refpool/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! A reimplementation of [`std::boxed::Box`][Box] and [`std::rc::Rc`][Rc]
//! which uses a pool of reusable memory to speed up reallocation.
//!
//! # Prerequisites
//!
//! In order to initialise a type to its default value from the memory pool
//! using [`PoolBox::default()`][PoolBox::default] or
//! [`PoolRef::default()`][PoolRef::default], it needs to implement
//! [`PoolDefault`][PoolDefault].
//!
//! If you want to be able to use [`PoolRef::make_mut()`][PoolRef::make_mut], it
//! also needs to implement [`PoolClone`][PoolClone].
//!
//! For constructing values using [`PoolRef::new()`][PoolRef::new], there's no
//! requirement.
//!
//! There are implementations for [`PoolDefault`][PoolDefault] and
//! [`PoolClone`][PoolClone] for most primitive types and a good selection of
//! `std`'s data types, and you can easily provide default implementations for
//! your own types by implementing the marker trait
//! [`PoolDefaultImpl`][PoolDefaultImpl]. You can also implement your own if you
//! have data structures whose memory doesn't need to be fully intitialised at
//! construction time, which can give you a slight performance boost. (This
//! optimisation is why [`PoolDefault`][PoolDefault] and
//! [`PoolClone`][PoolClone] exist as distinct traits, otherwise
//! [`Default`][Default] and [`Clone`][Clone] would have sufficed.)
//!
//! # Usage
//!
//! You create new values by calling
//! [`PoolRef::default(pool)`][PoolRef::default] or [`PoolRef::new(pool,
//! value)`][PoolRef::new]. This will use memory from the pool if available,
//! falling back to a normal heap allocation if the pool is empty.  When the
//! last [`PoolRef`][PoolRef] referencing the value is dropped, its allocated
//! memory is returned to the pool.
//!
//! # Differences from [`Box`][Box] and [`Rc`][Rc]
//!
//! [`PoolBox`][PoolBox] is API compatible with [`Box`][Box] and [`PoolRef`][PoolRef]
//! with [`Rc`][Rc], with the following exceptions:
//!
//!   * Types handled by the pool must be [`Sized`][Sized]. This means the pool
//!     won't accept trait objects, ie. no `Pool<dyn A>`.
//!   * Constructors need a [`Pool`][Pool] argument, so they're necessarily
//!     different: instead of [`Rc::new(value)`][Rc::new], you have
//!     [`PoolRef::default(pool)`][PoolRef::default] to construct a default
//!     value and [`PoolRef::new(pool, value)`][PoolRef::new] as the equivalent
//!     of [`Rc::new(value)`][Rc::new]. Likewise for [`PoolBox`][PoolBox].
//!   * [`PoolBox`][PoolBox] and [`PoolRef`][PoolRef] do not implement
//!     [`Default`][Default], because you need a
//!     [`Pool`][Pool] argument to construct an instance. Use
//!     [`PoolRef::default(pool)`][PoolRef::default].
//!   * There's currently no equivalent to [`Weak`][Weak] for [`PoolRef`][PoolRef].
//!   * Experimental APIs are not implemented.
//!
//! # Thread Safety
//!
//! [`Pool`][Pool] is strictly thread local, ie. it does not
//! implement [`Sync`][Sync] and it will fail in appalling ways if you still
//! somehow manage to access it from two different threads. There is no
//! equivalent of [`Arc`][Arc] because adding thread safety to the pool turns
//! out to degrade performance sufficiently that the pool is no longer providing
//! a significant performance benefit even with the slowest system allocators
//! you're likely to come across in the wild (by which I mean Windows).
//!
//! # Performance
//!
//! You can expect [`Pool`][Pool] to always outperform the system allocator,
//! though the performance gains will vary between platforms. Preliminary
//! benchmarks show it's approximately twice as fast on Linux, and 5-6 times as
//! fast on Windows. Custom allocators like jemalloc may yield even less
//! benefit, but it's very unlikely you'll find an allocator that can outperform
//! the pool.
//!
//! You can expect bigger performance gains from data types with beneficial
//! [`PoolDefault`][PoolDefault] and [`PoolClone`][PoolClone] implementations,
//! "beneficial" in this case meaning cases where you can leave most of the
//! allocated memory uninitialised. [`sized_chunks::Chunk`][Chunk], which
//! allocates 528 bytes on 64-bit platforms but only needs to initialise 16
//! of them for [`PoolDefault`][PoolDefault], would be a good example of this.

//! # Example
//!
//! ```rust
//! # use refpool::{Pool, PoolRef};
//! // Create a pool of `usize` with a max size of 1 (for argument's sake).
//! let mut pool: Pool<usize> = Pool::new(1);
//!
//! {
//!     // Create a reference handle to a usize initialised to 0.
//!     // The pool starts out empty, so this triggers a normal heap alloc.
//!     let value_ref = PoolRef::default(&mut pool);
//!     assert_eq!(0, *value_ref); // You can deref it just like `Rc`.
//! } // `value_ref` is dropped here, and its heap memory goes on the pool.
//!
//! // Check that we do indeed have one allocation in the pool now.
//! assert_eq!(1, pool.get_pool_size());
//!
//! // Create another reference and initialise it to 31337, a good round number.
//! // This will reuse `value_ref`'s memory.
//! let another_value_ref = PoolRef::new(&mut pool, 31337);
//! assert_eq!(31337, *another_value_ref);
//!
//! // Check that the pool is again empty after we reused the previous memory.
//! assert_eq!(0, pool.get_pool_size());
//! ```
//!
//! # Feature Flags
//!
//! There's one feature flag available, `default_impl`, which requires a nightly
//! rustc because it leans on the `min_specialization` language feature, which
//! removes the `PoolDefaultImpl` trait and instead provides a `default`
//! overridable implementation for `PoolClone` and `PoolDefault` for any type
//! that implements `Clone` and `Default`. `PoolDefaultImpl` is an unfortunate
//! hack to get around the current absence of specialisation in stable rustc.
//!
//! [Pool]: struct.Pool.html
//! [PoolBox]: struct.PoolBox.html
//! [PoolBox::default]: struct.PoolBox.html#method.default
//! [PoolRef]: struct.PoolRef.html
//! [PoolRef::new]: struct.PoolRef.html#method.new
//! [PoolRef::default]: struct.PoolRef.html#method.default
//! [PoolRef::make_mut]: struct.PoolRef.html#method.make_mut
//! [PoolDefault]: trait.PoolDefault.html
//! [PoolClone]: trait.PoolClone.html
//! [PoolDefaultImpl]: trait.PoolDefaultImpl.html
//! [PoolSync]: struct.PoolSync.html
//! [Box]: https://doc.rust-lang.org/stable/std/boxed/struct.Box.html
//! [Box::from_raw]: https://doc.rust-lang.org/stable/std/boxed/struct.Box.html#method.from_raw
//! [Box::into_raw]: https://doc.rust-lang.org/stable/std/boxed/struct.Box.html#method.into_raw
//! [Default]: https://doc.rust-lang.org/std/default/trait.Default.html
//! [Clone]: https://doc.rust-lang.org/std/clone/trait.Clone.html
//! [Arc]: https://doc.rust-lang.org/std/sync/struct.Arc.html
//! [Rc]: https://doc.rust-lang.org/std/rc/struct.Rc.html
//! [Rc::new]: https://doc.rust-lang.org/std/rc/struct.Rc.html#method.new
//! [Weak]: https://doc.rust-lang.org/std/rc/struct.Weak.html
//! [Sized]: https://doc.rust-lang.org/std/marker/trait.Sized.html
//! [Sync]: https://doc.rust-lang.org/std/marker/trait.Sync.html
//! [Chunk]: https://docs.rs/sized-chunks/*/sized_chunks/sized_chunk/struct.Chunk.html

#![forbid(rust_2018_idioms)]
#![deny(nonstandard_style)]
#![warn(
    unreachable_pub,
    missing_docs,
    missing_debug_implementations,
    missing_doc_code_examples
)]
#![cfg_attr(feature = "default_impl", feature(min_specialization))]

use std::mem::MaybeUninit;

mod box_handle;
mod counter;
mod pointer;
mod pool;
mod ref_handle;
mod refbox;
mod stack;
mod types;

pub mod fakepool;

pub use self::box_handle::PoolBox;
pub use self::pool::Pool;
pub use self::ref_handle::PoolRef;

#[cfg(not(feature = "default_impl"))]
mod std_types;
#[cfg(not(feature = "default_impl"))]
pub use self::std_types::PoolDefaultImpl;

/// A trait for initialising a `MaybeUninit<Self>` to a default value.
pub trait PoolDefault: Default {
    /// Initialise an instance of `Self` to its default state.
    ///
    /// Specifically, after calling `self.default_uninit()`, the object's state
    /// should be equal to what `<Self as Default>::default()` would produce.
    ///
    /// # Safety
    ///
    /// You should assume that the object as passed to you contains
    /// uninitialised memory, and you must leave it in a fully initialised
    /// state, as expected by `MaybeUninit::assume_init()`.
    unsafe fn default_uninit(target: &mut MaybeUninit<Self>);
}

/// A trait for cloning a value into a `MaybeUninit<Self>`.
pub trait PoolClone: Clone {
    /// Clone an instance of `Self` into an uninitialised instance of `Self`.
    ///
    /// # Safety
    ///
    /// You should assume that the object as passed to you contains
    /// uninitialised memory, and you must leave it in a fully initialised
    /// state, as expected by `MaybeUninit::assume_init()`.
    unsafe fn clone_uninit(&self, target: &mut MaybeUninit<Self>);
}

#[cfg(feature = "default_impl")]
impl<A> PoolDefault for A
where
    A: Default,
{
    default unsafe fn default_uninit(target: &mut MaybeUninit<Self>) {
        target.as_mut_ptr().write(Default::default());
    }
}

#[cfg(feature = "default_impl")]
impl<A> PoolClone for A
where
    A: Clone,
{
    default unsafe fn clone_uninit(&self, target: &mut MaybeUninit<Self>) {
        target.as_mut_ptr().write(self.clone());
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::sync::atomic::{AtomicUsize, Ordering};

    struct DropTest<'a> {
        counter: &'a AtomicUsize,
    }

    impl<'a> DropTest<'a> {
        fn new(counter: &'a AtomicUsize) -> Self {
            counter.fetch_add(1, Ordering::Relaxed);
            DropTest { counter }
        }
    }

    impl<'a> Drop for DropTest<'a> {
        fn drop(&mut self) {
            self.counter.fetch_sub(1, Ordering::Relaxed);
        }
    }

    fn fill_drop(pool_size: usize, alloc_size: usize) {
        let counter = AtomicUsize::new(0);
        let pool: Pool<DropTest<'_>> = Pool::new(pool_size);
        {
            let mut vec = Vec::new();
            for _ in 0..alloc_size {
                vec.push(PoolRef::new(&pool, DropTest::new(&counter)));
            }
            assert_eq!(alloc_size, counter.load(Ordering::SeqCst));
        }
        assert_eq!(0, counter.load(Ordering::SeqCst));
    }

    #[test]
    fn dropping_sized() {
        fill_drop(1024, 2048);
    }

    #[test]
    fn dropping_null() {
        fill_drop(0, 128);
    }

    #[test]
    fn allocate_and_deallocate_a_bit() {
        let pool: Pool<usize> = Pool::new(1024);
        assert_eq!(0, pool.get_pool_size());
        let mut refs: Vec<_> = Vec::new();
        for _ in 0..10000 {
            refs.push(PoolRef::default(&pool));
        }
        assert_eq!(0, pool.get_pool_size());
        refs.clear();
        assert_eq!(1024, pool.get_pool_size());
        for _ in 0..10000 {
            refs.push(PoolRef::default(&pool));
        }
        assert_eq!(0, pool.get_pool_size());
        let mut refs2 = refs.clone();
        assert_eq!(refs, refs2);
        for (left, right) in refs.iter().zip(refs2.iter()) {
            assert!(PoolRef::ptr_eq(left, right));
        }
        refs.clear();
        assert_eq!(0, pool.get_pool_size());
        refs2.clear();
        assert_eq!(1024, pool.get_pool_size());
    }

    #[test]
    fn null_pool_antics() {
        let pool: Pool<usize> = Pool::new(0);
        assert_eq!(0, pool.get_pool_size());
        let mut refs: Vec<_> = Vec::new();
        for _ in 0..10000 {
            refs.push(PoolRef::default(&pool));
        }
        assert_eq!(0, pool.get_pool_size());
        refs.clear();
        assert_eq!(0, pool.get_pool_size());
        for _ in 0..10000 {
            refs.push(PoolRef::default(&pool));
        }
        assert_eq!(0, pool.get_pool_size());
        let mut refs2 = refs.clone();
        assert_eq!(refs, refs2);
        for (left, right) in refs.iter().zip(refs2.iter()) {
            assert!(PoolRef::ptr_eq(left, right));
        }
        refs.clear();
        assert_eq!(0, pool.get_pool_size());
        refs2.clear();
        assert_eq!(0, pool.get_pool_size());
    }

    #[test]
    fn unwrap_or_clone() {
        let pool: Pool<usize> = Pool::new(1024);
        let val = PoolRef::new(&pool, 1337);
        // This would crash if unwrap_or_clone tries to drop the consumed PoolRef.
        let unwrapped = PoolRef::unwrap_or_clone(val);
        assert_eq!(1337, unwrapped);
    }

    #[test]
    fn option_of_ref_size_equals_ref_size() {
        use std::mem::size_of;
        assert_eq!(
            size_of::<PoolRef<usize>>(),
            size_of::<Option<PoolRef<usize>>>()
        );
        assert_eq!(size_of::<Pool<usize>>(), size_of::<Option<Pool<usize>>>());
    }
}