }
86
87 pub fn push(&mut self, number: impl Into<Number>) -> Result<(), Error> {
88 match number.into() {
89 Number::I32(value) => self.push_impl(value, false),
90 Number::Fixed(value) => self.push_impl(value.to_bits(), true),
91 }
92 }
93
94 /// Returns the 32-bit integer at the given index on the stack.
95 ///
96 /// Will return an error if the value at that index was not pushed as an
97 /// integer.
98 pub fn get_i32(&self, index: usize) -> Result<i32, Error> {
99 let value = *self
100 .values
101 .get(index)
102 .ok_or(Error::InvalidStackAccess(index))?;
103 if self.value_is_fixed[index] {
104 // FreeType returns an error here rather than converting
105 // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/psaux/psstack.c#L145>
106 Err(Error::ExpectedI32StackEntry(index))
107 } else {
108 Ok(value)
109 }
110 }
111
112 /// Returns the 16.16 fixed point value at the given index on the stack.
113 ///
114 /// If the value was pushed as an integer, it will be automatically
115 /// converted to 16.16 fixed point.
116 pub fn get_fixed(&self, index: usize) -> Result<Fixed, Error> {
117 let value = *self
118 .values
119 .get(index)
120 .ok_or(Error::InvalidStackAccess(index))?;
121 Ok(if self.value_is_fixed[index] {
122 Fixed::from_bits(value)
123 } else {
124 Fixed::from_i32(value)
125 })
126 }
127
128 /// Pops a 32-bit integer from the top of stack.
129 ///
130 /// Will return an error if the top value on the stack was not pushed as an
131 /// integer.
132 pub fn pop_i32(&mut self) -> Result<i32, Error> {
133 let i = self.pop()?;
134 self.get_i32(i)
135 }
136
137 /// Pops a 16.16 fixed point value from the top of the stack.
138 ///
139 /// If the value was pushed as an integer, it will be automatically
140 /// converted to 16.16 fixed point.
141 pub fn pop_fixed(&mut self) -> Result<Fixed, Error> {
142 let i = self.pop()?;
143 self.get_fixed(i)
144 }
145
146 /// Returns an iterator yielding all elements on the stack
147 /// as 16.16 fixed point values.
148 ///
149 /// Used to read array style DICT entries such as blue values,
150 /// font matrix and font bounding box.
151 pub fn fixed_values(&self) -> impl Iterator<Item = Fixed> + '_ {
152 self.values[..self.top]
153 .iter()
154 .zip(&self.value_is_fixed)
155 .map(|(value, is_real)| {
156 if *is_real {
157 Fixed::from_bits(*value)
158 } else {
159 Fixed::from_i32(*value)
160 }
161 })
162 }
163
164 /// Returns an array of `N` 16.16 fixed point values starting at
165 /// `first_index`.
166 pub fn fixed_array<const N: usize>(&self, first_index: usize) -> Result<[Fixed; N], Error> {
167 let mut result = [Fixed::ZERO; N];
168 if first_index >= self.top {
169 return Err(Error::InvalidStackAccess(first_index));
170 }
171 let end = first_index + N;
172 if end > self.top {
173 return Err(Error::InvalidStackAccess(end - 1));
174 }
175 let range = first_index..end;
176 for ((src, is_fixed), dest) in self.values[range.clone()]
177 .iter()
178 .zip(&self.value_is_fixed[range])
179 .zip(&mut result)
180 {
181 let value = if *is_fixed {
182 Fixed::from_bits(*src)
183 } else {
184 Fixed::from_i32(*src)
185 };
186 *dest = value;
187 }
188 Ok(result)
189 }
190
191 /// Returns an iterator yielding all elements on the stack as number
192 /// values.
193 ///
194 /// This is useful for capturing the current state of the stack.
195 pub fn number_values(&self) -> impl Iterator<Item = Number> + '_ {
196 self.values[..self.top]
197 .iter()
198 .zip(&self.value_is_fixed)
199 .map(|(value, is_fixed)| Number::from_stack(*value, *is_fixed))
200 }
201
202 /// Apply a prefix sum to decode delta-encoded numbers.
203 ///
204 /// "The second and subsequent numbers in a delta are encoded as the
205 /// difference between successive values."
206 ///
207 /// Roughly equivalent to the FreeType logic at
208 /// <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/cff/cffparse.c#L1431>
209 ///
210 /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2#table-6-operand-types>
211 pub fn apply_delta_prefix_sum(&mut self) {
212 if self.top > 1 {
213 let mut sum = Fixed::ZERO;
214 for (value, is_fixed) in self.values[..self.top]
215 .iter_mut()
216 .zip(&mut self.value_is_fixed)
217 {
218 let fixed_value = if *is_fixed {
219 // FreeType reads delta values using cff_parse_num which
220 // which truncates the fractional parts of 16.16 values
221 // See delta parsing:
222 // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/cff/cffparse.c#L1427>
223 // See cff_parse_num "binary-coded decimal is truncated to
224 // integer":
225 // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/cff/cffparse.c#L463>
226 Fixed::from_bits(*value).floor()
227 } else {
228 Fixed::from_i32(*value)
229 };
230 // See <https://github.com/googlefonts/fontations/issues/1193>
231 // The "DIN Alternate" font contains incorrect blue values
232 // that cause an overflow in this computation. FreeType does
233 // not use checked arithmetic so we need to explicitly use
234 // wrapping behavior to produce matching outlines.
235 sum = sum.wrapping_add(fixed_value);
236 *value = sum.to_bits();
237 *is_fixed = true;
238 }
239 }
240 }
241
242 /// Apply the `blend` operator.
243 ///
244 /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/cff2charstr#syntax-for-font-variations-support-operators>
245 #[inline(never)]
246 pub fn apply_blend(&mut self, blend_state: &BlendState) -> Result<(), Error> {
247 // When the blend operator is invoked, the stack will contain a set
248 // of target values, followed by sets of deltas for those values for
249 // each variation region, followed by the count of target values.
250 //
251 // For example, if we're blending two target values across three
252 // variation regions, the stack would be setup as follows (parentheses
253 // added to signify grouping of deltas):
254 //
255 // value_0 value_1 (delta_0_0 delta_0_1 delta_0_2) (delta_1_0 delta_1_1 delta_1_2) 2
256 //
257 // where delta_i_j represents the delta for value i and region j.
258 //
259 // We compute the scalars for each region, multiply them by the
260 // associated deltas and add the result to the respective target value.
261 // Then the stack is popped so only the final target values remain.
262 let target_value_count = self.pop_i32()? as usize;
263 if target_value_count > self.top {
264 return Err(Error::StackUnderflow);
265 }
266 let region_count = blend_state.region_count()?;
267 // We expect at least `target_value_count * (region_count + 1)`
268 // elements on the stack.
269 let operand_count = target_value_count * (region_count + 1);
270 if self.len() < operand_count {
271 return Err(Error::StackUnderflow);
272 }
273 // The stack may contain more elements than necessary, so keep track of
274 // our active range.
275 let start = self.len() - operand_count;
276 let end = start + operand_count;
277 // For simplicity, convert all elements to fixed up front.
278 for (value, is_fixed) in self.values[start..end]
279 .iter_mut()
280 .zip(&mut self.value_is_fixed[start..])
281 {
282 if !*is_fixed {
283 *value = Fixed::from_i32(*value).to_bits();
284 *is_fixed = true;
285 }
286 }
287 let (values, deltas) = self.values[start..].split_at_mut(target_value_count);
288 // Note: we specifically loop over scalars in the outer loop to avoid
289 // computing them more than once in the case that we overflow our
290 // precomputed cache.
291 for (region_ix, maybe_scalar) in blend_state.scalars()?.enumerate() {
292 let scalar = maybe_scalar?;
293 // We could omit these in `BlendState::scalars()` but that would
294 // significantly reduce the clarity of the already complex
295 // chained iterator code there. Do the simple thing here instead.
296 if scalar == Fixed::ZERO {
297 continue;
298 }
299 for (value_ix, value) in values.iter_mut().enumerate() {
300 let delta_ix = (region_count * value_ix) + region_ix;
301 let delta = Fixed::from_bits(deltas[delta_ix]);
302 *value = (Fixed::from_bits(*value).wrapping_add(delta * scalar)).to_bits();
303 }
304 }
305 self.top = start + target_value_count;
306 Ok(())
307 }
308
309 fn push_impl(&mut self, value: i32, is_fixed: bool) -> Result<(), Error> {
310 if self.top == MAX_STACK {
311 return Err(Error::StackOverflow);
312 }
313 self.values[self.top] = value;
314 self.value_is_fixed[self.top] = is_fixed;
315 self.top += 1;
316 Ok(())
317 }
318
319 fn pop(&mut self) -> Result<usize, Error> {
320 if self.top > 0 {
321 self.top -= 1;
322 Ok(self.top)
323 } else {
324 Err(Error::StackUnderflow)
325 }
326 }
327}
328
329impl Default for Stack {
330 fn default() -> Self {
331 Self::new()
332 }
333}
334
335/// Either a signed 32-bit integer or a 16.16 fixed point number.
336///
337/// This represents the CFF "number" operand type.
338/// See "Table 6 Operand Types" at <https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf>
339#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
340pub enum Number {
341 I32(i32),
342 Fixed(Fixed),
343}
344
345impl Number {
346 fn from_stack(raw: i32, is_fixed: bool) -> Self {
347 if is_fixed {
348 Self::Fixed(Fixed::from_bits(raw))
349 } else {
350 Self::I32(raw)
351 }
352 }
353}
354
355impl From<i32> for Number {
356 fn from(value: i32) -> Self {
357 Self::I32(value)
358 }
359}
360
361impl From<Fixed> for Number {
362 fn from(value: Fixed) -> Self {
363 Self::Fixed(value)
364 }
365}
366
367impl std::fmt::Display for Number {
368 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
369 match self {
370 Self::I32(value) => value.fmt(f),
371 Self::Fixed(value) => value.fmt(f),
372 }
373 }
374}
375
376#[cfg(test)]
377mod tests {
378 use types::{F2Dot14, Fixed};
379
380 use super::Stack;
381 use crate::{
382 tables::{postscript::BlendState, variations::ItemVariationStore},
383 FontData, FontRead,
384 };
385
386 #[test]
387 fn push_pop() {
388 let mut stack = Stack::new();
389 stack.push(20).unwrap();
390 stack.push(Fixed::from_f64(42.42)).unwrap();
391 assert!(!stack.len_is_odd());
392 stack.verify_exact_len(2).unwrap();
393 stack.verify_at_least_len(2).unwrap();
394 assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(42.42));
395 assert_eq!(stack.pop_i32().unwrap(), 20);
396 }
397
398 #[test]
399 fn push_fixed_pop_i32() {
400 let mut stack = Stack::new();
401 stack.push(Fixed::from_f64(42.42)).unwrap();
402 assert!(stack.pop_i32().is_err());
403 }
404
405 #[test]
406 fn push_i32_pop_fixed() {
407 let mut stack = Stack::new();
408 stack.push(123).unwrap();
409 assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(123.0));
410 }
411
412 #[test]
413 fn reverse() {
414 let mut stack = Stack::new();
415 stack.push(Fixed::from_f64(1.5)).unwrap();
416 stack.push(42).unwrap();
417 stack.push(Fixed::from_f64(4.2)).unwrap();
418 stack.reverse();
419 assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(1.5));
420 assert_eq!(stack.pop_i32().unwrap(), 42);
421 assert_eq!(stack.pop_fixed().unwrap(), Fixed::from_f64(4.2));
422 }
423
424 #[test]
425 fn delta_prefix_sum() {
426 let mut stack = Stack::new();
427 stack.push(Fixed::from_f64(1.5)).unwrap();
428 stack.push(42).unwrap();
429 stack.push(Fixed::from_f64(4.2)).unwrap();
430 stack.apply_delta_prefix_sum();
431 assert!(stack.len_is_odd());
432 let values: Vec<_> = stack.fixed_values().collect();
433 let expected = &[
434 Fixed::from_f64(1.0),
435 Fixed::from_f64(43.0),
436 Fixed::from_f64(47.0),
437 ];
438 assert_eq!(&values, expected);
439 }
440
441 #[test]
442 fn blend() {
443 let ivs_data = &font_test_data::cff2::EXAMPLE[18..];
444 let ivs = ItemVariationStore::read(FontData::new(ivs_data)).unwrap();
445 // This coordinate will generate scalars [0.5, 0.5]
446 let coords = &[F2Dot14::from_f32(-0.75)];
447 let blend_state = BlendState::new(ivs, coords, 0).unwrap();
448 let mut stack = Stack::new();
449 // Push our target values
450 stack.push(10).unwrap();
451 stack.push(20).unwrap();
452 // Push deltas for 2 regions for the first value
453 stack.push(4).unwrap();
454 stack.push(-8).unwrap();
455 // Push deltas for 2 regions for the second value
456 stack.push(-60).unwrap();
457 stack.push(2).unwrap();
458 // Push target value count
459 stack.push(2).unwrap();
460 stack.apply_blend(&blend_state).unwrap();
461 let result: Vec<_> = stack.fixed_values().collect();
462 // Expected values:
463 // 0: 10 + (4 * 0.5) + (-8 * 0.5) = 8
464 // 1: 20 + (-60 * 0.5) + (2 * 0.5) = -9
465 let expected = &[Fixed::from_f64(8.0), Fixed::from_f64(-9.0)];
466 assert_eq!(&result, expected);
467 }
468}