1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
use state_id::StateID; /// A trait describing the interface of a deterministic finite automaton (DFA). /// /// Every DFA has exactly one start state and at least one dead state (which /// may be the same, as in the case of an empty DFA). In all cases, a state /// identifier of `0` must be a dead state such that `DFA::is_dead_state(0)` /// always returns `true`. /// /// Every DFA also has zero or more match states, such that /// `DFA::is_match_state(id)` returns `true` if and only if `id` corresponds to /// a match state. /// /// In general, users of this trait likely will only need to use the search /// routines such as `is_match`, `shortest_match`, `find` or `rfind`. The other /// methods are lower level and are used for walking the transitions of a DFA /// manually. In particular, the aforementioned search routines are implemented /// generically in terms of the lower level transition walking routines. pub trait DFA { /// The representation used for state identifiers in this DFA. /// /// Typically, this is one of `u8`, `u16`, `u32`, `u64` or `usize`. type ID: StateID; /// Return the identifier of this DFA's start state. fn start_state(&self) -> Self::ID; /// Returns true if and only if the given identifier corresponds to a match /// state. fn is_match_state(&self, id: Self::ID) -> bool; /// Returns true if and only if the given identifier corresponds to a dead /// state. When a DFA enters a dead state, it is impossible to leave and /// thus can never lead to a match. fn is_dead_state(&self, id: Self::ID) -> bool; /// Returns true if and only if the given identifier corresponds to either /// a dead state or a match state, such that one of `is_match_state(id)` /// or `is_dead_state(id)` must return true. /// /// Depending on the implementation of the DFA, this routine can be used /// to save a branch in the core matching loop. Nevertheless, /// `is_match_state(id) || is_dead_state(id)` is always a valid /// implementation. fn is_match_or_dead_state(&self, id: Self::ID) -> bool; /// Returns true if and only if this DFA is anchored. /// /// When a DFA is anchored, it is only allowed to report matches that /// start at index `0`. fn is_anchored(&self) -> bool; /// Given the current state that this DFA is in and the next input byte, /// this method returns the identifier of the next state. The identifier /// returned is always valid, but it may correspond to a dead state. fn next_state(&self, current: Self::ID, input: u8) -> Self::ID; /// Like `next_state`, but its implementation may look up the next state /// without memory safety checks such as bounds checks. As such, callers /// must ensure that the given identifier corresponds to a valid DFA /// state. Implementors must, in turn, ensure that this routine is safe /// for all valid state identifiers and for all possible `u8` values. unsafe fn next_state_unchecked( &self, current: Self::ID, input: u8, ) -> Self::ID; /// Returns true if and only if the given bytes match this DFA. /// /// This routine may short circuit if it knows that scanning future input /// will never lead to a different result. In particular, if a DFA enters /// a match state or a dead state, then this routine will return `true` or /// `false`, respectively, without inspecting any future input. /// /// # Example /// /// This example shows how to use this method with a /// [`DenseDFA`](enum.DenseDFA.html). /// /// ``` /// use regex_automata::{DFA, DenseDFA}; /// /// # fn example() -> Result<(), regex_automata::Error> { /// let dfa = DenseDFA::new("foo[0-9]+bar")?; /// assert_eq!(true, dfa.is_match(b"foo12345bar")); /// assert_eq!(false, dfa.is_match(b"foobar")); /// # Ok(()) }; example().unwrap() /// ``` #[inline] fn is_match(&self, bytes: &[u8]) -> bool { self.is_match_at(bytes, 0) } /// Returns the first position at which a match is found. /// /// This routine stops scanning input in precisely the same circumstances /// as `is_match`. The key difference is that this routine returns the /// position at which it stopped scanning input if and only if a match /// was found. If no match is found, then `None` is returned. /// /// # Example /// /// This example shows how to use this method with a /// [`DenseDFA`](enum.DenseDFA.html). /// /// ``` /// use regex_automata::{DFA, DenseDFA}; /// /// # fn example() -> Result<(), regex_automata::Error> { /// let dfa = DenseDFA::new("foo[0-9]+")?; /// assert_eq!(Some(4), dfa.shortest_match(b"foo12345")); /// /// // Normally, the end of the leftmost first match here would be 3, /// // but the shortest match semantics detect a match earlier. /// let dfa = DenseDFA::new("abc|a")?; /// assert_eq!(Some(1), dfa.shortest_match(b"abc")); /// # Ok(()) }; example().unwrap() /// ``` #[inline] fn shortest_match(&self, bytes: &[u8]) -> Option<usize> { self.shortest_match_at(bytes, 0) } /// Returns the end offset of the longest match. If no match exists, /// then `None` is returned. /// /// Implementors of this trait are not required to implement any particular /// match semantics (such as leftmost-first), which are instead manifest in /// the DFA's topology itself. /// /// In particular, this method must continue searching even after it /// enters a match state. The search should only terminate once it has /// reached the end of the input or when it has entered a dead state. Upon /// termination, the position of the last byte seen while still in a match /// state is returned. /// /// # Example /// /// This example shows how to use this method with a /// [`DenseDFA`](enum.DenseDFA.html). By default, a dense DFA uses /// "leftmost first" match semantics. /// /// Leftmost first match semantics corresponds to the match with the /// smallest starting offset, but where the end offset is determined by /// preferring earlier branches in the original regular expression. For /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam` /// will match `Samwise` in `Samwise`. /// /// Generally speaking, the "leftmost first" match is how most backtracking /// regular expressions tend to work. This is in contrast to POSIX-style /// regular expressions that yield "leftmost longest" matches. Namely, /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using /// leftmost longest semantics. /// /// ``` /// use regex_automata::{DFA, DenseDFA}; /// /// # fn example() -> Result<(), regex_automata::Error> { /// let dfa = DenseDFA::new("foo[0-9]+")?; /// assert_eq!(Some(8), dfa.find(b"foo12345")); /// /// // Even though a match is found after reading the first byte (`a`), /// // the leftmost first match semantics demand that we find the earliest /// // match that prefers earlier parts of the pattern over latter parts. /// let dfa = DenseDFA::new("abc|a")?; /// assert_eq!(Some(3), dfa.find(b"abc")); /// # Ok(()) }; example().unwrap() /// ``` #[inline] fn find(&self, bytes: &[u8]) -> Option<usize> { self.find_at(bytes, 0) } /// Returns the start offset of the longest match in reverse, by searching /// from the end of the input towards the start of the input. If no match /// exists, then `None` is returned. In other words, this has the same /// match semantics as `find`, but in reverse. /// /// # Example /// /// This example shows how to use this method with a /// [`DenseDFA`](enum.DenseDFA.html). In particular, this routine /// is principally useful when used in conjunction with the /// [`dense::Builder::reverse`](dense/struct.Builder.html#method.reverse) /// configuration knob. In general, it's unlikely to be correct to use both /// `find` and `rfind` with the same DFA since any particular DFA will only /// support searching in one direction. /// /// ``` /// use regex_automata::{dense, DFA}; /// /// # fn example() -> Result<(), regex_automata::Error> { /// let dfa = dense::Builder::new().reverse(true).build("foo[0-9]+")?; /// assert_eq!(Some(0), dfa.rfind(b"foo12345")); /// # Ok(()) }; example().unwrap() /// ``` #[inline] fn rfind(&self, bytes: &[u8]) -> Option<usize> { self.rfind_at(bytes, bytes.len()) } /// Returns the same as `is_match`, but starts the search at the given /// offset. /// /// The significance of the starting point is that it takes the surrounding /// context into consideration. For example, if the DFA is anchored, then /// a match can only occur when `start == 0`. #[inline] fn is_match_at(&self, bytes: &[u8], start: usize) -> bool { if self.is_anchored() && start > 0 { return false; } let mut state = self.start_state(); if self.is_match_or_dead_state(state) { return self.is_match_state(state); } for &b in bytes[start..].iter() { state = unsafe { self.next_state_unchecked(state, b) }; if self.is_match_or_dead_state(state) { return self.is_match_state(state); } } false } /// Returns the same as `shortest_match`, but starts the search at the /// given offset. /// /// The significance of the starting point is that it takes the surrounding /// context into consideration. For example, if the DFA is anchored, then /// a match can only occur when `start == 0`. #[inline] fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> { if self.is_anchored() && start > 0 { return None; } let mut state = self.start_state(); if self.is_match_or_dead_state(state) { return if self.is_dead_state(state) { None } else { Some(start) }; } for (i, &b) in bytes[start..].iter().enumerate() { state = unsafe { self.next_state_unchecked(state, b) }; if self.is_match_or_dead_state(state) { return if self.is_dead_state(state) { None } else { Some(start + i + 1) }; } } None } /// Returns the same as `find`, but starts the search at the given /// offset. /// /// The significance of the starting point is that it takes the surrounding /// context into consideration. For example, if the DFA is anchored, then /// a match can only occur when `start == 0`. #[inline] fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> { if self.is_anchored() && start > 0 { return None; } let mut state = self.start_state(); let mut last_match = if self.is_dead_state(state) { return None; } else if self.is_match_state(state) { Some(start) } else { None }; for (i, &b) in bytes[start..].iter().enumerate() { state = unsafe { self.next_state_unchecked(state, b) }; if self.is_match_or_dead_state(state) { if self.is_dead_state(state) { return last_match; } last_match = Some(start + i + 1); } } last_match } /// Returns the same as `rfind`, but starts the search at the given /// offset. /// /// The significance of the starting point is that it takes the surrounding /// context into consideration. For example, if the DFA is anchored, then /// a match can only occur when `start == bytes.len()`. #[inline(never)] fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> { if self.is_anchored() && start < bytes.len() { return None; } let mut state = self.start_state(); let mut last_match = if self.is_dead_state(state) { return None; } else if self.is_match_state(state) { Some(start) } else { None }; for (i, &b) in bytes[..start].iter().enumerate().rev() { state = unsafe { self.next_state_unchecked(state, b) }; if self.is_match_or_dead_state(state) { if self.is_dead_state(state) { return last_match; } last_match = Some(i); } } last_match } } impl<'a, T: DFA> DFA for &'a T { type ID = T::ID; #[inline] fn start_state(&self) -> Self::ID { (**self).start_state() } #[inline] fn is_match_state(&self, id: Self::ID) -> bool { (**self).is_match_state(id) } #[inline] fn is_match_or_dead_state(&self, id: Self::ID) -> bool { (**self).is_match_or_dead_state(id) } #[inline] fn is_dead_state(&self, id: Self::ID) -> bool { (**self).is_dead_state(id) } #[inline] fn is_anchored(&self) -> bool { (**self).is_anchored() } #[inline] fn next_state(&self, current: Self::ID, input: u8) -> Self::ID { (**self).next_state(current, input) } #[inline] unsafe fn next_state_unchecked( &self, current: Self::ID, input: u8, ) -> Self::ID { (**self).next_state_unchecked(current, input) } }