reed_solomon_erasure/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
//! This crate provides an encoder/decoder for Reed-Solomon erasure code.
//!
//! Please note that erasure coding means errors are not directly detected or corrected,
//! but missing data pieces (shards) can be reconstructed given that
//! the configuration provides high enough redundancy.
//!
//! You will have to implement error detection separately (e.g. via checksums)
//! and simply leave out the corrupted shards when attempting to reconstruct
//! the missing data.
#![allow(dead_code)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(test)]
#[macro_use]
extern crate quickcheck;
#[cfg(test)]
extern crate rand;
extern crate smallvec;
#[cfg(feature = "simd-accel")]
extern crate libc;
use ::core::iter;
use ::core::iter::FromIterator;
#[macro_use]
mod macros;
mod core;
mod errors;
mod matrix;
#[cfg(test)]
mod tests;
pub mod galois_16;
pub mod galois_8;
pub use crate::errors::Error;
pub use crate::errors::SBSError;
pub use crate::core::ReedSolomon;
pub use crate::core::ShardByShard;
// TODO: Can be simplified once https://github.com/rust-lang/rfcs/issues/2505 is resolved
#[cfg(not(feature = "std"))]
use libm::log2f as log2;
#[cfg(feature = "std")]
fn log2(n: f32) -> f32 {
n.log2()
}
/// A finite field to perform encoding over.
pub trait Field: Sized {
/// The order of the field. This is a limit on the number of shards
/// in an encoding.
const ORDER: usize;
/// The representational type of the field.
type Elem: Default + Clone + Copy + PartialEq + ::core::fmt::Debug;
/// Add two elements together.
fn add(a: Self::Elem, b: Self::Elem) -> Self::Elem;
/// Multiply two elements together.
fn mul(a: Self::Elem, b: Self::Elem) -> Self::Elem;
/// Divide a by b. Panics is b is zero.
fn div(a: Self::Elem, b: Self::Elem) -> Self::Elem;
/// Raise `a` to the n'th power.
fn exp(a: Self::Elem, n: usize) -> Self::Elem;
/// The "zero" element or additive identity.
fn zero() -> Self::Elem;
/// The "one" element or multiplicative identity.
fn one() -> Self::Elem;
fn nth_internal(n: usize) -> Self::Elem;
/// Yield the nth element of the field. Panics if n >= ORDER.
/// Assignment is arbitrary but must be unique to `n`.
fn nth(n: usize) -> Self::Elem {
if n >= Self::ORDER {
let pow = log2(Self::ORDER as f32) as usize;
panic!("{} out of bounds for GF(2^{}) member", n, pow)
}
Self::nth_internal(n)
}
/// Multiply a slice of elements by another. Writes into the output slice.
///
/// # Panics
/// Panics if the output slice does not have equal length to the input.
fn mul_slice(elem: Self::Elem, input: &[Self::Elem], out: &mut [Self::Elem]) {
assert_eq!(input.len(), out.len());
for (i, o) in input.iter().zip(out) {
*o = Self::mul(elem.clone(), i.clone())
}
}
/// Multiply a slice of elements by another, adding each result to the corresponding value in
/// `out`.
///
/// # Panics
/// Panics if the output slice does not have equal length to the input.
fn mul_slice_add(elem: Self::Elem, input: &[Self::Elem], out: &mut [Self::Elem]) {
assert_eq!(input.len(), out.len());
for (i, o) in input.iter().zip(out) {
*o = Self::add(o.clone(), Self::mul(elem.clone(), i.clone()))
}
}
}
/// Something which might hold a shard.
///
/// This trait is used in reconstruction, where some of the shards
/// may be unknown.
pub trait ReconstructShard<F: Field> {
/// The size of the shard data; `None` if empty.
fn len(&self) -> Option<usize>;
/// Get a mutable reference to the shard data, returning `None` if uninitialized.
fn get(&mut self) -> Option<&mut [F::Elem]>;
/// Get a mutable reference to the shard data, initializing it to the
/// given length if it was `None`. Returns an error if initialization fails.
fn get_or_initialize(
&mut self,
len: usize,
) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>>;
}
impl<F: Field, T: AsRef<[F::Elem]> + AsMut<[F::Elem]> + FromIterator<F::Elem>> ReconstructShard<F>
for Option<T>
{
fn len(&self) -> Option<usize> {
self.as_ref().map(|x| x.as_ref().len())
}
fn get(&mut self) -> Option<&mut [F::Elem]> {
self.as_mut().map(|x| x.as_mut())
}
fn get_or_initialize(
&mut self,
len: usize,
) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>> {
let is_some = self.is_some();
let x = self
.get_or_insert_with(|| iter::repeat(F::zero()).take(len).collect())
.as_mut();
if is_some {
Ok(x)
} else {
Err(Ok(x))
}
}
}
impl<F: Field, T: AsRef<[F::Elem]> + AsMut<[F::Elem]>> ReconstructShard<F> for (T, bool) {
fn len(&self) -> Option<usize> {
if !self.1 {
None
} else {
Some(self.0.as_ref().len())
}
}
fn get(&mut self) -> Option<&mut [F::Elem]> {
if !self.1 {
None
} else {
Some(self.0.as_mut())
}
}
fn get_or_initialize(
&mut self,
len: usize,
) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>> {
let x = self.0.as_mut();
if x.len() == len {
if self.1 {
Ok(x)
} else {
Err(Ok(x))
}
} else {
Err(Err(Error::IncorrectShardSize))
}
}
}