1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
use static_init::{dynamic};
#[dynamic(0)]
pub static AFFT: AdditiveFFT = AdditiveFFT::initalize();
/// Additive FFT and inverse in the "novel polynomial basis"
#[allow(non_snake_case)]
pub struct AdditiveFFT {
/// Multiplier form of twisted factors used in AdditiveFFT
pub skews: [Multiplier; ONEMASK as usize], // skew_multiplier
/// Factors used in formal derivative, actually all zero if field was constructed correctly.
#[cfg(b_is_not_one)]
pub B: [Multiplier; FIELD_SIZE >> 1],
}
/// Formal derivative of polynomial in the new?? basis
pub fn formal_derivative(cos: &mut [Additive], size: usize) {
for i in 1..size {
let length = ((i ^ i - 1) + 1) >> 1;
for j in (i - length)..i {
cos[j] ^= cos.get(j + length).copied().unwrap_or_default();
}
}
let mut i = size;
while i < FIELD_SIZE && i < cos.len() {
for j in 0..size {
cos[j] ^= cos.get(j + i).copied().unwrap_or_default();
}
i <<= 1;
}
}
/// Formal derivative of polynomial in tweaked?? basis
#[allow(non_snake_case)]
pub fn tweaked_formal_derivative(codeword: &mut [Additive], n: usize) {
#[cfg(b_is_not_one)]
let B = unsafe { &AFFT.B };
// We change nothing when multiplying by b from B.
#[cfg(b_is_not_one)]
for i in (0..n).into_iter().step_by(2) {
let b = Multiplier(ONEMASK) - B[i >> 1];
codeword[i] = codeword[i].mul(b);
codeword[i + 1] = codeword[i + 1].mul(b);
}
formal_derivative(codeword, n);
// Again changes nothing by multiplying by b although b differs here.
#[cfg(b_is_not_one)]
for i in (0..n).into_iter().step_by(2) {
let b = B[i >> 1];
codeword[i] = codeword[i].mul(b);
codeword[i + 1] = codeword[i + 1].mul(b);
}
}
/// This test ensure that b can safely be bypassed in tweaked_formal_derivative
#[cfg(b_is_not_one)]
#[test]
fn b_is_one() {
let B = unsafe { &AFFT.B };
fn test_b(b: Multiplier) {
for x in 0..FIELD_SIZE {
let x = Additive(x as Elt);
assert_eq!(x, x.mul(b));
}
}
let mut old_b = None;
for i in (0..FIELD_SIZE).into_iter().step_by(256) {
let b = B[i >> 1];
if old_b != Some(b) {
test_b( Multiplier(ONEMASK) - b );
test_b( b );
old_b = Some(b);
}
}
}
// We want the low rate scheme given in
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// and https://github.com/catid/leopard/blob/master/docs/LowRateDecoder.pdf
// but this code resembles https://github.com/catid/leopard which
// implements the high rate decoder in
// https://github.com/catid/leopard/blob/master/docs/HighRateDecoder.pdf
// We're hunting for the differences and trying to undersrtand the algorithm.
/// Inverse additive FFT in the "novel polynomial basis"
pub fn inverse_afft(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.inverse_afft(data,size,index)
}
/// Additive FFT in the "novel polynomial basis"
pub fn afft(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.afft(data,size,index)
}
impl AdditiveFFT {
/// Inverse additive FFT in the "novel polynomial basis"
pub fn inverse_afft(&self, data: &mut [Additive], size: usize, index: usize) {
// All line references to Algorithm 2 page 6288 of
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// Depth of the recursion on line 7 and 8 is given by depart_no
// aka 1 << ((k of Algorithm 2) - (i of Algorithm 2)) where
// k of Algorithm 1 is read as FIELD_BITS here.
// Recusion base layer implicitly imports d_r aka ala line 1.
// After this, we start at depth (i of Algorithm 2) = (k of Algorithm 2) - 1
// and progress through FIELD_BITS-1 steps, obtaining \Psi_\beta(0,0).
let mut depart_no = 1_usize;
while depart_no < size {
// Agrees with for loop (j of Algorithm 2) in (0..2^{k-i-1}) from line 3,
// except we've j in (depart_no..size).step_by(2*depart_no), meaning
// the doubled step compensated for the halve size exponent, and
// somehow this j captures the subscript on \omega_{j 2^{i+1}}. (TODO)
let mut j = depart_no;
while j < size {
// At this point loops over i in (j - depart_no)..j give a bredth
// first loop across the recursion branches from lines 7 and 8,
// so the i loop corresponds to r in Algorithm 2. In fact,
// data[i] and data[i + depart_no] together cover everything,
// thanks to the outer j loop.
// Loop on line 3, so i corresponds to j in Algorithm 2
for i in (j - depart_no)..j {
// Line 4, justified by (34) page 6288, but
// adding depart_no acts like the r+2^i superscript.
data[i + depart_no] ^= data[i];
}
// Algorithm 2 indexs the skew factor in line 5 page 6288
// by i and \omega_{j 2^{i+1}}, but not by r explicitly.
// We further explore this confusion below. (TODO)
let skew = self.skews[j + index - 1];
// It's reasonale to skip the loop if skew is zero, but doing so with
// all bits set requires justification. (TODO)
if skew.0 != ONEMASK {
// Again loop on line 3, except skew should depend upon i aka j in Algorithm 2 (TODO)
for i in (j - depart_no)..j {
// Line 5, justified by (35) page 6288, but
// adding depart_no acts like the r+2^i superscript.
data[i] ^= data[i + depart_no].mul(skew);
}
}
// Increment by double depart_no in agreement with
// our updating 2*depart_no elements at this depth.
j += depart_no << 1;
}
depart_no <<= 1;
}
}
/// Additive FFT in the "novel polynomial basis"
pub fn afft(&self, data: &mut [Additive], size: usize, index: usize) {
// All line references to Algorithm 1 page 6287 of
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// Depth of the recursion on line 3 and 4 is given by depart_no
// aka 1 << ((k of Algorithm 1) - (i of Algorithm 1)) where
// k of Algorithm 1 is read as FIELD_BITS here.
// Recusion base layer implicitly imports d_r aka ala line 1.
// After this, we start at depth (i of Algorithm 1) = (k of Algorithm 1) - 1
// and progress through FIELD_BITS-1 steps, obtaining \Psi_\beta(0,0).
let mut depart_no = size >> 1_usize;
while depart_no > 0 {
// Agrees with for loop (j of Algorithm 1) in (0..2^{k-i-1}) from line 5,
// except we've j in (depart_no..size).step_by(2*depart_no), meaning
// the doubled step compensated for the halve size exponent, and
// somehow this j captures the subscript on \omega_{j 2^{i+1}}. (TODO)
let mut j = depart_no;
while j < size {
// At this point loops over i in (j - depart_no)..j give a bredth
// first loop across the recursion branches from lines 3 and 4,
// so the i loop corresponds to r in Algorithm 1. In fact,
// data[i] and data[i + depart_no] together cover everything,
// thanks to the outer j loop.
// Algorithm 1 indexs the skew factor in line 6 aka (28) page 6287
// by i and \omega_{j 2^{i+1}}, but not by r explicitly.
// We doubt the lack of explicit dependence upon r justifies
// extracting the skew factor outside the loop here.
// As indexing by \omega_{j 2^{i+1}} appears absolute elsewhere,
// we think r actually appears but the skew factor repeats itself
// like in (19) in the proof of Lemma 4. (TODO)
// We should understand the rest of this basis story, like (8) too. (TODO)
let skew = self.skews[j + index - 1];
// It's reasonale to skip the loop if skew is zero, but doing so with
// all bits set requires justification. (TODO)
if skew.0 != ONEMASK {
// Loop on line 5, except skew should depend upon i aka j in Algorithm 1 (TODO)
for i in (j - depart_no)..j {
// Line 6, explained by (28) page 6287, but
// adding depart_no acts like the r+2^i superscript.
data[i] ^= data[i + depart_no].mul(skew);
}
}
// Again loop on line 5, so i corresponds to j in Algorithm 1
for i in (j - depart_no)..j {
// Line 7, explained by (31) page 6287, but
// adding depart_no acts like the r+2^i superscript.
data[i + depart_no] ^= data[i];
}
// Increment by double depart_no in agreement with
// our updating 2*depart_no elements at this depth.
j += depart_no << 1;
}
depart_no >>= 1;
}
}
//initialize SKEW_FACTOR and B
fn initalize() -> AdditiveFFT {
// We cannot yet identify if base has an additive or multiplicative
// representation, or mybe something else entirely. (TODO)
let mut base: [Elt; FIELD_BITS - 1] = Default::default();
let mut skews_additive = [Additive(0); ONEMASK as usize];
for i in 1..FIELD_BITS {
base[i - 1] = 1 << i;
}
// We construct SKEW_FACTOR in additive form to be \bar{s}_j(omega)
// from page 6285 for all omega in the field.
for m in 0..(FIELD_BITS - 1) {
let step = 1 << (m + 1);
skews_additive[(1 << m) - 1] = Additive(0);
for i in m..(FIELD_BITS - 1) {
let s = 1 << (i + 1);
let mut j = (1 << m) - 1;
while j < s {
// Justified by (5) page 6285, except..
// we expect SKEW_FACTOR[j ^ field_base[i]] or similar
skews_additive[j + s] = skews_additive[j] ^ Additive(base[i]);
j += step;
}
}
// Compute base[m] = ONEMASK - base[m] * EXP[LOG[base[m] ^ 1]]
// = ONEMASK - base[m] * (base[m] ^ 1)
// TODO: But why?
//
// let idx = mul_table(base[m], LOG_TABLE[(base[m] ^ 1_u16) as usize]);
let idx = Additive(base[m]).mul( Additive(base[m] ^ 1).to_multiplier() );
// WTF?!?
// base[m] = ONEMASK - LOG_TABLE[idx as usize];
base[m] = ONEMASK - idx.to_multiplier().0;
// Compute base[i] = base[i] * EXP[b % ONEMASK]
// where b = base[m] + LOG[base[i] ^ 1_u16].
// As ONEMASK is the order of the multiplicative grou,
// base[i] = base[i] * EXP[base[m]] * (base[i] ^ 1)
// TODO: But why?
for i in (m + 1)..(FIELD_BITS - 1) {
// WTF?!?
// let b = LOG_TABLE[(base[i] as u16 ^ 1_u16) as usize] as u32 + base[m] as u32;
let b = Additive(base[i] ^ 1).to_multiplier().to_wide() + (base[m] as Wide);
let b = b % (ONEMASK as Wide);
// base[i] = mul_table(base[i], b as u16);
base[i] = Additive(base[i]).mul(Multiplier(b as Elt)).0;
}
}
// Convert skew factors from Additive to Multiplier form
let mut skews_multiplier = [Multiplier(0); ONEMASK as usize];
for i in 0..(ONEMASK as usize) {
// SKEW_FACTOR[i] = LOG_TABLE[SKEW_FACTOR[i] as usize];
skews_multiplier[i] = skews_additive[i].to_multiplier();
}
AdditiveFFT {
// skews_additive,
skews: skews_multiplier,
#[cfg(b_is_not_one)]
B: {
let mut B = [Multiplier(0); FIELD_SIZE >> 1];
// TODO: How does this alter base?
base[0] = ONEMASK - base[0];
for i in 1..(FIELD_BITS - 1) {
base[i] = ( (
(ONEMASK as Wide) - (base[i] as Wide) + (base[i - 1] as Wide)
) % (ONEMASK as Wide) ) as Elt;
}
// TODO: What is B anyways?
B[0] = Multiplier(0);
for i in 0..(FIELD_BITS - 1) {
let depart = 1 << i;
for j in 0..depart {
B[j + depart] = Multiplier( ((
B[j].to_wide() + (base[i] as Wide)
) % (ONEMASK as Wide)) as Elt);
}
}
B
}
}
}
}
#[cfg(b_is_not_one)]
#[test]
fn b_is_one() {
// This test ensure that b can be safely bypassed in tweaked_formal_derivative
let B = unsafe { &AFFT.B };
fn test_b(b: Multiplier) {
for x in 0..FIELD_SIZE {
let x = Additive(x as Elt);
assert_eq!(x, x.mul(b));
}
}
let mut old_b = None;
for i in (0..FIELD_SIZE).into_iter().step_by(256) {
let b = B[i >> 1];
if old_b != Some(b) {
test_b( Multiplier(ONEMASK) - b );
test_b( b );
old_b = Some(b);
}
}
}