1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
use static_init::dynamic;
#[dynamic(0)]
pub static AFFT: AdditiveFFT = AdditiveFFT::initalize();
/// Additive FFT and inverse in the "novel polynomial basis"
#[allow(non_snake_case)]
pub struct AdditiveFFT {
/// Multiplier form of twisted factors used in `AdditiveFFT`
pub skews: [Multiplier; ONEMASK as usize], // skew_multiplier
/// Factors used in formal derivative, actually all zero if field was constructed correctly.
#[cfg(b_is_not_one)]
pub B: [Multiplier; FIELD_SIZE >> 1],
}
/// Formal derivative of polynomial in the new?? basis
pub fn formal_derivative(cos: &mut [Additive]) {
for i in 1..cos.len() {
let length = ((i ^ (i - 1)) + 1) >> 1;
for j in (i - length)..i {
cos[j] ^= cos.get(j + length).copied().unwrap_or(Additive::ZERO);
}
}
let mut i = cos.len();
while i < FIELD_SIZE && i < cos.len() {
for j in 0..cos.len() {
cos[j] ^= cos.get(j + i).copied().unwrap_or(Additive::ZERO);
}
i <<= 1;
}
}
/// Formal derivative of polynomial in tweaked?? basis
#[allow(non_snake_case)]
pub fn tweaked_formal_derivative(codeword: &mut [Additive]) {
#[cfg(b_is_not_one)]
let B = unsafe { &AFFT.B };
#[cfg(b_is_not_one)]
let n = codeword.len();
// We change nothing when multiplying by b from B.
#[cfg(b_is_not_one)]
for i in (0..n).into_iter().step_by(2) {
let b = Multiplier(ONEMASK) - B[i >> 1];
codeword[i] = codeword[i].mul(b);
codeword[i + 1] = codeword[i + 1].mul(b);
}
formal_derivative(codeword);
// Again changes nothing by multiplying by b although b differs here.
#[cfg(b_is_not_one)]
for i in (0..n).into_iter().step_by(2) {
let b = B[i >> 1];
codeword[i] = codeword[i].mul(b);
codeword[i + 1] = codeword[i + 1].mul(b);
}
}
/// This test ensure that b can safely be bypassed in tweaked_formal_derivative
#[cfg(b_is_not_one)]
#[test]
fn b_is_one() {
let B = unsafe { &AFFT.B };
fn test_b(b: Multiplier) {
for x in 0..FIELD_SIZE {
let x = Additive(x as Elt);
assert_eq!(x, x.mul(b));
}
}
let mut old_b = None;
for i in (0..FIELD_SIZE).into_iter().step_by(256) {
let b = B[i >> 1];
if old_b != Some(b) {
test_b(Multiplier(ONEMASK) - b);
test_b(b);
old_b = Some(b);
}
}
}
// We want the low rate scheme given in
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// and https://github.com/catid/leopard/blob/master/docs/LowRateDecoder.pdf
// but this code resembles https://github.com/catid/leopard which
// implements the high rate decoder in
// https://github.com/catid/leopard/blob/master/docs/HighRateDecoder.pdf
// We're hunting for the differences and trying to undersrtand the algorithm.
/// Inverse additive FFT in the "novel polynomial basis"
#[inline(always)]
pub fn inverse_afft(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.inverse_afft(data, size, index)
}
#[cfg(all(target_feature = "avx", feature = "avx"))]
#[inline(always)]
pub fn inverse_afft_faster8(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.inverse_afft_faster8(data, size, index)
}
/// Additive FFT in the "novel polynomial basis"
#[inline(always)]
pub fn afft(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.afft(data, size, index)
}
#[cfg(all(target_feature = "avx", feature = "avx"))]
#[inline(always)]
/// Additive FFT in the "novel polynomial basis"
pub fn afft_faster8(data: &mut [Additive], size: usize, index: usize) {
unsafe { &AFFT }.afft_faster8(data, size, index)
}
impl AdditiveFFT {
/// `data[i + depart_no] ^= data[i];`
#[cfg(all(target_feature = "avx", feature = "avx"))]
#[inline(always)]
fn butterfly_down(data: &mut [Additive], i_8x: usize, depart_no_8x: usize) {
let rhs = Additive8x::load(&data[(i_8x * Additive8x::LANE)..][..Additive8x::LANE]);
let dest = &mut data[((i_8x + depart_no_8x) * Additive8x::LANE)..][..Additive8x::LANE];
let mut lhs = Additive8x::load(dest);
lhs ^= rhs;
lhs.copy_to_slice(dest);
}
// `data[i] ^= data[i + depart_no].mul(skew)`;
#[cfg(all(target_feature = "avx", feature = "avx"))]
#[inline(always)]
fn butterfly_up(data: &mut [Additive], i_8x: usize, depart_no_8x: usize, skew: Multiplier) {
let rhs = Additive8x::load(&data[((i_8x + depart_no_8x) * Additive8x::LANE)..][..Additive8x::LANE]).mul(skew);
let dest = &mut data[(i_8x * Additive8x::LANE)..][..Additive8x::LANE];
let mut lhs = Additive8x::load(dest);
lhs ^= rhs;
lhs.copy_to_slice(dest);
}
/// Inverse additive FFT in the "novel polynomial basis"
pub fn inverse_afft(&self, data: &mut [Additive], size: usize, index: usize) {
// All line references to Algorithm 2 page 6288 of
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// Depth of the recursion on line 7 and 8 is given by depart_no
// aka 1 << ((k of Algorithm 2) - (i of Algorithm 2)) where
// k of Algorithm 1 is read as FIELD_BITS here.
// Recusion base layer implicitly imports d_r aka ala line 1.
// After this, we start at depth (i of Algorithm 2) = (k of Algorithm 2) - 1
// and progress through FIELD_BITS-1 steps, obtaining \Psi_\beta(0,0).
let mut depart_no = 1_usize;
assert!(data.len() >= size);
while depart_no < size {
// if depart_no >= 8 {
// println!("\n\n\nplain/Round depart_no={depart_no}");
// dbg!(&data);
// }
// Agrees with for loop (j of Algorithm 2) in (0..2^{k-i-1}) from line 3,
// except we've j in (depart_no..size).step_by(2*depart_no), meaning
// the doubled step compensated for the halve size exponent, and
// somehow this j captures the subscript on \omega_{j 2^{i+1}}. (TODO)
let mut j = depart_no;
while j < size {
// At this point loops over i in (j - depart_no)..j give a bredth
// first loop across the recursion branches from lines 7 and 8,
// so the i loop corresponds to r in Algorithm 2. In fact,
// data[i] and data[i + depart_no] together cover everything,
// thanks to the outer j loop.
// Loop on line 3, so i corresponds to j in Algorithm 2
for i in (j - depart_no)..j {
// Line 4, justified by (34) page 6288, but
// adding depart_no acts like the r+2^i superscript.
// if depart_no >= 8 && false{
// data[i + depart_no] ^= dbg!(data[dbg!(i)]);
// } else {
// TODO: Optimising bounds checks on this line will yield a great performance improvement.
data[i + depart_no] ^= data[i];
}
// Algorithm 2 indexs the skew factor in line 5 page 6288
// by i and \omega_{j 2^{i+1}}, but not by r explicitly.
// We further explore this confusion below. (TODO)
let skew = self.skews[j + index - 1];
// It's reasonale to skip the loop if skew is zero, but doing so with
// all bits set requires justification. (TODO)
if skew.0 != ONEMASK {
// Again loop on line 3, except skew should depend upon i aka j in Algorithm 2 (TODO)
for i in (j - depart_no)..j {
// Line 5, justified by (35) page 6288, but
// adding depart_no acts like the r+2^i superscript.
// if depart_no >= 8 && false{
// data[i] ^= dbg!(dbg!(data[dbg!(i + depart_no)]).mul(skew));
// } else {
// TODO: Optimising bounds checks on this line will yield a great performance improvement.
data[i] ^= data[i + depart_no].mul(skew);
}
}
// if depart_no >= 8 && false{
// dbg!(&data);
// }
// Increment by double depart_no in agreement with
// our updating 2*depart_no elements at this depth.
j += depart_no << 1;
}
depart_no <<= 1;
}
}
/// Inverse additive FFT in the "novel polynomial basis", but do 8 at once using available vector units
#[cfg(all(target_feature = "avx", feature = "avx"))]
pub fn inverse_afft_faster8(&self, data: &mut [Additive], size: usize, index: usize) {
let mut depart_no = 1_usize;
while depart_no < Additive8x::LANE {
let mut j = depart_no;
while j < size {
for i in (j - depart_no)..j {
data[i + depart_no] ^= data[i];
}
let skew = self.skews[j + index - 1];
if skew.0 != ONEMASK {
for i in (j - depart_no)..j {
data[i] ^= data[i + depart_no].mul(skew);
}
}
j += depart_no << 1;
}
depart_no <<= 1;
}
assert!(depart_no >= Additive8x::LANE);
while depart_no < size {
let mut j = depart_no;
// println!("\n\n\nfaster8/Round depart_no={depart_no}");
// dbg!(&data);
while j < size {
let j_8x = j / Additive8x::LANE;
let depart_no_8x = depart_no / Additive8x::LANE;
for i_8x in (j_8x - depart_no_8x)..j_8x {
Self::butterfly_down(data, i_8x, depart_no_8x);
}
let skew = self.skews[j + index - 1];
if skew.0 != ONEMASK {
for i_8x in (j_8x - depart_no_8x)..j_8x {
Self::butterfly_up(data, i_8x, depart_no_8x, skew);
}
}
// dbg!(&data);
j += depart_no << 1;
}
depart_no <<= 1;
}
}
/// Additive FFT in the "novel polynomial basis"
pub fn afft(&self, data: &mut [Additive], size: usize, index: usize) {
// All line references to Algorithm 1 page 6287 of
// https://www.citi.sinica.edu.tw/papers/whc/5524-F.pdf
// Depth of the recursion on line 3 and 4 is given by depart_no
// aka 1 << ((k of Algorithm 1) - (i of Algorithm 1)) where
// k of Algorithm 1 is read as FIELD_BITS here.
// Recusion base layer implicitly imports d_r aka ala line 1.
// After this, we start at depth (i of Algorithm 1) = (k of Algorithm 1) - 1
// and progress through FIELD_BITS-1 steps, obtaining \Psi_\beta(0,0).
let mut depart_no = size >> 1_usize;
assert!(data.len() >= size);
while depart_no > 0 {
// Agrees with for loop (j of Algorithm 1) in (0..2^{k-i-1}) from line 5,
// except we've j in (depart_no..size).step_by(2*depart_no), meaning
// the doubled step compensated for the halve size exponent, and
// somehow this j captures the subscript on \omega_{j 2^{i+1}}. (TODO)
let mut j = depart_no;
while j < size {
// At this point loops over i in (j - depart_no)..j give a bredth
// first loop across the recursion branches from lines 3 and 4,
// so the i loop corresponds to r in Algorithm 1. In fact,
// data[i] and data[i + depart_no] together cover everything,
// thanks to the outer j loop.
// Algorithm 1 indexs the skew factor in line 6 aka (28) page 6287
// by i and \omega_{j 2^{i+1}}, but not by r explicitly.
// We doubt the lack of explicit dependence upon r justifies
// extracting the skew factor outside the loop here.
// As indexing by \omega_{j 2^{i+1}} appears absolute elsewhere,
// we think r actually appears but the skew factor repeats itself
// like in (19) in the proof of Lemma 4. (TODO)
// We should understand the rest of this basis story, like (8) too. (TODO)
let skew = self.skews[j + index - 1];
// It's reasonale to skip the loop if skew is zero, but doing so with
// all bits set requires justification. (TODO)
if skew.0 != ONEMASK {
// Loop on line 5, except skew should depend upon i aka j in Algorithm 1 (TODO)
for i in (j - depart_no)..j {
// Line 6, explained by (28) page 6287, but
// adding depart_no acts like the r+2^i superscript.
// TODO: Optimising bounds checks on this line will yield a great performance improvement.
data[i] ^= data[i + depart_no].mul(skew);
}
}
// Again loop on line 5, so i corresponds to j in Algorithm 1
for i in (j - depart_no)..j {
// Line 7, explained by (31) page 6287, but
// adding depart_no acts like the r+2^i superscript.
// TODO: Optimising bounds checks on this line will yield a great performance improvement.
data[i + depart_no] ^= data[i];
}
// Increment by double depart_no in agreement with
// our updating 2*depart_no elements at this depth.
j += depart_no << 1;
}
depart_no >>= 1;
}
}
/// Additive FFT in the "novel polynomial basis", but do 8 at once using available vector units
///
/// `size` is the count of the individual additive field elements, so 8x larger than `data.len()`.
#[cfg(all(target_feature = "avx", feature = "avx"))]
pub fn afft_faster8(&self, data: &mut [Additive], size: usize, index: usize) {
let mut depart_no = size >> 1_usize;
while depart_no >= Additive8x::LANE {
let mut j = depart_no;
while j < size {
let skew = self.skews[j + index - 1];
// correct as long as `depart_no` is equal or larger to `Additive8x::LANE`
let j_8x = j / Additive8x::LANE;
let depart_no_8x = depart_no / Additive8x::LANE;
if skew.0 != ONEMASK {
for i_8x in (j_8x - depart_no_8x)..j_8x {
Self::butterfly_up(data, i_8x, depart_no_8x, skew);
}
}
for i_8x in (j_8x - depart_no_8x)..j_8x {
Self::butterfly_down(data, i_8x, depart_no_8x)
}
j += depart_no << 1;
}
depart_no >>= 1;
}
assert!(depart_no < Additive8x::LANE);
while depart_no > 0 {
let mut j = depart_no;
while j < size {
let skew = self.skews[j + index - 1];
if skew.0 != ONEMASK {
for i in (j - depart_no)..j {
data[i] ^= data[i + depart_no].mul(skew);
}
}
for i in (j - depart_no)..j {
data[i + depart_no] ^= data[i];
}
j += depart_no << 1;
}
depart_no >>= 1;
}
}
//initialize SKEW_FACTOR and B
fn initalize() -> AdditiveFFT {
// We cannot yet identify if base has an additive or multiplicative
// representation, or mybe something else entirely. (TODO)
let mut base: [Elt; FIELD_BITS - 1] = Default::default();
let mut skews_additive = [Additive(0); ONEMASK as usize];
for i in 1..FIELD_BITS {
base[i - 1] = 1 << i;
}
// We construct SKEW_FACTOR in additive form to be \bar{s}_j(omega)
// from page 6285 for all omega in the field.
for m in 0..(FIELD_BITS - 1) {
let step = 1 << (m + 1);
skews_additive[(1 << m) - 1] = Additive(0);
for i in m..(FIELD_BITS - 1) {
let s = 1 << (i + 1);
// TODO if s>=8 we cound employ SIMD
// TODO and step % 8 == 0
let mut j = (1 << m) - 1;
while j < s {
// Justified by (5) page 6285, except..
// we expect SKEW_FACTOR[j ^ field_base[i]] or similar
skews_additive[j + s] = skews_additive[j] ^ Additive(base[i]);
j += step;
}
}
// Compute base[m] = ONEMASK - base[m] * EXP[LOG[base[m] ^ 1]]
// = ONEMASK - base[m] * (base[m] ^ 1)
// TODO: But why?
//
// let idx = mul_table(base[m], LOG_TABLE[(base[m] ^ 1_u16) as usize]);
let idx = Additive(base[m]).mul(Additive(base[m] ^ 1).to_multiplier());
// WTF?!?
// base[m] = ONEMASK - LOG_TABLE[idx as usize];
base[m] = ONEMASK - idx.to_multiplier().0;
// Compute base[i] = base[i] * EXP[b % ONEMASK]
// where b = base[m] + LOG[base[i] ^ 1_u16].
// As ONEMASK is the order of the multiplicative grou,
// base[i] = base[i] * EXP[base[m]] * (base[i] ^ 1)
// TODO: But why?
for i in (m + 1)..(FIELD_BITS - 1) {
// WTF?!?
// let b = LOG_TABLE[(base[i] as u16 ^ 1_u16) as usize] as u32 + base[m] as u32;
let b = Additive(base[i] ^ 1).to_multiplier().to_wide() + (base[m] as Wide);
let b = b % (ONEMASK as Wide);
// base[i] = mul_table(base[i], b as u16);
base[i] = Additive(base[i]).mul(Multiplier(b as Elt)).0;
}
}
// Convert skew factors from Additive to Multiplier form
let mut skews_multiplier = [Multiplier(0); ONEMASK as usize];
for i in 0..(ONEMASK as usize) {
// SKEW_FACTOR[i] = LOG_TABLE[SKEW_FACTOR[i] as usize];
skews_multiplier[i] = skews_additive[i].to_multiplier();
}
AdditiveFFT {
// skews_additive,
skews: skews_multiplier,
#[cfg(b_is_not_one)]
B: {
let mut B = [Multiplier(0); FIELD_SIZE >> 1];
// TODO: How does this alter base?
base[0] = ONEMASK - base[0];
for i in 1..(FIELD_BITS - 1) {
base[i] =
(((ONEMASK as Wide) - (base[i] as Wide) + (base[i - 1] as Wide)) % (ONEMASK as Wide)) as Elt;
}
// TODO: What is B anyways?
B[0] = Multiplier(0);
for i in 0..(FIELD_BITS - 1) {
let depart = 1 << i;
for j in 0..depart {
B[j + depart] = Multiplier(((B[j].to_wide() + (base[i] as Wide)) % (ONEMASK as Wide)) as Elt);
}
}
B
},
}
}
}
#[cfg(test)]
mod afft_tests {
#[cfg(all(target_feature = "avx", feature = "avx"))]
mod simd {
use super::super::*;
use reed_solomon_tester::SMALL_RNG_SEED;
use rand::{SeedableRng, Rng, rngs::SmallRng};
pub fn gen_plain<R: Rng + SeedableRng<Seed = [u8; 32]>>(size: usize) -> Vec<Additive> {
let rng = <R as SeedableRng>::from_seed(SMALL_RNG_SEED);
let dist = rand::distributions::Uniform::new_inclusive(Elt::MIN, Elt::MAX);
Vec::from_iter(rng.sample_iter::<Elt, _>(dist).take(size).map(Additive))
}
pub fn gen_faster8_from_plain(data: impl AsRef<[Additive]>) -> Vec<Additive> {
let data = data.as_ref();
data.to_vec()
}
pub fn gen_faster8<R: Rng + SeedableRng<Seed = [u8; 32]>>(size: usize) -> Vec<Additive> {
let data = gen_plain::<R>(size);
gen_faster8_from_plain(data)
}
pub fn assert_plain_eq_faster8(plain: impl AsRef<[Additive]>, faster8: impl AsRef<[Additive]>) {
let plain = plain.as_ref();
let faster8 = faster8.as_ref();
assert!(plain.eq(faster8));
}
#[test]
fn afft_output_plain_eq_faster8_size_16() {
let index = 0;
let size = 16;
let mut data_plain = gen_plain::<SmallRng>(size);
let mut data_faster8 = gen_faster8::<SmallRng>(size);
println!(">>>>");
unsafe { &AFFT }.afft(&mut data_plain, size, index);
println!(
r#"
>>>>
"#
);
unsafe { &AFFT }.afft_faster8(&mut data_faster8, size, index);
println!(">>>>");
assert_plain_eq_faster8(data_plain, data_faster8);
}
#[test]
fn afft_output_plain_eq_faster8_size_32() {
let index = 0;
let size = 32;
let mut data_plain = gen_plain::<SmallRng>(size);
let mut data_faster8 = gen_faster8::<SmallRng>(size);
println!(">>>>");
unsafe { &AFFT }.afft(&mut data_plain, size, index);
println!(
r#"
>>>>
"#
);
unsafe { &AFFT }.afft_faster8(&mut data_faster8, size, index);
println!(">>>>");
assert_plain_eq_faster8(data_plain, data_faster8);
}
#[test]
fn afft_output_plain_eq_faster8_impulse_data() {
let index = 0;
let size = 32;
let mut data_plain = vec![Additive::zero(); size];
data_plain[0] = Additive((0x1234 & ONEMASK as u16) as Elt);
let mut data_faster8 = gen_faster8_from_plain(&data_plain);
assert_plain_eq_faster8(&data_plain, &data_faster8);
println!(">>>>");
unsafe { &AFFT }.afft(&mut data_plain, size, index);
println!(
r#"
>>>>
"#
);
unsafe { &AFFT }.afft_faster8(&mut data_faster8, size, index);
println!(">>>>");
assert_plain_eq_faster8(data_plain, data_faster8);
}
#[test]
fn inverse_afft_output_plain_eq_faster8_size_8() {
let index = 0;
let size = 8;
let mut data_plain = gen_plain::<SmallRng>(size);
let mut data_faster8 = gen_faster8::<SmallRng>(size);
assert_plain_eq_faster8(&data_plain, &data_faster8);
println!(">>>>");
unsafe { &AFFT }.inverse_afft(&mut data_plain, size, index);
println!(
r#"
>>>>
"#
);
unsafe { &AFFT }.inverse_afft_faster8(&mut data_faster8, size, index);
println!(">>>>");
assert_plain_eq_faster8(data_plain, data_faster8);
}
#[test]
fn inverse_afft_output_plain_eq_faster8_size_32() {
let index = 0;
let size = 32;
let mut data_plain = gen_plain::<SmallRng>(size);
let mut data_faster8 = gen_faster8::<SmallRng>(size);
println!(">>>>");
unsafe { &AFFT }.inverse_afft(&mut data_plain, size, index);
println!(
r#"
>>>>
"#
);
unsafe { &AFFT }.inverse_afft_faster8(&mut data_faster8, size, index);
println!(">>>>");
assert_plain_eq_faster8(data_plain, data_faster8);
}
}
#[cfg(b_is_not_one)]
use super::*;
#[cfg(b_is_not_one)]
#[test]
fn b_is_one() {
// This test ensure that b can be safely bypassed in tweaked_formal_derivative
let B = unsafe { &AFFT.B };
fn test_b(b: Multiplier) {
for x in 0..FIELD_SIZE {
let x = Additive(x as Elt);
assert_eq!(x, x.mul(b));
}
}
let mut old_b = None;
for i in (0..FIELD_SIZE).into_iter().step_by(256) {
let b = B[i >> 1];
if old_b != Some(b) {
test_b(Multiplier(ONEMASK) - b);
test_b(b);
old_b = Some(b);
}
}
}
}