reed_solomon_16/engine/
shards.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use std::ops::{Bound, Index, IndexMut, RangeBounds};

// ======================================================================
// Shards - CRATE

pub(crate) struct Shards {
    shard_count: usize,
    shard_bytes: usize,

    // Flat array of `shard_count * shard_bytes` bytes.
    data: Vec<u8>,
}

impl Shards {
    pub(crate) fn as_ref_mut(&mut self) -> ShardsRefMut {
        ShardsRefMut::new(self.shard_count, self.shard_bytes, self.data.as_mut())
    }

    pub(crate) fn new() -> Self {
        Self {
            shard_count: 0,
            shard_bytes: 0,
            data: Vec::new(),
        }
    }

    pub(crate) fn resize(&mut self, shard_count: usize, shard_bytes: usize) {
        assert!(shard_bytes > 0 && shard_bytes & 63 == 0);

        self.shard_count = shard_count;
        self.shard_bytes = shard_bytes;

        self.data.resize(shard_count * shard_bytes, 0);
    }
}

// ======================================================================
// Shards - IMPL Index

impl Index<usize> for Shards {
    type Output = [u8];
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index * self.shard_bytes..(index + 1) * self.shard_bytes]
    }
}

// ======================================================================
// Shards - IMPL IndexMut

impl IndexMut<usize> for Shards {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index * self.shard_bytes..(index + 1) * self.shard_bytes]
    }
}

// ======================================================================
// ShardsRefMut - PUBLIC

/// Mutable reference to shard array implemented as flat byte array.
pub struct ShardsRefMut<'a> {
    shard_count: usize,
    shard_bytes: usize,

    // Flat array of `shard_count * shard_bytes` bytes.
    data: &'a mut [u8],
}

impl<'a> ShardsRefMut<'a> {
    /// Returns mutable references to shards at `pos` and `pos + dist`.
    ///
    /// See source code of [`Naive::fft`] for an example.
    ///
    /// # Panics
    ///
    /// If `dist` is `0`.
    ///
    /// [`Naive::fft`]: crate::engine::Naive#method.fft
    pub fn dist2_mut(&mut self, mut pos: usize, mut dist: usize) -> (&mut [u8], &mut [u8]) {
        pos *= self.shard_bytes;
        dist *= self.shard_bytes;

        let (a, b) = self.data[pos..].split_at_mut(dist);
        (&mut a[..self.shard_bytes], &mut b[..self.shard_bytes])
    }

    /// Returns mutable references to shards at
    /// `pos`, `pos + dist`, `pos + dist * 2` and `pos + dist * 3`.
    ///
    /// See source code of [`NoSimd::fft`] for an example
    /// (specifically the private method `fft_butterfly_two_layers`).
    ///
    /// # Panics
    ///
    /// If `dist` is `0`.
    ///
    /// [`NoSimd::fft`]: crate::engine::NoSimd#method.fft
    pub fn dist4_mut(
        &mut self,
        mut pos: usize,
        mut dist: usize,
    ) -> (&mut [u8], &mut [u8], &mut [u8], &mut [u8]) {
        pos *= self.shard_bytes;
        dist *= self.shard_bytes;

        let (ab, cd) = self.data[pos..].split_at_mut(dist * 2);
        let (a, b) = ab.split_at_mut(dist);
        let (c, d) = cd.split_at_mut(dist);

        (
            &mut a[..self.shard_bytes],
            &mut b[..self.shard_bytes],
            &mut c[..self.shard_bytes],
            &mut d[..self.shard_bytes],
        )
    }

    /// Returns `true` if this contains no shards.
    pub fn is_empty(&self) -> bool {
        self.shard_count == 0
    }

    /// Returns number of shards.
    pub fn len(&self) -> usize {
        self.shard_count
    }

    /// Creates new [`ShardsRefMut`] that references given `data`.
    ///
    /// # Panics
    ///
    /// If `data` is smaller than `shard_count * shard_bytes` bytes.
    pub fn new(shard_count: usize, shard_bytes: usize, data: &'a mut [u8]) -> Self {
        Self {
            shard_count,
            shard_bytes,
            data: &mut data[..shard_count * shard_bytes],
        }
    }

    /// Splits this [`ShardsRefMut`] into two so that
    /// first includes shards `0..mid` and second includes shards `mid..`.
    pub fn split_at_mut(&mut self, mid: usize) -> (ShardsRefMut, ShardsRefMut) {
        let (a, b) = self.data.split_at_mut(mid * self.shard_bytes);
        (
            ShardsRefMut::new(mid, self.shard_bytes, a),
            ShardsRefMut::new(self.shard_count - mid, self.shard_bytes, b),
        )
    }

    /// Fills the given shard-range with `0u8`:s.
    pub fn zero<R: RangeBounds<usize>>(&mut self, range: R) {
        let start = match range.start_bound() {
            Bound::Included(start) => start * self.shard_bytes,
            Bound::Excluded(start) => (start + 1) * self.shard_bytes,
            Bound::Unbounded => 0,
        };

        let end = match range.end_bound() {
            Bound::Included(end) => (end + 1) * self.shard_bytes,
            Bound::Excluded(end) => end * self.shard_bytes,
            Bound::Unbounded => self.shard_count * self.shard_bytes,
        };

        self.data[start..end].fill(0);
    }
}

// ======================================================================
// ShardsRefMut - IMPL Index

impl<'a> Index<usize> for ShardsRefMut<'a> {
    type Output = [u8];
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index * self.shard_bytes..(index + 1) * self.shard_bytes]
    }
}

// ======================================================================
// ShardsRefMut - IMPL IndexMut

impl<'a> IndexMut<usize> for ShardsRefMut<'a> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index * self.shard_bytes..(index + 1) * self.shard_bytes]
    }
}

// ======================================================================
// ShardsRefMut - CRATE

impl<'a> ShardsRefMut<'a> {
    pub(crate) fn copy_within(&mut self, mut src: usize, mut dest: usize, mut count: usize) {
        src *= self.shard_bytes;
        dest *= self.shard_bytes;
        count *= self.shard_bytes;

        self.data.copy_within(src..src + count, dest);
    }

    // Returns mutable references to flat-arrays of shard-ranges
    // `x .. x + count` and `y .. y + count`.
    //
    // Ranges must not overlap.
    pub(crate) fn flat2_mut(
        &mut self,
        mut x: usize,
        mut y: usize,
        mut count: usize,
    ) -> (&mut [u8], &mut [u8]) {
        x *= self.shard_bytes;
        y *= self.shard_bytes;
        count *= self.shard_bytes;

        if x < y {
            let (head, tail) = self.data.split_at_mut(y);
            (&mut head[x..x + count], &mut tail[..count])
        } else {
            let (head, tail) = self.data.split_at_mut(x);
            (&mut tail[..count], &mut head[y..y + count])
        }
    }
}