1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
/*!
Types and routines specific to dense DFAs.
This module is the home of [`dense::DFA`](DFA).
This module also contains a [`dense::Builder`](Builder) and a
[`dense::Config`](Config) for configuring and building a dense DFA.
*/
#[cfg(feature = "alloc")]
use core::cmp;
use core::{convert::TryFrom, fmt, iter, mem::size_of, slice};
#[cfg(feature = "alloc")]
use alloc::{
collections::{BTreeMap, BTreeSet},
vec,
vec::Vec,
};
#[cfg(feature = "alloc")]
use crate::{
dfa::{
accel::Accel, determinize, error::Error, minimize::Minimizer, sparse,
},
nfa::thompson,
util::alphabet::ByteSet,
MatchKind,
};
use crate::{
dfa::{
accel::Accels,
automaton::{fmt_state_indicator, Automaton},
special::Special,
DEAD,
},
util::{
alphabet::{self, ByteClasses},
bytes::{self, DeserializeError, Endian, SerializeError},
id::{PatternID, StateID},
start::Start,
},
};
/// The label that is pre-pended to a serialized DFA.
const LABEL: &str = "rust-regex-automata-dfa-dense";
/// The format version of dense regexes. This version gets incremented when a
/// change occurs. A change may not necessarily be a breaking change, but the
/// version does permit good error messages in the case where a breaking change
/// is made.
const VERSION: u32 = 2;
/// The configuration used for compiling a dense DFA.
///
/// A dense DFA configuration is a simple data object that is typically used
/// with [`dense::Builder::configure`](self::Builder::configure).
///
/// The default configuration guarantees that a search will _never_ return a
/// [`MatchError`](crate::MatchError) for any haystack or pattern. Setting a
/// quit byte with [`Config::quit`] or enabling heuristic support for Unicode
/// word boundaries with [`Config::unicode_word_boundary`] can in turn cause a
/// search to return an error. See the corresponding configuration options for
/// more details on when those error conditions arise.
#[cfg(feature = "alloc")]
#[derive(Clone, Copy, Debug, Default)]
pub struct Config {
// As with other configuration types in this crate, we put all our knobs
// in options so that we can distinguish between "default" and "not set."
// This makes it possible to easily combine multiple configurations
// without default values overwriting explicitly specified values. See the
// 'overwrite' method.
//
// For docs on the fields below, see the corresponding method setters.
anchored: Option<bool>,
accelerate: Option<bool>,
minimize: Option<bool>,
match_kind: Option<MatchKind>,
starts_for_each_pattern: Option<bool>,
byte_classes: Option<bool>,
unicode_word_boundary: Option<bool>,
quit: Option<ByteSet>,
dfa_size_limit: Option<Option<usize>>,
determinize_size_limit: Option<Option<usize>>,
}
#[cfg(feature = "alloc")]
impl Config {
/// Return a new default dense DFA compiler configuration.
pub fn new() -> Config {
Config::default()
}
/// Set whether matching must be anchored at the beginning of the input.
///
/// When enabled, a match must begin at the start of a search. When
/// disabled, the DFA will act as if the pattern started with a `(?s:.)*?`,
/// which enables a match to appear anywhere.
///
/// Note that if you want to run both anchored and unanchored
/// searches without building multiple automatons, you can enable the
/// [`Config::starts_for_each_pattern`] configuration instead. This will
/// permit unanchored any-pattern searches and pattern-specific anchored
/// searches. See the documentation for that configuration for an example.
///
/// By default this is disabled.
///
/// **WARNING:** this is subtly different than using a `^` at the start of
/// your regex. A `^` forces a regex to match exclusively at the start of
/// input, regardless of where you begin your search. In contrast, enabling
/// this option will allow your regex to match anywhere in your input,
/// but the match must start at the beginning of a search. (Most of the
/// higher level convenience search routines make "start of input" and
/// "start of search" equivalent, but some routines allow treating these as
/// orthogonal.)
///
/// For example, consider the haystack `aba` and the following searches:
///
/// 1. The regex `^a` is compiled with `anchored=false` and searches
/// `aba` starting at position `2`. Since `^` requires the match to
/// start at the beginning of the input and `2 > 0`, no match is found.
/// 2. The regex `a` is compiled with `anchored=true` and searches `aba`
/// starting at position `2`. This reports a match at `[2, 3]` since
/// the match starts where the search started. Since there is no `^`,
/// there is no requirement for the match to start at the beginning of
/// the input.
/// 3. The regex `a` is compiled with `anchored=true` and searches `aba`
/// starting at position `1`. Since `b` corresponds to position `1` and
/// since the regex is anchored, it finds no match.
/// 4. The regex `a` is compiled with `anchored=false` and searches `aba`
/// startting at position `1`. Since the regex is neither anchored nor
/// starts with `^`, the regex is compiled with an implicit `(?s:.)*?`
/// prefix that permits it to match anywhere. Thus, it reports a match
/// at `[2, 3]`.
///
/// # Example
///
/// This demonstrates the differences between an anchored search and
/// a pattern that begins with `^` (as described in the above warning
/// message).
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// let haystack = "aba".as_bytes();
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().anchored(false)) // default
/// .build(r"^a")?;
/// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?;
/// // No match is found because 2 is not the beginning of the haystack,
/// // which is what ^ requires.
/// let expected = None;
/// assert_eq!(expected, got);
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().anchored(true))
/// .build(r"a")?;
/// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?;
/// // An anchored search can still match anywhere in the haystack, it just
/// // must begin at the start of the search which is '2' in this case.
/// let expected = Some(HalfMatch::must(0, 3));
/// assert_eq!(expected, got);
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().anchored(true))
/// .build(r"a")?;
/// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?;
/// // No match is found since we start searching at offset 1 which
/// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
/// // is found.
/// let expected = None;
/// assert_eq!(expected, got);
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().anchored(false)) // default
/// .build(r"a")?;
/// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?;
/// // Since anchored=false, an implicit '(?s:.)*?' prefix was added to the
/// // pattern. Even though the search starts at 'b', the 'match anything'
/// // prefix allows the search to match 'a'.
/// let expected = Some(HalfMatch::must(0, 3));
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn anchored(mut self, yes: bool) -> Config {
self.anchored = Some(yes);
self
}
/// Enable state acceleration.
///
/// When enabled, DFA construction will analyze each state to determine
/// whether it is eligible for simple acceleration. Acceleration typically
/// occurs when most of a state's transitions loop back to itself, leaving
/// only a select few bytes that will exit the state. When this occurs,
/// other routines like `memchr` can be used to look for those bytes which
/// may be much faster than traversing the DFA.
///
/// Callers may elect to disable this if consistent performance is more
/// desirable than variable performance. Namely, acceleration can sometimes
/// make searching slower than it otherwise would be if the transitions
/// that leave accelerated states are traversed frequently.
///
/// See [`Automaton::accelerator`](crate::dfa::Automaton::accelerator) for
/// an example.
///
/// This is enabled by default.
pub fn accelerate(mut self, yes: bool) -> Config {
self.accelerate = Some(yes);
self
}
/// Minimize the DFA.
///
/// When enabled, the DFA built will be minimized such that it is as small
/// as possible.
///
/// Whether one enables minimization or not depends on the types of costs
/// you're willing to pay and how much you care about its benefits. In
/// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
/// space, where `n` is the number of DFA states and `k` is the alphabet
/// size. In practice, minimization can be quite costly in terms of both
/// space and time, so it should only be done if you're willing to wait
/// longer to produce a DFA. In general, you might want a minimal DFA in
/// the following circumstances:
///
/// 1. You would like to optimize for the size of the automaton. This can
/// manifest in one of two ways. Firstly, if you're converting the
/// DFA into Rust code (or a table embedded in the code), then a minimal
/// DFA will translate into a corresponding reduction in code size, and
/// thus, also the final compiled binary size. Secondly, if you are
/// building many DFAs and putting them on the heap, you'll be able to
/// fit more if they are smaller. Note though that building a minimal
/// DFA itself requires additional space; you only realize the space
/// savings once the minimal DFA is constructed (at which point, the
/// space used for minimization is freed).
/// 2. You've observed that a smaller DFA results in faster match
/// performance. Naively, this isn't guaranteed since there is no
/// inherent difference between matching with a bigger-than-minimal
/// DFA and a minimal DFA. However, a smaller DFA may make use of your
/// CPU's cache more efficiently.
/// 3. You are trying to establish an equivalence between regular
/// languages. The standard method for this is to build a minimal DFA
/// for each language and then compare them. If the DFAs are equivalent
/// (up to state renaming), then the languages are equivalent.
///
/// Typically, minimization only makes sense as an offline process. That
/// is, one might minimize a DFA before serializing it to persistent
/// storage. In practical terms, minimization can take around an order of
/// magnitude more time than compiling the initial DFA via determinization.
///
/// This option is disabled by default.
pub fn minimize(mut self, yes: bool) -> Config {
self.minimize = Some(yes);
self
}
/// Set the desired match semantics.
///
/// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
/// match semantics of Perl-like regex engines. That is, when multiple
/// patterns would match at the same leftmost position, the pattern that
/// appears first in the concrete syntax is chosen.
///
/// Currently, the only other kind of match semantics supported is
/// [`MatchKind::All`]. This corresponds to classical DFA construction
/// where all possible matches are added to the DFA.
///
/// Typically, `All` is used when one wants to execute an overlapping
/// search and `LeftmostFirst` otherwise. In particular, it rarely makes
/// sense to use `All` with the various "leftmost" find routines, since the
/// leftmost routines depend on the `LeftmostFirst` automata construction
/// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
/// as a way to terminate the search and report a match. `LeftmostFirst`
/// also supports non-greedy matches using this strategy where as `All`
/// does not.
///
/// # Example: overlapping search
///
/// This example shows the typical use of `MatchKind::All`, which is to
/// report overlapping matches.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, OverlappingState, dense},
/// HalfMatch, MatchKind,
/// };
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().match_kind(MatchKind::All))
/// .build_many(&[r"\w+$", r"\S+$"])?;
/// let haystack = "@foo".as_bytes();
/// let mut state = OverlappingState::start();
///
/// let expected = Some(HalfMatch::must(1, 4));
/// let got = dfa.find_overlapping_fwd(haystack, &mut state)?;
/// assert_eq!(expected, got);
///
/// // The first pattern also matches at the same position, so re-running
/// // the search will yield another match. Notice also that the first
/// // pattern is returned after the second. This is because the second
/// // pattern begins its match before the first, is therefore an earlier
/// // match and is thus reported first.
/// let expected = Some(HalfMatch::must(0, 4));
/// let got = dfa.find_overlapping_fwd(haystack, &mut state)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: reverse automaton to find start of match
///
/// Another example for using `MatchKind::All` is for constructing a
/// reverse automaton to find the start of a match. `All` semantics are
/// used for this in order to find the longest possible match, which
/// corresponds to the leftmost starting position.
///
/// Note that if you need the starting position then
/// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
/// you, so it's usually not necessary to do this yourself.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, MatchKind};
///
/// let haystack = "123foobar456".as_bytes();
/// let pattern = r"[a-z]+";
///
/// let dfa_fwd = dense::DFA::new(pattern)?;
/// let dfa_rev = dense::Builder::new()
/// .configure(dense::Config::new()
/// .anchored(true)
/// .match_kind(MatchKind::All)
/// )
/// .build(pattern)?;
/// let expected_fwd = HalfMatch::must(0, 9);
/// let expected_rev = HalfMatch::must(0, 3);
/// let got_fwd = dfa_fwd.find_leftmost_fwd(haystack)?.unwrap();
/// // Here we don't specify the pattern to search for since there's only
/// // one pattern and we're doing a leftmost search. But if this were an
/// // overlapping search, you'd need to specify the pattern that matched
/// // in the forward direction. (Otherwise, you might wind up finding the
/// // starting position of a match of some other pattern.) That in turn
/// // requires building the reverse automaton with starts_for_each_pattern
/// // enabled. Indeed, this is what Regex does internally.
/// let got_rev = dfa_rev.find_leftmost_rev_at(
/// None, haystack, 0, got_fwd.offset(),
/// )?.unwrap();
/// assert_eq!(expected_fwd, got_fwd);
/// assert_eq!(expected_rev, got_rev);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn match_kind(mut self, kind: MatchKind) -> Config {
self.match_kind = Some(kind);
self
}
/// Whether to compile a separate start state for each pattern in the
/// automaton.
///
/// When enabled, a separate **anchored** start state is added for each
/// pattern in the DFA. When this start state is used, then the DFA will
/// only search for matches for the pattern specified, even if there are
/// other patterns in the DFA.
///
/// The main downside of this option is that it can potentially increase
/// the size of the DFA and/or increase the time it takes to build the DFA.
///
/// There are a few reasons one might want to enable this (it's disabled
/// by default):
///
/// 1. When looking for the start of an overlapping match (using a
/// reverse DFA), doing it correctly requires starting the reverse search
/// using the starting state of the pattern that matched in the forward
/// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
/// it will automatically enable this option when building the reverse DFA
/// internally.
/// 2. When you want to use a DFA with multiple patterns to both search
/// for matches of any pattern or to search for anchored matches of one
/// particular pattern while using the same DFA. (Otherwise, you would need
/// to compile a new DFA for each pattern.)
/// 3. Since the start states added for each pattern are anchored, if you
/// compile an unanchored DFA with one pattern while also enabling this
/// option, then you can use the same DFA to perform anchored or unanchored
/// searches. The latter you get with the standard search APIs. The former
/// you get from the various `_at` search methods that allow you specify a
/// pattern ID to search for.
///
/// By default this is disabled.
///
/// # Example
///
/// This example shows how to use this option to permit the same DFA to
/// run both anchored and unanchored searches for a single pattern.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// HalfMatch, PatternID,
/// };
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().starts_for_each_pattern(true))
/// .build(r"foo[0-9]+")?;
/// let haystack = b"quux foo123";
///
/// // Here's a normal unanchored search. Notice that we use 'None' for the
/// // pattern ID. Since the DFA was built as an unanchored machine, it
/// // use its default unanchored starting state.
/// let expected = HalfMatch::must(0, 11);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
/// None, None, haystack, 0, haystack.len(),
/// )?);
/// // But now if we explicitly specify the pattern to search ('0' being
/// // the only pattern in the DFA), then it will use the starting state
/// // for that specific pattern which is always anchored. Since the
/// // pattern doesn't have a match at the beginning of the haystack, we
/// // find nothing.
/// assert_eq!(None, dfa.find_leftmost_fwd_at(
/// None, Some(PatternID::must(0)), haystack, 0, haystack.len(),
/// )?);
/// // And finally, an anchored search is not the same as putting a '^' at
/// // beginning of the pattern. An anchored search can only match at the
/// // beginning of the *search*, which we can change:
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
/// None, Some(PatternID::must(0)), haystack, 5, haystack.len(),
/// )?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
self.starts_for_each_pattern = Some(yes);
self
}
/// Whether to attempt to shrink the size of the DFA's alphabet or not.
///
/// This option is enabled by default and should never be disabled unless
/// one is debugging a generated DFA.
///
/// When enabled, the DFA will use a map from all possible bytes to their
/// corresponding equivalence class. Each equivalence class represents a
/// set of bytes that does not discriminate between a match and a non-match
/// in the DFA. For example, the pattern `[ab]+` has at least two
/// equivalence classes: a set containing `a` and `b` and a set containing
/// every byte except for `a` and `b`. `a` and `b` are in the same
/// equivalence classes because they never discriminate between a match
/// and a non-match.
///
/// The advantage of this map is that the size of the transition table
/// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
/// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
/// classes (rounded up to the nearest power of 2). As a result, total
/// space usage can decrease substantially. Moreover, since a smaller
/// alphabet is used, DFA compilation becomes faster as well.
///
/// **WARNING:** This is only useful for debugging DFAs. Disabling this
/// does not yield any speed advantages. Namely, even when this is
/// disabled, a byte class map is still used while searching. The only
/// difference is that every byte will be forced into its own distinct
/// equivalence class. This is useful for debugging the actual generated
/// transitions because it lets one see the transitions defined on actual
/// bytes instead of the equivalence classes.
pub fn byte_classes(mut self, yes: bool) -> Config {
self.byte_classes = Some(yes);
self
}
/// Heuristically enable Unicode word boundaries.
///
/// When set, this will attempt to implement Unicode word boundaries as if
/// they were ASCII word boundaries. This only works when the search input
/// is ASCII only. If a non-ASCII byte is observed while searching, then a
/// [`MatchError::Quit`](crate::MatchError::Quit) error is returned.
///
/// A possible alternative to enabling this option is to simply use an
/// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
/// option is if you absolutely need Unicode support. This option lets one
/// use a fast search implementation (a DFA) for some potentially very
/// common cases, while providing the option to fall back to some other
/// regex engine to handle the general case when an error is returned.
///
/// If the pattern provided has no Unicode word boundary in it, then this
/// option has no effect. (That is, quitting on a non-ASCII byte only
/// occurs when this option is enabled _and_ a Unicode word boundary is
/// present in the pattern.)
///
/// This is almost equivalent to setting all non-ASCII bytes to be quit
/// bytes. The only difference is that this will cause non-ASCII bytes to
/// be quit bytes _only_ when a Unicode word boundary is present in the
/// pattern.
///
/// When enabling this option, callers _must_ be prepared to handle
/// a [`MatchError`](crate::MatchError) error during search.
/// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
/// to using the `try_` suite of methods. Alternatively, if
/// callers can guarantee that their input is ASCII only, then a
/// [`MatchError::Quit`](crate::MatchError::Quit) error will never be
/// returned while searching.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows how to heuristically enable Unicode word boundaries
/// in a pattern. It also shows what happens when a search comes across a
/// non-ASCII byte.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// HalfMatch, MatchError, MatchKind,
/// };
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().unicode_word_boundary(true))
/// .build(r"\b[0-9]+\b")?;
///
/// // The match occurs before the search ever observes the snowman
/// // character, so no error occurs.
/// let haystack = "foo 123 ☃".as_bytes();
/// let expected = Some(HalfMatch::must(0, 7));
/// let got = dfa.find_leftmost_fwd(haystack)?;
/// assert_eq!(expected, got);
///
/// // Notice that this search fails, even though the snowman character
/// // occurs after the ending match offset. This is because search
/// // routines read one byte past the end of the search to account for
/// // look-around, and indeed, this is required here to determine whether
/// // the trailing \b matches.
/// let haystack = "foo 123☃".as_bytes();
/// let expected = MatchError::Quit { byte: 0xE2, offset: 7 };
/// let got = dfa.find_leftmost_fwd(haystack);
/// assert_eq!(Err(expected), got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
// We have a separate option for this instead of just setting the
// appropriate quit bytes here because we don't want to set quit bytes
// for every regex. We only want to set them when the regex contains a
// Unicode word boundary.
self.unicode_word_boundary = Some(yes);
self
}
/// Add a "quit" byte to the DFA.
///
/// When a quit byte is seen during search time, then search will return
/// a [`MatchError::Quit`](crate::MatchError::Quit) error indicating the
/// offset at which the search stopped.
///
/// A quit byte will always overrule any other aspects of a regex. For
/// example, if the `x` byte is added as a quit byte and the regex `\w` is
/// used, then observing `x` will cause the search to quit immediately
/// despite the fact that `x` is in the `\w` class.
///
/// This mechanism is primarily useful for heuristically enabling certain
/// features like Unicode word boundaries in a DFA. Namely, if the input
/// to search is ASCII, then a Unicode word boundary can be implemented
/// via an ASCII word boundary with no change in semantics. Thus, a DFA
/// can attempt to match a Unicode word boundary but give up as soon as it
/// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
/// to be quit bytes, then Unicode word boundaries will be permitted when
/// building DFAs. Of course, callers should enable
/// [`Config::unicode_word_boundary`] if they want this behavior instead.
/// (The advantage being that non-ASCII quit bytes will only be added if a
/// Unicode word boundary is in the pattern.)
///
/// When enabling this option, callers _must_ be prepared to handle a
/// [`MatchError`](crate::MatchError) error during search. When using a
/// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
/// `try_` suite of methods.
///
/// By default, there are no quit bytes set.
///
/// # Panics
///
/// This panics if heuristic Unicode word boundaries are enabled and any
/// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
/// Unicode word boundaries requires setting every non-ASCII byte to a quit
/// byte. So if the caller attempts to undo any of that, then this will
/// panic.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte. This could be useful if, for example, you wanted to prevent
/// a user supplied pattern from matching across a line boundary.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// HalfMatch, MatchError,
/// };
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
///
/// let haystack = "foo\nbar".as_bytes();
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::Quit { byte: 0x0A, offset: 3 };
/// let got = dfa.find_leftmost_fwd(haystack).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn quit(mut self, byte: u8, yes: bool) -> Config {
if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
panic!(
"cannot set non-ASCII byte to be non-quit when \
Unicode word boundaries are enabled"
);
}
if self.quit.is_none() {
self.quit = Some(ByteSet::empty());
}
if yes {
self.quit.as_mut().unwrap().add(byte);
} else {
self.quit.as_mut().unwrap().remove(byte);
}
self
}
/// Set a size limit on the total heap used by a DFA.
///
/// This size limit is expressed in bytes and is applied during
/// determinization of an NFA into a DFA. If the DFA's heap usage, and only
/// the DFA, exceeds this configured limit, then determinization is stopped
/// and an error is returned.
///
/// This limit does not apply to auxiliary storage used during
/// determinization that isn't part of the generated DFA.
///
/// This limit is only applied during determinization. Currently, there is
/// no way to post-pone this check to after minimization if minimization
/// was enabled.
///
/// The total limit on heap used during determinization is the sum of the
/// DFA and determinization size limits.
///
/// The default is no limit.
///
/// # Example
///
/// This example shows a DFA that fails to build because of a configured
/// size limit. This particular example also serves as a cautionary tale
/// demonstrating just how big DFAs with large Unicode character classes
/// can get.
///
/// ```
/// use regex_automata::dfa::{dense, Automaton};
///
/// // 3MB isn't enough!
/// dense::Builder::new()
/// .configure(dense::Config::new().dfa_size_limit(Some(3_000_000)))
/// .build(r"\w{20}")
/// .unwrap_err();
///
/// // ... but 4MB probably is!
/// // (Note that DFA sizes aren't necessarily stable between releases.)
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().dfa_size_limit(Some(4_000_000)))
/// .build(r"\w{20}")?;
/// let haystack = "A".repeat(20).into_bytes();
/// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// While one needs a little more than 3MB to represent `\w{20}`, it
/// turns out that you only need a little more than 4KB to represent
/// `(?-u:\w{20})`. So only use Unicode if you need it!
pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
self.dfa_size_limit = Some(bytes);
self
}
/// Set a size limit on the total heap used by determinization.
///
/// This size limit is expressed in bytes and is applied during
/// determinization of an NFA into a DFA. If the heap used for auxiliary
/// storage during determinization (memory that is not in the DFA but
/// necessary for building the DFA) exceeds this configured limit, then
/// determinization is stopped and an error is returned.
///
/// This limit does not apply to heap used by the DFA itself.
///
/// The total limit on heap used during determinization is the sum of the
/// DFA and determinization size limits.
///
/// The default is no limit.
///
/// # Example
///
/// This example shows a DFA that fails to build because of a
/// configured size limit on the amount of heap space used by
/// determinization. This particular example complements the example for
/// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
/// potentially make DFAs themselves big, but it also results in more
/// auxiliary storage during determinization. (Although, auxiliary storage
/// is still not as much as the DFA itself.)
///
/// ```
/// use regex_automata::dfa::{dense, Automaton};
///
/// // 300KB isn't enough!
/// dense::Builder::new()
/// .configure(dense::Config::new()
/// .determinize_size_limit(Some(300_000))
/// )
/// .build(r"\w{20}")
/// .unwrap_err();
///
/// // ... but 400KB probably is!
/// // (Note that auxiliary storage sizes aren't necessarily stable between
/// // releases.)
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new()
/// .determinize_size_limit(Some(400_000))
/// )
/// .build(r"\w{20}")?;
/// let haystack = "A".repeat(20).into_bytes();
/// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
self.determinize_size_limit = Some(bytes);
self
}
/// Returns whether this configuration has enabled anchored searches.
pub fn get_anchored(&self) -> bool {
self.anchored.unwrap_or(false)
}
/// Returns whether this configuration has enabled simple state
/// acceleration.
pub fn get_accelerate(&self) -> bool {
self.accelerate.unwrap_or(true)
}
/// Returns whether this configuration has enabled the expensive process
/// of minimizing a DFA.
pub fn get_minimize(&self) -> bool {
self.minimize.unwrap_or(false)
}
/// Returns the match semantics set in this configuration.
pub fn get_match_kind(&self) -> MatchKind {
self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
}
/// Returns whether this configuration has enabled anchored starting states
/// for every pattern in the DFA.
pub fn get_starts_for_each_pattern(&self) -> bool {
self.starts_for_each_pattern.unwrap_or(false)
}
/// Returns whether this configuration has enabled byte classes or not.
/// This is typically a debugging oriented option, as disabling it confers
/// no speed benefit.
pub fn get_byte_classes(&self) -> bool {
self.byte_classes.unwrap_or(true)
}
/// Returns whether this configuration has enabled heuristic Unicode word
/// boundary support. When enabled, it is possible for a search to return
/// an error.
pub fn get_unicode_word_boundary(&self) -> bool {
self.unicode_word_boundary.unwrap_or(false)
}
/// Returns whether this configuration will instruct the DFA to enter a
/// quit state whenever the given byte is seen during a search. When at
/// least one byte has this enabled, it is possible for a search to return
/// an error.
pub fn get_quit(&self, byte: u8) -> bool {
self.quit.map_or(false, |q| q.contains(byte))
}
/// Returns the DFA size limit of this configuration if one was set.
/// The size limit is total number of bytes on the heap that a DFA is
/// permitted to use. If the DFA exceeds this limit during construction,
/// then construction is stopped and an error is returned.
pub fn get_dfa_size_limit(&self) -> Option<usize> {
self.dfa_size_limit.unwrap_or(None)
}
/// Returns the determinization size limit of this configuration if one
/// was set. The size limit is total number of bytes on the heap that
/// determinization is permitted to use. If determinization exceeds this
/// limit during construction, then construction is stopped and an error is
/// returned.
///
/// This is different from the DFA size limit in that this only applies to
/// the auxiliary storage used during determinization. Once determinization
/// is complete, this memory is freed.
///
/// The limit on the total heap memory used is the sum of the DFA and
/// determinization size limits.
pub fn get_determinize_size_limit(&self) -> Option<usize> {
self.determinize_size_limit.unwrap_or(None)
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(self, o: Config) -> Config {
Config {
anchored: o.anchored.or(self.anchored),
accelerate: o.accelerate.or(self.accelerate),
minimize: o.minimize.or(self.minimize),
match_kind: o.match_kind.or(self.match_kind),
starts_for_each_pattern: o
.starts_for_each_pattern
.or(self.starts_for_each_pattern),
byte_classes: o.byte_classes.or(self.byte_classes),
unicode_word_boundary: o
.unicode_word_boundary
.or(self.unicode_word_boundary),
quit: o.quit.or(self.quit),
dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
determinize_size_limit: o
.determinize_size_limit
.or(self.determinize_size_limit),
}
}
}
/// A builder for constructing a deterministic finite automaton from regular
/// expressions.
///
/// This builder provides two main things:
///
/// 1. It provides a few different `build` routines for actually constructing
/// a DFA from different kinds of inputs. The most convenient is
/// [`Builder::build`], which builds a DFA directly from a pattern string. The
/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
/// from an NFA.
/// 2. The builder permits configuring a number of things.
/// [`Builder::configure`] is used with [`Config`] to configure aspects of
/// the DFA and the construction process itself. [`Builder::syntax`] and
/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
/// construction, respectively. The syntax and thompson configurations only
/// apply when building from a pattern string.
///
/// This builder always constructs a *single* DFA. As such, this builder
/// can only be used to construct regexes that either detect the presence
/// of a match or find the end location of a match. A single DFA cannot
/// produce both the start and end of a match. For that information, use a
/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
/// use a DFA directly is if the end location of a match is enough for your use
/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
/// second reverse DFA is needed to find the start of a match.
///
/// Note that if one wants to build a sparse DFA, you must first build a dense
/// DFA and convert that to a sparse DFA. There is no way to build a sparse
/// DFA without first building a dense DFA.
///
/// # Example
///
/// This example shows how to build a minimized DFA that completely disables
/// Unicode. That is:
///
/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
/// and `\b` are ASCII-only while `.` matches any byte except for `\n`
/// (instead of any UTF-8 encoding of a Unicode scalar value except for
/// `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
/// * The pattern itself is permitted to match invalid UTF-8. For example,
/// things like `[^a]` that match any byte except for `a` are permitted.
/// * Unanchored patterns can search through invalid UTF-8. That is, for
/// unanchored patterns, the implicit prefix is `(?s-u:.)*?` instead of
/// `(?s:.)*?`.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// nfa::thompson,
/// HalfMatch, SyntaxConfig,
/// };
///
/// let dfa = dense::Builder::new()
/// .configure(dense::Config::new().minimize(false))
/// .syntax(SyntaxConfig::new().unicode(false).utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo[^b]ar.*")?;
///
/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
/// let expected = Some(HalfMatch::must(0, 10));
/// let got = dfa.find_leftmost_fwd(haystack)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
thompson: thompson::Builder,
}
#[cfg(feature = "alloc")]
impl Builder {
/// Create a new dense DFA builder with the default configuration.
pub fn new() -> Builder {
Builder {
config: Config::default(),
thompson: thompson::Builder::new(),
}
}
/// Build a DFA from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
pub fn build(&self, pattern: &str) -> Result<OwnedDFA, Error> {
self.build_many(&[pattern])
}
/// Build a DFA from the given patterns.
///
/// When matches are returned, the pattern ID corresponds to the index of
/// the pattern in the slice given.
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<OwnedDFA, Error> {
let nfa = self.thompson.build_many(patterns).map_err(Error::nfa)?;
self.build_from_nfa(&nfa)
}
/// Build a DFA from the given NFA.
///
/// # Example
///
/// This example shows how to build a DFA if you already have an NFA in
/// hand.
///
/// ```
/// use regex_automata::{
/// dfa::{Automaton, dense},
/// nfa::thompson,
/// HalfMatch,
/// };
///
/// let haystack = "foo123bar".as_bytes();
///
/// // This shows how to set non-default options for building an NFA.
/// let nfa = thompson::Builder::new()
/// .configure(thompson::Config::new().shrink(false))
/// .build(r"[0-9]+")?;
/// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
/// let expected = Some(HalfMatch::must(0, 6));
/// let got = dfa.find_leftmost_fwd(haystack)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_nfa(
&self,
nfa: &thompson::NFA,
) -> Result<OwnedDFA, Error> {
let mut quit = self.config.quit.unwrap_or(ByteSet::empty());
if self.config.get_unicode_word_boundary()
&& nfa.has_word_boundary_unicode()
{
for b in 0x80..=0xFF {
quit.add(b);
}
}
let classes = if !self.config.get_byte_classes() {
// DFAs will always use the equivalence class map, but enabling
// this option is useful for debugging. Namely, this will cause all
// transitions to be defined over their actual bytes instead of an
// opaque equivalence class identifier. The former is much easier
// to grok as a human.
ByteClasses::singletons()
} else {
let mut set = nfa.byte_class_set().clone();
// It is important to distinguish any "quit" bytes from all other
// bytes. Otherwise, a non-quit byte may end up in the same class
// as a quit byte, and thus cause the DFA stop when it shouldn't.
if !quit.is_empty() {
set.add_set(&quit);
}
set.byte_classes()
};
let mut dfa = DFA::initial(
classes,
nfa.pattern_len(),
self.config.get_starts_for_each_pattern(),
)?;
determinize::Config::new()
.anchored(self.config.get_anchored())
.match_kind(self.config.get_match_kind())
.quit(quit)
.dfa_size_limit(self.config.get_dfa_size_limit())
.determinize_size_limit(self.config.get_determinize_size_limit())
.run(nfa, &mut dfa)?;
if self.config.get_minimize() {
dfa.minimize();
}
if self.config.get_accelerate() {
dfa.accelerate();
}
Ok(dfa)
}
/// Apply the given dense DFA configuration options to this builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`SyntaxConfig`](crate::SyntaxConfig).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// These settings only apply when constructing a DFA directly from a
/// pattern.
pub fn syntax(
&mut self,
config: crate::util::syntax::SyntaxConfig,
) -> &mut Builder {
self.thompson.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like whether the DFA should match the regex
/// in reverse or if additional time should be spent shrinking the size of
/// the NFA.
///
/// These settings only apply when constructing a DFA directly from a
/// pattern.
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.thompson.configure(config);
self
}
}
#[cfg(feature = "alloc")]
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
/// A convenience alias for an owned DFA. We use this particular instantiation
/// a lot in this crate, so it's worth giving it a name. This instantiation
/// is commonly used for mutable APIs on the DFA while building it. The main
/// reason for making DFAs generic is no_std support, and more generally,
/// making it possible to load a DFA from an arbitrary slice of bytes.
#[cfg(feature = "alloc")]
pub(crate) type OwnedDFA = DFA<Vec<u32>>;
/// A dense table-based deterministic finite automaton (DFA).
///
/// All dense DFAs have one or more start states, zero or more match states
/// and a transition table that maps the current state and the current byte
/// of input to the next state. A DFA can use this information to implement
/// fast searching. In particular, the use of a dense DFA generally makes the
/// trade off that match speed is the most valuable characteristic, even if
/// building the DFA may take significant time *and* space. (More concretely,
/// building a DFA takes time and space that is exponential in the size of the
/// pattern in the worst case.) As such, the processing of every byte of input
/// is done with a small constant number of operations that does not vary with
/// the pattern, its size or the size of the alphabet. If your needs don't line
/// up with this trade off, then a dense DFA may not be an adequate solution to
/// your problem.
///
/// In contrast, a [`sparse::DFA`] makes the opposite
/// trade off: it uses less space but will execute a variable number of
/// instructions per byte at match time, which makes it slower for matching.
/// (Note that space usage is still exponential in the size of the pattern in
/// the worst case.)
///
/// A DFA can be built using the default configuration via the
/// [`DFA::new`] constructor. Otherwise, one can
/// configure various aspects via [`dense::Builder`](Builder).
///
/// A single DFA fundamentally supports the following operations:
///
/// 1. Detection of a match.
/// 2. Location of the end of a match.
/// 3. In the case of a DFA with multiple patterns, which pattern matched is
/// reported as well.
///
/// A notable absence from the above list of capabilities is the location of
/// the *start* of a match. In order to provide both the start and end of
/// a match, *two* DFAs are required. This functionality is provided by a
/// [`Regex`](crate::dfa::regex::Regex).
///
/// # Type parameters
///
/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
///
/// # The `Automaton` trait
///
/// This type implements the [`Automaton`] trait, which means it can be used
/// for searching. For example:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct DFA<T> {
/// The transition table for this DFA. This includes the transitions
/// themselves, along with the stride, number of states and the equivalence
/// class mapping.
tt: TransitionTable<T>,
/// The set of starting state identifiers for this DFA. The starting state
/// IDs act as pointers into the transition table. The specific starting
/// state chosen for each search is dependent on the context at which the
/// search begins.
st: StartTable<T>,
/// The set of match states and the patterns that match for each
/// corresponding match state.
///
/// This structure is technically only needed because of support for
/// multi-regexes. Namely, multi-regexes require answering not just whether
/// a match exists, but _which_ patterns match. So we need to store the
/// matching pattern IDs for each match state. We do this even when there
/// is only one pattern for the sake of simplicity. In practice, this uses
/// up very little space for the case of on pattern.
ms: MatchStates<T>,
/// Information about which states are "special." Special states are states
/// that are dead, quit, matching, starting or accelerated. For more info,
/// see the docs for `Special`.
special: Special,
/// The accelerators for this DFA.
///
/// If a state is accelerated, then there exist only a small number of
/// bytes that can cause the DFA to leave the state. This permits searching
/// to use optimized routines to find those specific bytes instead of using
/// the transition table.
///
/// All accelerated states exist in a contiguous range in the DFA's
/// transition table. See dfa/special.rs for more details on how states are
/// arranged.
accels: Accels<T>,
}
#[cfg(feature = "alloc")]
impl OwnedDFA {
/// Parse the given regular expression using a default configuration and
/// return the corresponding DFA.
///
/// If you want a non-default configuration, then use the
/// [`dense::Builder`](Builder) to set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// let dfa = dense::DFA::new("foo[0-9]+bar")?;
/// let expected = HalfMatch::must(0, 11);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new(pattern: &str) -> Result<OwnedDFA, Error> {
Builder::new().build(pattern)
}
/// Parse the given regular expressions using a default configuration and
/// return the corresponding multi-DFA.
///
/// If you want a non-default configuration, then use the
/// [`dense::Builder`](Builder) to set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
/// let expected = HalfMatch::must(1, 3);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<OwnedDFA, Error> {
Builder::new().build_many(patterns)
}
}
#[cfg(feature = "alloc")]
impl OwnedDFA {
/// Create a new DFA that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// let dfa = dense::DFA::always_match()?;
///
/// let expected = HalfMatch::must(0, 0);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"")?);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<OwnedDFA, Error> {
let nfa = thompson::NFA::always_match();
Builder::new().build_from_nfa(&nfa)
}
/// Create a new DFA that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::dfa::{Automaton, dense};
///
/// let dfa = dense::DFA::never_match()?;
/// assert_eq!(None, dfa.find_leftmost_fwd(b"")?);
/// assert_eq!(None, dfa.find_leftmost_fwd(b"foo")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<OwnedDFA, Error> {
let nfa = thompson::NFA::never_match();
Builder::new().build_from_nfa(&nfa)
}
/// Create an initial DFA with the given equivalence classes, pattern count
/// and whether anchored starting states are enabled for each pattern. An
/// initial DFA can be further mutated via determinization.
fn initial(
classes: ByteClasses,
pattern_count: usize,
starts_for_each_pattern: bool,
) -> Result<OwnedDFA, Error> {
let start_pattern_count =
if starts_for_each_pattern { pattern_count } else { 0 };
Ok(DFA {
tt: TransitionTable::minimal(classes),
st: StartTable::dead(start_pattern_count)?,
ms: MatchStates::empty(pattern_count),
special: Special::new(),
accels: Accels::empty(),
})
}
}
impl<T: AsRef<[u32]>> DFA<T> {
/// Cheaply return a borrowed version of this dense DFA. Specifically,
/// the DFA returned always uses `&[u32]` for its transition table.
pub fn as_ref(&self) -> DFA<&'_ [u32]> {
DFA {
tt: self.tt.as_ref(),
st: self.st.as_ref(),
ms: self.ms.as_ref(),
special: self.special,
accels: self.accels(),
}
}
/// Return an owned version of this sparse DFA. Specifically, the DFA
/// returned always uses `Vec<u32>` for its transition table.
///
/// Effectively, this returns a dense DFA whose transition table lives on
/// the heap.
#[cfg(feature = "alloc")]
pub fn to_owned(&self) -> OwnedDFA {
DFA {
tt: self.tt.to_owned(),
st: self.st.to_owned(),
ms: self.ms.to_owned(),
special: self.special,
accels: self.accels().to_owned(),
}
}
/// Returns true only if this DFA has starting states for each pattern.
///
/// When a DFA has starting states for each pattern, then a search with the
/// DFA can be configured to only look for anchored matches of a specific
/// pattern. Specifically, APIs like [`Automaton::find_earliest_fwd_at`]
/// can accept a non-None `pattern_id` if and only if this method returns
/// true. Otherwise, calling `find_earliest_fwd_at` will panic.
///
/// Note that if the DFA has no patterns, this always returns false.
pub fn has_starts_for_each_pattern(&self) -> bool {
self.st.patterns > 0
}
/// Returns the total number of elements in the alphabet for this DFA.
///
/// That is, this returns the total number of transitions that each state
/// in this DFA must have. Typically, a normal byte oriented DFA would
/// always have an alphabet size of 256, corresponding to the number of
/// unique values in a single byte. However, this implementation has two
/// peculiarities that impact the alphabet length:
///
/// * Every state has a special "EOI" transition that is only followed
/// after the end of some haystack is reached. This EOI transition is
/// necessary to account for one byte of look-ahead when implementing
/// things like `\b` and `$`.
/// * Bytes are grouped into equivalence classes such that no two bytes in
/// the same class can distinguish a match from a non-match. For example,
/// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
/// same equivalence class. This leads to a massive space savings.
///
/// Note though that the alphabet length does _not_ necessarily equal the
/// total stride space taken up by a single DFA state in the transition
/// table. Namely, for performance reasons, the stride is always the
/// smallest power of two that is greater than or equal to the alphabet
/// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
/// often more useful. The alphabet length is typically useful only for
/// informational purposes.
pub fn alphabet_len(&self) -> usize {
self.tt.alphabet_len()
}
/// Returns the total stride for every state in this DFA, expressed as the
/// exponent of a power of 2. The stride is the amount of space each state
/// takes up in the transition table, expressed as a number of transitions.
/// (Unused transitions map to dead states.)
///
/// The stride of a DFA is always equivalent to the smallest power of 2
/// that is greater than or equal to the DFA's alphabet length. This
/// definition uses extra space, but permits faster translation between
/// premultiplied state identifiers and contiguous indices (by using shifts
/// instead of relying on integer division).
///
/// For example, if the DFA's stride is 16 transitions, then its `stride2`
/// is `4` since `2^4 = 16`.
///
/// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
/// while the maximum `stride2` value is `9` (corresponding to a stride of
/// `512`). The maximum is not `8` since the maximum alphabet size is `257`
/// when accounting for the special EOI transition. However, an alphabet
/// length of that size is exceptionally rare since the alphabet is shrunk
/// into equivalence classes.
pub fn stride2(&self) -> usize {
self.tt.stride2
}
/// Returns the total stride for every state in this DFA. This corresponds
/// to the total number of transitions used by each state in this DFA's
/// transition table.
///
/// Please see [`DFA::stride2`] for more information. In particular, this
/// returns the stride as the number of transitions, where as `stride2`
/// returns it as the exponent of a power of 2.
pub fn stride(&self) -> usize {
self.tt.stride()
}
/// Returns the "universal" start state for this DFA.
///
/// A universal start state occurs only when all of the starting states
/// for this DFA are precisely the same. This occurs when there are no
/// look-around assertions at the beginning (or end for a reverse DFA) of
/// the pattern.
///
/// Using this as a starting state for a DFA without a universal starting
/// state has unspecified behavior. This condition is not checked, so the
/// caller must guarantee it themselves.
pub(crate) fn universal_start_state(&self) -> StateID {
// We choose 'NonWordByte' for no particular reason, other than
// the fact that this is the 'main' starting configuration used in
// determinization. But in essence, it doesn't really matter.
//
// Also, we might consider exposing this routine, but it seems
// a little tricky to use correctly. Maybe if we also expose a
// 'has_universal_start_state' method?
self.st.start(Start::NonWordByte, None)
}
/// Returns the memory usage, in bytes, of this DFA.
///
/// The memory usage is computed based on the number of bytes used to
/// represent this DFA.
///
/// This does **not** include the stack size used up by this DFA. To
/// compute that, use `std::mem::size_of::<dense::DFA>()`.
pub fn memory_usage(&self) -> usize {
self.tt.memory_usage()
+ self.st.memory_usage()
+ self.ms.memory_usage()
+ self.accels.memory_usage()
}
}
/// Routines for converting a dense DFA to other representations, such as
/// sparse DFAs or raw bytes suitable for persistent storage.
impl<T: AsRef<[u32]>> DFA<T> {
/// Convert this dense DFA to a sparse DFA.
///
/// If a `StateID` is too small to represent all states in the sparse
/// DFA, then this returns an error. In most cases, if a dense DFA is
/// constructable with `StateID` then a sparse DFA will be as well.
/// However, it is not guaranteed.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// let dense = dense::DFA::new("foo[0-9]+")?;
/// let sparse = dense.to_sparse()?;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), sparse.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, Error> {
sparse::DFA::from_dense(self)
}
/// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
/// format. Upon success, the `Vec<u8>` and the initial padding length are
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// The padding returned is non-zero if the returned `Vec<u8>` starts at
/// an address that does not have the same alignment as `u32`. The padding
/// corresponds to the number of leading bytes written to the returned
/// `Vec<u8>`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // N.B. We use native endianness here to make the example work, but
/// // using to_bytes_little_endian would work on a little endian target.
/// let (buf, _) = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
self.to_bytes::<bytes::LE>()
}
/// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
/// format. Upon success, the `Vec<u8>` and the initial padding length are
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// The padding returned is non-zero if the returned `Vec<u8>` starts at
/// an address that does not have the same alignment as `u32`. The padding
/// corresponds to the number of leading bytes written to the returned
/// `Vec<u8>`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // N.B. We use native endianness here to make the example work, but
/// // using to_bytes_big_endian would work on a big endian target.
/// let (buf, _) = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
self.to_bytes::<bytes::BE>()
}
/// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
/// format. Upon success, the `Vec<u8>` and the initial padding length are
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// The padding returned is non-zero if the returned `Vec<u8>` starts at
/// an address that does not have the same alignment as `u32`. The padding
/// corresponds to the number of leading bytes written to the returned
/// `Vec<u8>`.
///
/// Generally speaking, native endian format should only be used when
/// you know that the target you're compiling the DFA for matches the
/// endianness of the target on which you're compiling DFA. For example,
/// if serialization and deserialization happen in the same process or on
/// the same machine. Otherwise, when serializing a DFA for use in a
/// portable environment, you'll almost certainly want to serialize _both_
/// a little endian and a big endian version and then load the correct one
/// based on the target's configuration.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// let (buf, _) = original_dfa.to_bytes_native_endian();
/// // Even if buf has initial padding, DFA::from_bytes will automatically
/// // ignore it.
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
self.to_bytes::<bytes::NE>()
}
/// The implementation of the public `to_bytes` serialization methods,
/// which is generic over endianness.
#[cfg(feature = "alloc")]
fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
let len = self.write_to_len();
let (mut buf, padding) = bytes::alloc_aligned_buffer::<u32>(len);
// This should always succeed since the only possible serialization
// error is providing a buffer that's too small, but we've ensured that
// `buf` is big enough here.
self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
(buf, padding)
}
/// Serialize this DFA as raw bytes to the given slice, in little endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Note that unlike the various `to_byte_*` routines, this does not write
/// any padding. Callers are responsible for handling alignment correctly.
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// // N.B. We use native endianness here to make the example work, but
/// // using write_to_little_endian would work on a little endian target.
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_little_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.as_ref().write_to::<bytes::LE>(dst)
}
/// Serialize this DFA as raw bytes to the given slice, in big endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Note that unlike the various `to_byte_*` routines, this does not write
/// any padding. Callers are responsible for handling alignment correctly.
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// // N.B. We use native endianness here to make the example work, but
/// // using write_to_big_endian would work on a big endian target.
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_big_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.as_ref().write_to::<bytes::BE>(dst)
}
/// Serialize this DFA as raw bytes to the given slice, in native endian
/// format. Upon success, the total number of bytes written to `dst` is
/// returned.
///
/// The written bytes are guaranteed to be deserialized correctly and
/// without errors in a semver compatible release of this crate by a
/// `DFA`'s deserialization APIs (assuming all other criteria for the
/// deserialization APIs has been satisfied):
///
/// * [`DFA::from_bytes`]
/// * [`DFA::from_bytes_unchecked`]
///
/// Generally speaking, native endian format should only be used when
/// you know that the target you're compiling the DFA for matches the
/// endianness of the target on which you're compiling DFA. For example,
/// if serialization and deserialization happen in the same process or on
/// the same machine. Otherwise, when serializing a DFA for use in a
/// portable environment, you'll almost certainly want to serialize _both_
/// a little endian and a big endian version and then load the correct one
/// based on the target's configuration.
///
/// Note that unlike the various `to_byte_*` routines, this does not write
/// any padding. Callers are responsible for handling alignment correctly.
///
/// # Errors
///
/// This returns an error if the given destination slice is not big enough
/// to contain the full serialized DFA. If an error occurs, then nothing
/// is written to `dst`.
///
/// # Example
///
/// This example shows how to serialize and deserialize a DFA without
/// dynamic memory allocation.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// // Create a 4KB buffer on the stack to store our serialized DFA.
/// let mut buf = [0u8; 4 * (1<<10)];
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn write_to_native_endian(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
self.as_ref().write_to::<bytes::NE>(dst)
}
/// Return the total number of bytes required to serialize this DFA.
///
/// This is useful for determining the size of the buffer required to pass
/// to one of the serialization routines:
///
/// * [`DFA::write_to_little_endian`]
/// * [`DFA::write_to_big_endian`]
/// * [`DFA::write_to_native_endian`]
///
/// Passing a buffer smaller than the size returned by this method will
/// result in a serialization error. Serialization routines are guaranteed
/// to succeed when the buffer is big enough.
///
/// # Example
///
/// This example shows how to dynamically allocate enough room to serialize
/// a DFA.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// // Compile our original DFA.
/// let original_dfa = DFA::new("foo[0-9]+")?;
///
/// let mut buf = vec![0; original_dfa.write_to_len()];
/// let written = original_dfa.write_to_native_endian(&mut buf)?;
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that this example isn't actually guaranteed to work! In
/// particular, if `buf` is not aligned to a 4-byte boundary, then the
/// `DFA::from_bytes` call will fail. If you need this to work, then you
/// either need to deal with adding some initial padding yourself, or use
/// one of the `to_bytes` methods, which will do it for you.
pub fn write_to_len(&self) -> usize {
bytes::write_label_len(LABEL)
+ bytes::write_endianness_check_len()
+ bytes::write_version_len()
+ size_of::<u32>() // unused, intended for future flexibility
+ self.tt.write_to_len()
+ self.st.write_to_len()
+ self.ms.write_to_len()
+ self.special.write_to_len()
+ self.accels.write_to_len()
}
}
impl<'a> DFA<&'a [u32]> {
/// Safely deserialize a DFA with a specific state identifier
/// representation. Upon success, this returns both the deserialized DFA
/// and the number of bytes read from the given slice. Namely, the contents
/// of the slice beyond the DFA are not read.
///
/// Deserializing a DFA using this routine will never allocate heap memory.
/// For safety purposes, the DFA's transition table will be verified such
/// that every transition points to a valid state. If this verification is
/// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
/// will always execute in constant time.
///
/// The bytes given must be generated by one of the serialization APIs
/// of a `DFA` using a semver compatible release of this crate. Those
/// include:
///
/// * [`DFA::to_bytes_little_endian`]
/// * [`DFA::to_bytes_big_endian`]
/// * [`DFA::to_bytes_native_endian`]
/// * [`DFA::write_to_little_endian`]
/// * [`DFA::write_to_big_endian`]
/// * [`DFA::write_to_native_endian`]
///
/// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
/// with handling alignment correctly. The `write_to` methods do not
/// allocate and write to an existing slice (which may be on the stack).
/// Since deserialization always uses the native endianness of the target
/// platform, the serialization API you use should match the endianness of
/// the target platform. (It's often a good idea to generate serialized
/// DFAs for both forms of endianness and then load the correct one based
/// on endianness.)
///
/// # Errors
///
/// Generally speaking, it's easier to state the conditions in which an
/// error is _not_ returned. All of the following must be true:
///
/// * The bytes given must be produced by one of the serialization APIs
/// on this DFA, as mentioned above.
/// * The endianness of the target platform matches the endianness used to
/// serialized the provided DFA.
/// * The slice given must have the same alignment as `u32`.
///
/// If any of the above are not true, then an error will be returned.
///
/// # Panics
///
/// This routine will never panic for any input.
///
/// # Example
///
/// This example shows how to serialize a DFA to raw bytes, deserialize it
/// and then use it for searching.
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// let initial = DFA::new("foo[0-9]+")?;
/// let (bytes, _) = initial.to_bytes_native_endian();
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: dealing with alignment and padding
///
/// In the above example, we used the `to_bytes_native_endian` method to
/// serialize a DFA, but we ignored part of its return value corresponding
/// to padding added to the beginning of the serialized DFA. This is OK
/// because deserialization will skip this initial padding. What matters
/// is that the address immediately following the padding has an alignment
/// that matches `u32`. That is, the following is an equivalent but
/// alternative way to write the above example:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// let initial = DFA::new("foo[0-9]+")?;
/// // Serialization returns the number of leading padding bytes added to
/// // the returned Vec<u8>.
/// let (bytes, pad) = initial.to_bytes_native_endian();
/// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This padding is necessary because Rust's standard library does
/// not expose any safe and robust way of creating a `Vec<u8>` with a
/// guaranteed alignment other than 1. Now, in practice, the underlying
/// allocator is likely to provide a `Vec<u8>` that meets our alignment
/// requirements, which means `pad` is zero in practice most of the time.
///
/// The purpose of exposing the padding like this is flexibility for the
/// caller. For example, if one wants to embed a serialized DFA into a
/// compiled program, then it's important to guarantee that it starts at a
/// `u32`-aligned address. The simplest way to do this is to discard the
/// padding bytes and set it up so that the serialized DFA itself begins at
/// a properly aligned address. We can show this in two parts. The first
/// part is serializing the DFA to a file:
///
/// ```no_run
/// use regex_automata::dfa::{Automaton, dense::DFA};
///
/// let dfa = DFA::new("foo[0-9]+")?;
///
/// let (bytes, pad) = dfa.to_bytes_big_endian();
/// // Write the contents of the DFA *without* the initial padding.
/// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
///
/// // Do it again, but this time for little endian.
/// let (bytes, pad) = dfa.to_bytes_little_endian();
/// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And now the second part is embedding the DFA into the compiled program
/// and deserializing it at runtime on first use. We use conditional
/// compilation to choose the correct endianness.
///
/// ```no_run
/// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
///
/// type S = u32;
/// type DFA = dense::DFA<&'static [S]>;
///
/// fn get_foo() -> &'static DFA {
/// use std::cell::Cell;
/// use std::mem::MaybeUninit;
/// use std::sync::Once;
///
/// // This struct with a generic B is used to permit unsizing
/// // coercions, specifically, where B winds up being a [u8]. We also
/// // need repr(C) to guarantee that _align comes first, which forces
/// // a correct alignment.
/// #[repr(C)]
/// struct Aligned<B: ?Sized> {
/// _align: [S; 0],
/// bytes: B,
/// }
///
/// # const _: &str = stringify! {
/// // This assignment is made possible (implicitly) via the
/// // CoerceUnsized trait.
/// static ALIGNED: &Aligned<[u8]> = &Aligned {
/// _align: [],
/// #[cfg(target_endian = "big")]
/// bytes: *include_bytes!("foo.bigendian.dfa"),
/// #[cfg(target_endian = "little")]
/// bytes: *include_bytes!("foo.littleendian.dfa"),
/// };
/// # };
/// # static ALIGNED: &Aligned<[u8]> = &Aligned {
/// # _align: [],
/// # bytes: [],
/// # };
///
/// struct Lazy(Cell<MaybeUninit<DFA>>);
/// // SAFETY: This is safe because DFA impls Sync.
/// unsafe impl Sync for Lazy {}
///
/// static INIT: Once = Once::new();
/// static DFA: Lazy = Lazy(Cell::new(MaybeUninit::uninit()));
///
/// INIT.call_once(|| {
/// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
/// .expect("serialized DFA should be valid");
/// // SAFETY: This is guaranteed to only execute once, and all
/// // we do with the pointer is write the DFA to it.
/// unsafe {
/// (*DFA.0.as_ptr()).as_mut_ptr().write(dfa);
/// }
/// });
/// // SAFETY: DFA is guaranteed to by initialized via INIT and is
/// // stored in static memory.
/// unsafe {
/// let dfa = (*DFA.0.as_ptr()).as_ptr();
/// std::mem::transmute::<*const DFA, &'static DFA>(dfa)
/// }
/// }
///
/// let dfa = get_foo();
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Ok(Some(expected)), dfa.find_leftmost_fwd(b"foo12345"));
/// ```
///
/// Alternatively, consider using
/// [`lazy_static`](https://crates.io/crates/lazy_static)
/// or
/// [`once_cell`](https://crates.io/crates/once_cell),
/// which will guarantee safety for you. You will still need to use the
/// `Aligned` trick above to force correct alignment, but this is safe to
/// do and `from_bytes` will return an error if you get it wrong.
pub fn from_bytes(
slice: &'a [u8],
) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
// SAFETY: This is safe because we validate both the transition table,
// start state ID list and the match states below. If either validation
// fails, then we return an error.
let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
dfa.tt.validate()?;
dfa.st.validate(&dfa.tt)?;
dfa.ms.validate(&dfa)?;
dfa.accels.validate()?;
// N.B. dfa.special doesn't have a way to do unchecked deserialization,
// so it has already been validated.
Ok((dfa, nread))
}
/// Deserialize a DFA with a specific state identifier representation in
/// constant time by omitting the verification of the validity of the
/// transition table and other data inside the DFA.
///
/// This is just like [`DFA::from_bytes`], except it can potentially return
/// a DFA that exhibits undefined behavior if its transition table contains
/// invalid state identifiers.
///
/// This routine is useful if you need to deserialize a DFA cheaply
/// and cannot afford the transition table validation performed by
/// `from_bytes`.
///
/// # Example
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// let initial = DFA::new("foo[0-9]+")?;
/// let (bytes, _) = initial.to_bytes_native_endian();
/// // SAFETY: This is guaranteed to be safe since the bytes given come
/// // directly from a compatible serialization routine.
/// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
///
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub unsafe fn from_bytes_unchecked(
slice: &'a [u8],
) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
let mut nr = 0;
nr += bytes::skip_initial_padding(slice);
bytes::check_alignment::<StateID>(&slice[nr..])?;
nr += bytes::read_label(&slice[nr..], LABEL)?;
nr += bytes::read_endianness_check(&slice[nr..])?;
nr += bytes::read_version(&slice[nr..], VERSION)?;
let _unused = bytes::try_read_u32(&slice[nr..], "unused space")?;
nr += size_of::<u32>();
let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
let (special, nread) = Special::from_bytes(&slice[nr..])?;
nr += nread;
special.validate_state_count(tt.count(), tt.stride2)?;
let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
nr += nread;
Ok((DFA { tt, st, ms, special, accels }, nr))
}
/// The implementation of the public `write_to` serialization methods,
/// which is generic over endianness.
///
/// This is defined only for &[u32] to reduce binary size/compilation time.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("dense DFA"));
}
dst = &mut dst[..nwrite];
let mut nw = 0;
nw += bytes::write_label(LABEL, &mut dst[nw..])?;
nw += bytes::write_endianness_check::<E>(&mut dst[nw..])?;
nw += bytes::write_version::<E>(VERSION, &mut dst[nw..])?;
nw += {
// Currently unused, intended for future flexibility
E::write_u32(0, &mut dst[nw..]);
size_of::<u32>()
};
nw += self.tt.write_to::<E>(&mut dst[nw..])?;
nw += self.st.write_to::<E>(&mut dst[nw..])?;
nw += self.ms.write_to::<E>(&mut dst[nw..])?;
nw += self.special.write_to::<E>(&mut dst[nw..])?;
nw += self.accels.write_to::<E>(&mut dst[nw..])?;
Ok(nw)
}
}
/// The following methods implement mutable routines on the internal
/// representation of a DFA. As such, we must fix the first type parameter to a
/// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
/// can get away with this because these methods are internal to the crate and
/// are exclusively used during construction of the DFA.
#[cfg(feature = "alloc")]
impl OwnedDFA {
/// Add a start state of this DFA.
pub(crate) fn set_start_state(
&mut self,
index: Start,
pattern_id: Option<PatternID>,
id: StateID,
) {
assert!(self.tt.is_valid(id), "invalid start state");
self.st.set_start(index, pattern_id, id);
}
/// Set the given transition to this DFA. Both the `from` and `to` states
/// must already exist.
pub(crate) fn set_transition(
&mut self,
from: StateID,
byte: alphabet::Unit,
to: StateID,
) {
self.tt.set(from, byte, to);
}
/// An an empty state (a state where all transitions lead to a dead state)
/// and return its identifier. The identifier returned is guaranteed to
/// not point to any other existing state.
///
/// If adding a state would exceed `StateID::LIMIT`, then this returns an
/// error.
pub(crate) fn add_empty_state(&mut self) -> Result<StateID, Error> {
self.tt.add_empty_state()
}
/// Swap the two states given in the transition table.
///
/// This routine does not do anything to check the correctness of this
/// swap. Callers must ensure that other states pointing to id1 and id2 are
/// updated appropriately.
pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
self.tt.swap(id1, id2);
}
/// Truncate the states in this DFA to the given count.
///
/// This routine does not do anything to check the correctness of this
/// truncation. Callers must ensure that other states pointing to truncated
/// states are updated appropriately.
pub(crate) fn truncate_states(&mut self, count: usize) {
self.tt.truncate(count);
}
/// Return a mutable representation of the state corresponding to the given
/// id. This is useful for implementing routines that manipulate DFA states
/// (e.g., swapping states).
pub(crate) fn state_mut(&mut self, id: StateID) -> StateMut<'_> {
self.tt.state_mut(id)
}
/// Minimize this DFA in place using Hopcroft's algorithm.
pub(crate) fn minimize(&mut self) {
Minimizer::new(self).run();
}
/// Updates the match state pattern ID map to use the one provided.
///
/// This is useful when it's convenient to manipulate matching states
/// (and their corresponding pattern IDs) as a map. In particular, the
/// representation used by a DFA for this map is not amenable to mutation,
/// so if things need to be changed (like when shuffling states), it's
/// often easier to work with the map form.
pub(crate) fn set_pattern_map(
&mut self,
map: &BTreeMap<StateID, Vec<PatternID>>,
) -> Result<(), Error> {
self.ms = self.ms.new_with_map(map)?;
Ok(())
}
/// Find states that have a small number of non-loop transitions and mark
/// them as candidates for acceleration during search.
pub(crate) fn accelerate(&mut self) {
// dead and quit states can never be accelerated.
if self.state_count() <= 2 {
return;
}
// Go through every state and record their accelerator, if possible.
let mut accels = BTreeMap::new();
// Count the number of accelerated match, start and non-match/start
// states.
let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
for state in self.states() {
if let Some(accel) = state.accelerate(self.byte_classes()) {
accels.insert(state.id(), accel);
if self.is_match_state(state.id()) {
cmatch += 1;
} else if self.is_start_state(state.id()) {
cstart += 1;
} else {
assert!(!self.is_dead_state(state.id()));
assert!(!self.is_quit_state(state.id()));
cnormal += 1;
}
}
}
// If no states were able to be accelerated, then we're done.
if accels.is_empty() {
return;
}
let original_accels_len = accels.len();
// A remapper keeps track of state ID changes. Once we're done
// shuffling, the remapper is used to rewrite all transitions in the
// DFA based on the new positions of states.
let mut remapper = Remapper::from_dfa(self);
// As we swap states, if they are match states, we need to swap their
// pattern ID lists too (for multi-regexes). We do this by converting
// the lists to an easily swappable map, and then convert back to
// MatchStates once we're done.
let mut new_matches = self.ms.to_map(self);
// There is at least one state that gets accelerated, so these are
// guaranteed to get set to sensible values below.
self.special.min_accel = StateID::MAX;
self.special.max_accel = StateID::ZERO;
let update_special_accel =
|special: &mut Special, accel_id: StateID| {
special.min_accel = cmp::min(special.min_accel, accel_id);
special.max_accel = cmp::max(special.max_accel, accel_id);
};
// Start by shuffling match states. Any match states that are
// accelerated get moved to the end of the match state range.
if cmatch > 0 && self.special.matches() {
// N.B. special.{min,max}_match do not need updating, since the
// range/number of match states does not change. Only the ordering
// of match states may change.
let mut next_id = self.special.max_match;
let mut cur_id = next_id;
while cur_id >= self.special.min_match {
if let Some(accel) = accels.remove(&cur_id) {
accels.insert(next_id, accel);
update_special_accel(&mut self.special, next_id);
// No need to do any actual swapping for equivalent IDs.
if cur_id != next_id {
remapper.swap(self, cur_id, next_id);
// Swap pattern IDs for match states.
let cur_pids = new_matches.remove(&cur_id).unwrap();
let next_pids = new_matches.remove(&next_id).unwrap();
new_matches.insert(cur_id, next_pids);
new_matches.insert(next_id, cur_pids);
}
next_id = self.tt.prev_state_id(next_id);
}
cur_id = self.tt.prev_state_id(cur_id);
}
}
// This is where it gets tricky. Without acceleration, start states
// normally come right after match states. But we want accelerated
// states to be a single contiguous range (to make it very fast
// to determine whether a state *is* accelerated), while also keeping
// match and starting states as contiguous ranges for the same reason.
// So what we do here is shuffle states such that it looks like this:
//
// DQMMMMAAAAASSSSSSNNNNNNN
// | |
// |---------|
// accelerated states
//
// Where:
// D - dead state
// Q - quit state
// M - match state (may be accelerated)
// A - normal state that is accelerated
// S - start state (may be accelerated)
// N - normal state that is NOT accelerated
//
// We implement this by shuffling states, which is done by a sequence
// of pairwise swaps. We start by looking at all normal states to be
// accelerated. When we find one, we swap it with the earliest starting
// state, and then swap that with the earliest normal state. This
// preserves the contiguous property.
//
// Once we're done looking for accelerated normal states, now we look
// for accelerated starting states by moving them to the beginning
// of the starting state range (just like we moved accelerated match
// states to the end of the matching state range).
//
// For a more detailed/different perspective on this, see the docs
// in dfa/special.rs.
if cnormal > 0 {
// our next available starting and normal states for swapping.
let mut next_start_id = self.special.min_start;
let mut cur_id = self.from_index(self.state_count() - 1);
// This is guaranteed to exist since cnormal > 0.
let mut next_norm_id =
self.tt.next_state_id(self.special.max_start);
while cur_id >= next_norm_id {
if let Some(accel) = accels.remove(&cur_id) {
remapper.swap(self, next_start_id, cur_id);
remapper.swap(self, next_norm_id, cur_id);
// Keep our accelerator map updated with new IDs if the
// states we swapped were also accelerated.
if let Some(accel2) = accels.remove(&next_norm_id) {
accels.insert(cur_id, accel2);
}
if let Some(accel2) = accels.remove(&next_start_id) {
accels.insert(next_norm_id, accel2);
}
accels.insert(next_start_id, accel);
update_special_accel(&mut self.special, next_start_id);
// Our start range shifts one to the right now.
self.special.min_start =
self.tt.next_state_id(self.special.min_start);
self.special.max_start =
self.tt.next_state_id(self.special.max_start);
next_start_id = self.tt.next_state_id(next_start_id);
next_norm_id = self.tt.next_state_id(next_norm_id);
}
// This is pretty tricky, but if our 'next_norm_id' state also
// happened to be accelerated, then the result is that it is
// now in the position of cur_id, so we need to consider it
// again. This loop is still guaranteed to terminate though,
// because when accels contains cur_id, we're guaranteed to
// increment next_norm_id even if cur_id remains unchanged.
if !accels.contains_key(&cur_id) {
cur_id = self.tt.prev_state_id(cur_id);
}
}
}
// Just like we did for match states, but we want to move accelerated
// start states to the beginning of the range instead of the end.
if cstart > 0 {
// N.B. special.{min,max}_start do not need updating, since the
// range/number of start states does not change at this point. Only
// the ordering of start states may change.
let mut next_id = self.special.min_start;
let mut cur_id = next_id;
while cur_id <= self.special.max_start {
if let Some(accel) = accels.remove(&cur_id) {
remapper.swap(self, cur_id, next_id);
accels.insert(next_id, accel);
update_special_accel(&mut self.special, next_id);
next_id = self.tt.next_state_id(next_id);
}
cur_id = self.tt.next_state_id(cur_id);
}
}
// Remap all transitions in our DFA and assert some things.
remapper.remap(self);
// This unwrap is OK because acceleration never changes the number of
// match states or patterns in those match states. Since acceleration
// runs after the pattern map has been set at least once, we know that
// our match states cannot error.
self.set_pattern_map(&new_matches).unwrap();
self.special.set_max();
self.special.validate().expect("special state ranges should validate");
self.special
.validate_state_count(self.state_count(), self.stride2())
.expect(
"special state ranges should be consistent with state count",
);
assert_eq!(
self.special.accel_len(self.stride()),
// We record the number of accelerated states initially detected
// since the accels map is itself mutated in the process above.
// If mutated incorrectly, its size may change, and thus can't be
// trusted as a source of truth of how many accelerated states we
// expected there to be.
original_accels_len,
"mismatch with expected number of accelerated states",
);
// And finally record our accelerators. We kept our accels map updated
// as we shuffled states above, so the accelerators should now
// correspond to a contiguous range in the state ID space. (Which we
// assert.)
let mut prev: Option<StateID> = None;
for (id, accel) in accels {
assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
prev = Some(id);
self.accels.add(accel);
}
}
/// Shuffle the states in this DFA so that starting states, match
/// states and accelerated states are all contiguous.
///
/// See dfa/special.rs for more details.
pub(crate) fn shuffle(
&mut self,
mut matches: BTreeMap<StateID, Vec<PatternID>>,
) -> Result<(), Error> {
// The determinizer always adds a quit state and it is always second.
self.special.quit_id = self.from_index(1);
// If all we have are the dead and quit states, then we're done and
// the DFA will never produce a match.
if self.state_count() <= 2 {
self.special.set_max();
return Ok(());
}
// Collect all our start states into a convenient set and confirm there
// is no overlap with match states. In the classicl DFA construction,
// start states can be match states. But because of look-around, we
// delay all matches by a byte, which prevents start states from being
// match states.
let mut is_start: BTreeSet<StateID> = BTreeSet::new();
for (start_id, _, _) in self.starts() {
// While there's nothing theoretically wrong with setting a start
// state to a dead ID (indeed, it could be an optimization!), the
// shuffling code below assumes that start states aren't dead. If
// this assumption is violated, the dead state could be shuffled
// to a new location, which must never happen. So if we do want
// to allow start states to be dead, then this assert should be
// removed and the code below fixed.
//
// N.B. Minimization can cause start states to be dead, but that
// happens after states are shuffled, so it's OK. Also, start
// states are dead for the DFA that never matches anything, but
// in that case, there are no states to shuffle.
assert_ne!(start_id, DEAD, "start state cannot be dead");
assert!(
!matches.contains_key(&start_id),
"{:?} is both a start and a match state, which is not allowed",
start_id,
);
is_start.insert(start_id);
}
// We implement shuffling by a sequence of pairwise swaps of states.
// Since we have a number of things referencing states via their
// IDs and swapping them changes their IDs, we need to record every
// swap we make so that we can remap IDs. The remapper handles this
// book-keeping for us.
let mut remapper = Remapper::from_dfa(self);
// Shuffle matching states.
if matches.is_empty() {
self.special.min_match = DEAD;
self.special.max_match = DEAD;
} else {
// The determinizer guarantees that the first two states are the
// dead and quit states, respectively. We want our match states to
// come right after quit.
let mut next_id = self.from_index(2);
let mut new_matches = BTreeMap::new();
self.special.min_match = next_id;
for (id, pids) in matches {
remapper.swap(self, next_id, id);
new_matches.insert(next_id, pids);
// If we swapped a start state, then update our set.
if is_start.contains(&next_id) {
is_start.remove(&next_id);
is_start.insert(id);
}
next_id = self.tt.next_state_id(next_id);
}
matches = new_matches;
self.special.max_match = cmp::max(
self.special.min_match,
self.tt.prev_state_id(next_id),
);
}
// Shuffle starting states.
{
let mut next_id = self.from_index(2);
if self.special.matches() {
next_id = self.tt.next_state_id(self.special.max_match);
}
self.special.min_start = next_id;
for id in is_start {
remapper.swap(self, next_id, id);
next_id = self.tt.next_state_id(next_id);
}
self.special.max_start = cmp::max(
self.special.min_start,
self.tt.prev_state_id(next_id),
);
}
// Finally remap all transitions in our DFA.
remapper.remap(self);
self.set_pattern_map(&matches)?;
self.special.set_max();
self.special.validate().expect("special state ranges should validate");
self.special
.validate_state_count(self.state_count(), self.stride2())
.expect(
"special state ranges should be consistent with state count",
);
Ok(())
}
}
/// A variety of generic internal methods for accessing DFA internals.
impl<T: AsRef<[u32]>> DFA<T> {
/// Return the byte classes used by this DFA.
pub(crate) fn byte_classes(&self) -> &ByteClasses {
&self.tt.classes
}
/// Return the info about special states.
pub(crate) fn special(&self) -> &Special {
&self.special
}
/// Return the info about special states as a mutable borrow.
#[cfg(feature = "alloc")]
pub(crate) fn special_mut(&mut self) -> &mut Special {
&mut self.special
}
/// Returns an iterator over all states in this DFA.
///
/// This iterator yields a tuple for each state. The first element of the
/// tuple corresponds to a state's identifier, and the second element
/// corresponds to the state itself (comprised of its transitions).
pub(crate) fn states(&self) -> StateIter<'_, T> {
self.tt.states()
}
/// Return the total number of states in this DFA. Every DFA has at least
/// 1 state, even the empty DFA.
pub(crate) fn state_count(&self) -> usize {
self.tt.count()
}
/// Return an iterator over all pattern IDs for the given match state.
///
/// If the given state is not a match state, then this panics.
#[cfg(feature = "alloc")]
pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
assert!(self.is_match_state(id));
self.ms.pattern_id_slice(self.match_state_index(id))
}
/// Return the total number of pattern IDs for the given match state.
///
/// If the given state is not a match state, then this panics.
pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
assert!(self.is_match_state(id));
self.ms.pattern_len(self.match_state_index(id))
}
/// Returns the total number of patterns matched by this DFA.
pub(crate) fn pattern_count(&self) -> usize {
self.ms.patterns
}
/// Returns a map from match state ID to a list of pattern IDs that match
/// in that state.
#[cfg(feature = "alloc")]
pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
self.ms.to_map(self)
}
/// Returns the ID of the quit state for this DFA.
#[cfg(feature = "alloc")]
pub(crate) fn quit_id(&self) -> StateID {
self.from_index(1)
}
/// Convert the given state identifier to the state's index. The state's
/// index corresponds to the position in which it appears in the transition
/// table. When a DFA is NOT premultiplied, then a state's identifier is
/// also its index. When a DFA is premultiplied, then a state's identifier
/// is equal to `index * alphabet_len`. This routine reverses that.
pub(crate) fn to_index(&self, id: StateID) -> usize {
self.tt.to_index(id)
}
/// Convert an index to a state (in the range 0..self.state_count()) to an
/// actual state identifier.
///
/// This is useful when using a `Vec<T>` as an efficient map keyed by state
/// to some other information (such as a remapped state ID).
#[cfg(feature = "alloc")]
pub(crate) fn from_index(&self, index: usize) -> StateID {
self.tt.from_index(index)
}
/// Return the table of state IDs for this DFA's start states.
pub(crate) fn starts(&self) -> StartStateIter<'_> {
self.st.iter()
}
/// Returns the index of the match state for the given ID. If the
/// given ID does not correspond to a match state, then this may
/// panic or produce an incorrect result.
fn match_state_index(&self, id: StateID) -> usize {
debug_assert!(self.is_match_state(id));
// This is one of the places where we rely on the fact that match
// states are contiguous in the transition table. Namely, that the
// first match state ID always corresponds to dfa.special.min_start.
// From there, since we know the stride, we can compute the overall
// index of any match state given the match state's ID.
let min = self.special().min_match.as_usize();
// CORRECTNESS: We're allowed to produce an incorrect result or panic,
// so both the subtraction and the unchecked StateID construction is
// OK.
self.to_index(StateID::new_unchecked(id.as_usize() - min))
}
/// Returns the index of the accelerator state for the given ID. If the
/// given ID does not correspond to an accelerator state, then this may
/// panic or produce an incorrect result.
fn accelerator_index(&self, id: StateID) -> usize {
let min = self.special().min_accel.as_usize();
// CORRECTNESS: We're allowed to produce an incorrect result or panic,
// so both the subtraction and the unchecked StateID construction is
// OK.
self.to_index(StateID::new_unchecked(id.as_usize() - min))
}
/// Return the accelerators for this DFA.
fn accels(&self) -> Accels<&[u32]> {
self.accels.as_ref()
}
/// Return this DFA's transition table as a slice.
fn trans(&self) -> &[StateID] {
self.tt.table()
}
}
impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "dense::DFA(")?;
for state in self.states() {
fmt_state_indicator(f, self, state.id())?;
let id = if f.alternate() {
state.id().as_usize()
} else {
self.to_index(state.id())
};
write!(f, "{:06?}: ", id)?;
state.fmt(f)?;
write!(f, "\n")?;
}
writeln!(f, "")?;
for (i, (start_id, sty, pid)) in self.starts().enumerate() {
let id = if f.alternate() {
start_id.as_usize()
} else {
self.to_index(start_id)
};
if i % self.st.stride == 0 {
match pid {
None => writeln!(f, "START-GROUP(ALL)")?,
Some(pid) => {
writeln!(f, "START_GROUP(pattern: {:?})", pid)?
}
}
}
writeln!(f, " {:?} => {:06?}", sty, id)?;
}
if self.pattern_count() > 1 {
writeln!(f, "")?;
for i in 0..self.ms.count() {
let id = self.ms.match_state_id(self, i);
let id = if f.alternate() {
id.as_usize()
} else {
self.to_index(id)
};
write!(f, "MATCH({:06?}): ", id)?;
for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
{
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", pid)?;
}
writeln!(f, "")?;
}
}
writeln!(f, "state count: {:?}", self.state_count())?;
writeln!(f, "pattern count: {:?}", self.pattern_count())?;
writeln!(f, ")")?;
Ok(())
}
}
unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
#[inline]
fn is_special_state(&self, id: StateID) -> bool {
self.special.is_special_state(id)
}
#[inline]
fn is_dead_state(&self, id: StateID) -> bool {
self.special.is_dead_state(id)
}
#[inline]
fn is_quit_state(&self, id: StateID) -> bool {
self.special.is_quit_state(id)
}
#[inline]
fn is_match_state(&self, id: StateID) -> bool {
self.special.is_match_state(id)
}
#[inline]
fn is_start_state(&self, id: StateID) -> bool {
self.special.is_start_state(id)
}
#[inline]
fn is_accel_state(&self, id: StateID) -> bool {
self.special.is_accel_state(id)
}
#[inline]
fn next_state(&self, current: StateID, input: u8) -> StateID {
let input = self.byte_classes().get(input);
let o = current.as_usize() + usize::from(input);
self.trans()[o]
}
#[inline]
unsafe fn next_state_unchecked(
&self,
current: StateID,
input: u8,
) -> StateID {
let input = self.byte_classes().get_unchecked(input);
let o = current.as_usize() + usize::from(input);
*self.trans().get_unchecked(o)
}
#[inline]
fn next_eoi_state(&self, current: StateID) -> StateID {
let eoi = self.byte_classes().eoi().as_usize();
let o = current.as_usize() + eoi;
self.trans()[o]
}
#[inline]
fn pattern_count(&self) -> usize {
self.ms.patterns
}
#[inline]
fn match_count(&self, id: StateID) -> usize {
self.match_pattern_len(id)
}
#[inline]
fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
// This is an optimization for the very common case of a DFA with a
// single pattern. This conditional avoids a somewhat more costly path
// that finds the pattern ID from the state machine, which requires
// a bit of slicing/pointer-chasing. This optimization tends to only
// matter when matches are frequent.
if self.ms.patterns == 1 {
return PatternID::ZERO;
}
let state_index = self.match_state_index(id);
self.ms.pattern_id(state_index, match_index)
}
#[inline]
fn start_state_forward(
&self,
pattern_id: Option<PatternID>,
bytes: &[u8],
start: usize,
end: usize,
) -> StateID {
let index = Start::from_position_fwd(bytes, start, end);
self.st.start(index, pattern_id)
}
#[inline]
fn start_state_reverse(
&self,
pattern_id: Option<PatternID>,
bytes: &[u8],
start: usize,
end: usize,
) -> StateID {
let index = Start::from_position_rev(bytes, start, end);
self.st.start(index, pattern_id)
}
#[inline(always)]
fn accelerator(&self, id: StateID) -> &[u8] {
if !self.is_accel_state(id) {
return &[];
}
self.accels.needles(self.accelerator_index(id))
}
}
/// The transition table portion of a dense DFA.
///
/// The transition table is the core part of the DFA in that it describes how
/// to move from one state to another based on the input sequence observed.
#[derive(Clone)]
pub(crate) struct TransitionTable<T> {
/// A contiguous region of memory representing the transition table in
/// row-major order. The representation is dense. That is, every state
/// has precisely the same number of transitions. The maximum number of
/// transitions per state is 257 (256 for each possible byte value, plus 1
/// for the special EOI transition). If a DFA has been instructed to use
/// byte classes (the default), then the number of transitions is usually
/// substantially fewer.
///
/// In practice, T is either `Vec<u32>` or `&[u32]`.
table: T,
/// A set of equivalence classes, where a single equivalence class
/// represents a set of bytes that never discriminate between a match
/// and a non-match in the DFA. Each equivalence class corresponds to a
/// single character in this DFA's alphabet, where the maximum number of
/// characters is 257 (each possible value of a byte plus the special
/// EOI transition). Consequently, the number of equivalence classes
/// corresponds to the number of transitions for each DFA state. Note
/// though that the *space* used by each DFA state in the transition table
/// may be larger. The total space used by each DFA state is known as the
/// stride.
///
/// The only time the number of equivalence classes is fewer than 257 is if
/// the DFA's kind uses byte classes (which is the default). Equivalence
/// classes should generally only be disabled when debugging, so that
/// the transitions themselves aren't obscured. Disabling them has no
/// other benefit, since the equivalence class map is always used while
/// searching. In the vast majority of cases, the number of equivalence
/// classes is substantially smaller than 257, particularly when large
/// Unicode classes aren't used.
classes: ByteClasses,
/// The stride of each DFA state, expressed as a power-of-two exponent.
///
/// The stride of a DFA corresponds to the total amount of space used by
/// each DFA state in the transition table. This may be bigger than the
/// size of a DFA's alphabet, since the stride is always the smallest
/// power of two greater than or equal to the alphabet size.
///
/// While this wastes space, this avoids the need for integer division
/// to convert between premultiplied state IDs and their corresponding
/// indices. Instead, we can use simple bit-shifts.
///
/// See the docs for the `stride2` method for more details.
///
/// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
/// while the maximum `stride2` value is `9` (corresponding to a stride of
/// `512`). The maximum is not `8` since the maximum alphabet size is `257`
/// when accounting for the special EOI transition. However, an alphabet
/// length of that size is exceptionally rare since the alphabet is shrunk
/// into equivalence classes.
stride2: usize,
}
impl<'a> TransitionTable<&'a [u32]> {
/// Deserialize a transition table starting at the beginning of `slice`.
/// Upon success, return the total number of bytes read along with the
/// transition table.
///
/// If there was a problem deserializing any part of the transition table,
/// then this returns an error. Notably, if the given slice does not have
/// the same alignment as `StateID`, then this will return an error (among
/// other possible errors).
///
/// This is guaranteed to execute in constant time.
///
/// # Safety
///
/// This routine is not safe because it does not check the valdity of the
/// transition table itself. In particular, the transition table can be
/// quite large, so checking its validity can be somewhat expensive. An
/// invalid transition table is not safe because other code may rely on the
/// transition table being correct (such as explicit bounds check elision).
/// Therefore, an invalid transition table can lead to undefined behavior.
///
/// Callers that use this function must either pass on the safety invariant
/// or guarantee that the bytes given contain a valid transition table.
/// This guarantee is upheld by the bytes written by `write_to`.
unsafe fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
let slice_start = slice.as_ptr() as usize;
let (count, nr) = bytes::try_read_u32_as_usize(slice, "state count")?;
slice = &slice[nr..];
let (stride2, nr) = bytes::try_read_u32_as_usize(slice, "stride2")?;
slice = &slice[nr..];
let (classes, nr) = ByteClasses::from_bytes(slice)?;
slice = &slice[nr..];
// The alphabet length (determined by the byte class map) cannot be
// bigger than the stride (total space used by each DFA state).
if stride2 > 9 {
return Err(DeserializeError::generic(
"dense DFA has invalid stride2 (too big)",
));
}
// It also cannot be zero, since even a DFA that never matches anything
// has a non-zero number of states with at least two equivalence
// classes: one for all 256 byte values and another for the EOI
// sentinel.
if stride2 < 1 {
return Err(DeserializeError::generic(
"dense DFA has invalid stride2 (too small)",
));
}
// This is OK since 1 <= stride2 <= 9.
let stride =
1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
if classes.alphabet_len() > stride {
return Err(DeserializeError::generic(
"alphabet size cannot be bigger than transition table stride",
));
}
let trans_count =
bytes::shl(count, stride2, "dense table transition count")?;
let table_bytes_len = bytes::mul(
trans_count,
StateID::SIZE,
"dense table state byte count",
)?;
bytes::check_slice_len(slice, table_bytes_len, "transition table")?;
bytes::check_alignment::<StateID>(slice)?;
let table_bytes = &slice[..table_bytes_len];
slice = &slice[table_bytes_len..];
// SAFETY: Since StateID is always representable as a u32, all we need
// to do is ensure that we have the proper length and alignment. We've
// checked both above, so the cast below is safe.
//
// N.B. This is the only not-safe code in this function, so we mark
// it explicitly to call it out, even though it is technically
// superfluous.
#[allow(unused_unsafe)]
let table = unsafe {
core::slice::from_raw_parts(
table_bytes.as_ptr() as *const u32,
trans_count,
)
};
let tt = TransitionTable { table, classes, stride2 };
Ok((tt, slice.as_ptr() as usize - slice_start))
}
}
#[cfg(feature = "alloc")]
impl TransitionTable<Vec<u32>> {
/// Create a minimal transition table with just two states: a dead state
/// and a quit state. The alphabet length and stride of the transition
/// table is determined by the given set of equivalence classes.
fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
let mut tt = TransitionTable {
table: vec![],
classes,
stride2: classes.stride2(),
};
// Two states, regardless of alphabet size, can always fit into u32.
tt.add_empty_state().unwrap(); // dead state
tt.add_empty_state().unwrap(); // quit state
tt
}
/// Set a transition in this table. Both the `from` and `to` states must
/// already exist, otherwise this panics. `unit` should correspond to the
/// transition out of `from` to set to `to`.
fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
assert!(self.is_valid(from), "invalid 'from' state");
assert!(self.is_valid(to), "invalid 'to' state");
self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
to.as_u32();
}
/// Add an empty state (a state where all transitions lead to a dead state)
/// and return its identifier. The identifier returned is guaranteed to
/// not point to any other existing state.
///
/// If adding a state would exhaust the state identifier space, then this
/// returns an error.
fn add_empty_state(&mut self) -> Result<StateID, Error> {
// Normally, to get a fresh state identifier, we would just
// take the index of the next state added to the transition
// table. However, we actually perform an optimization here
// that premultiplies state IDs by the stride, such that they
// point immediately at the beginning of their transitions in
// the transition table. This avoids an extra multiplication
// instruction for state lookup at search time.
//
// Premultiplied identifiers means that instead of your matching
// loop looking something like this:
//
// state = dfa.start
// for byte in haystack:
// next = dfa.transitions[state * stride + byte]
// if dfa.is_match(next):
// return true
// return false
//
// it can instead look like this:
//
// state = dfa.start
// for byte in haystack:
// next = dfa.transitions[state + byte]
// if dfa.is_match(next):
// return true
// return false
//
// In other words, we save a multiplication instruction in the
// critical path. This turns out to be a decent performance win.
// The cost of using premultiplied state ids is that they can
// require a bigger state id representation. (And they also make
// the code a bit more complex, especially during minimization and
// when reshuffling states, as one needs to convert back and forth
// between state IDs and state indices.)
//
// To do this, we simply take the index of the state into the
// entire transition table, rather than the index of the state
// itself. e.g., If the stride is 64, then the ID of the 3rd state
// is 192, not 2.
let next = self.table.len();
let id = StateID::new(next).map_err(|_| Error::too_many_states())?;
self.table.extend(iter::repeat(0).take(self.stride()));
Ok(id)
}
/// Swap the two states given in this transition table.
///
/// This routine does not do anything to check the correctness of this
/// swap. Callers must ensure that other states pointing to id1 and id2 are
/// updated appropriately.
///
/// Both id1 and id2 must point to valid states, otherwise this panics.
fn swap(&mut self, id1: StateID, id2: StateID) {
assert!(self.is_valid(id1), "invalid 'id1' state: {:?}", id1);
assert!(self.is_valid(id2), "invalid 'id2' state: {:?}", id2);
// We only need to swap the parts of the state that are used. So if the
// stride is 64, but the alphabet length is only 33, then we save a lot
// of work.
for b in 0..self.classes.alphabet_len() {
self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
}
}
/// Truncate the states in this transition table to the given count.
///
/// This routine does not do anything to check the correctness of this
/// truncation. Callers must ensure that other states pointing to truncated
/// states are updated appropriately.
fn truncate(&mut self, count: usize) {
self.table.truncate(count << self.stride2);
}
/// Return a mutable representation of the state corresponding to the given
/// id. This is useful for implementing routines that manipulate DFA states
/// (e.g., swapping states).
fn state_mut(&mut self, id: StateID) -> StateMut<'_> {
let alphabet_len = self.alphabet_len();
let i = id.as_usize();
StateMut {
id,
stride2: self.stride2,
transitions: &mut self.table_mut()[i..i + alphabet_len],
}
}
}
impl<T: AsRef<[u32]>> TransitionTable<T> {
/// Writes a serialized form of this transition table to the buffer given.
/// If the buffer is too small, then an error is returned. To determine
/// how big the buffer must be, use `write_to_len`.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("transition table"));
}
dst = &mut dst[..nwrite];
// write state count
// Unwrap is OK since number of states is guaranteed to fit in a u32.
E::write_u32(u32::try_from(self.count()).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write state stride (as power of 2)
// Unwrap is OK since stride2 is guaranteed to be <= 9.
E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write byte class map
let n = self.classes.write_to(dst)?;
dst = &mut dst[n..];
// write actual transitions
for &sid in self.table() {
let n = bytes::write_state_id::<E>(sid, &mut dst);
dst = &mut dst[n..];
}
Ok(nwrite)
}
/// Returns the number of bytes the serialized form of this transition
/// table will use.
fn write_to_len(&self) -> usize {
size_of::<u32>() // state count
+ size_of::<u32>() // stride2
+ self.classes.write_to_len()
+ (self.table().len() * StateID::SIZE)
}
/// Validates that every state ID in this transition table is valid.
///
/// That is, every state ID can be used to correctly index a state in this
/// table.
fn validate(&self) -> Result<(), DeserializeError> {
for state in self.states() {
for (_, to) in state.transitions() {
if !self.is_valid(to) {
return Err(DeserializeError::generic(
"found invalid state ID in transition table",
));
}
}
}
Ok(())
}
/// Converts this transition table to a borrowed value.
fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
TransitionTable {
table: self.table.as_ref(),
classes: self.classes.clone(),
stride2: self.stride2,
}
}
/// Converts this transition table to an owned value.
#[cfg(feature = "alloc")]
fn to_owned(&self) -> TransitionTable<Vec<u32>> {
TransitionTable {
table: self.table.as_ref().to_vec(),
classes: self.classes.clone(),
stride2: self.stride2,
}
}
/// Return the state for the given ID. If the given ID is not valid, then
/// this panics.
fn state(&self, id: StateID) -> State<'_> {
assert!(self.is_valid(id));
let i = id.as_usize();
State {
id,
stride2: self.stride2,
transitions: &self.table()[i..i + self.alphabet_len()],
}
}
/// Returns an iterator over all states in this transition table.
///
/// This iterator yields a tuple for each state. The first element of the
/// tuple corresponds to a state's identifier, and the second element
/// corresponds to the state itself (comprised of its transitions).
fn states(&self) -> StateIter<'_, T> {
StateIter {
tt: self,
it: self.table().chunks(self.stride()).enumerate(),
}
}
/// Convert a state identifier to an index to a state (in the range
/// 0..self.count()).
///
/// This is useful when using a `Vec<T>` as an efficient map keyed by state
/// to some other information (such as a remapped state ID).
///
/// If the given ID is not valid, then this may panic or produce an
/// incorrect index.
fn to_index(&self, id: StateID) -> usize {
id.as_usize() >> self.stride2
}
/// Convert an index to a state (in the range 0..self.count()) to an actual
/// state identifier.
///
/// This is useful when using a `Vec<T>` as an efficient map keyed by state
/// to some other information (such as a remapped state ID).
///
/// If the given index is not in the specified range, then this may panic
/// or produce an incorrect state ID.
fn from_index(&self, index: usize) -> StateID {
// CORRECTNESS: If the given index is not valid, then it is not
// required for this to panic or return a valid state ID.
StateID::new_unchecked(index << self.stride2)
}
/// Returns the state ID for the state immediately following the one given.
///
/// This does not check whether the state ID returned is invalid. In fact,
/// if the state ID given is the last state in this DFA, then the state ID
/// returned is guaranteed to be invalid.
#[cfg(feature = "alloc")]
fn next_state_id(&self, id: StateID) -> StateID {
self.from_index(self.to_index(id).checked_add(1).unwrap())
}
/// Returns the state ID for the state immediately preceding the one given.
///
/// If the dead ID given (which is zero), then this panics.
#[cfg(feature = "alloc")]
fn prev_state_id(&self, id: StateID) -> StateID {
self.from_index(self.to_index(id).checked_sub(1).unwrap())
}
/// Returns the table as a slice of state IDs.
fn table(&self) -> &[StateID] {
let integers = self.table.as_ref();
// SAFETY: This is safe because StateID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts(
integers.as_ptr() as *const StateID,
integers.len(),
)
}
}
/// Returns the total number of states in this transition table.
///
/// Note that a DFA always has at least two states: the dead and quit
/// states. In particular, the dead state always has ID 0 and is
/// correspondingly always the first state. The dead state is never a match
/// state.
fn count(&self) -> usize {
self.table().len() >> self.stride2
}
/// Returns the total stride for every state in this DFA. This corresponds
/// to the total number of transitions used by each state in this DFA's
/// transition table.
fn stride(&self) -> usize {
1 << self.stride2
}
/// Returns the total number of elements in the alphabet for this
/// transition table. This is always less than or equal to `self.stride()`.
/// It is only equal when the alphabet length is a power of 2. Otherwise,
/// it is always strictly less.
fn alphabet_len(&self) -> usize {
self.classes.alphabet_len()
}
/// Returns true if and only if the given state ID is valid for this
/// transition table. Validity in this context means that the given ID can
/// be used as a valid offset with `self.stride()` to index this transition
/// table.
fn is_valid(&self, id: StateID) -> bool {
let id = id.as_usize();
id < self.table().len() && id % self.stride() == 0
}
/// Return the memory usage, in bytes, of this transition table.
///
/// This does not include the size of a `TransitionTable` value itself.
fn memory_usage(&self) -> usize {
self.table().len() * StateID::SIZE
}
}
#[cfg(feature = "alloc")]
impl<T: AsMut<[u32]>> TransitionTable<T> {
/// Returns the table as a slice of state IDs.
fn table_mut(&mut self) -> &mut [StateID] {
let integers = self.table.as_mut();
// SAFETY: This is safe because StateID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts_mut(
integers.as_mut_ptr() as *mut StateID,
integers.len(),
)
}
}
}
/// The set of all possible starting states in a DFA.
///
/// The set of starting states corresponds to the possible choices one can make
/// in terms of starting a DFA. That is, before following the first transition,
/// you first need to select the state that you start in.
///
/// Normally, a DFA converted from an NFA that has a single starting state
/// would itself just have one starting state. However, our support for look
/// around generally requires more starting states. The correct starting state
/// is chosen based on certain properties of the position at which we begin
/// our search.
///
/// Before listing those properties, we first must define two terms:
///
/// * `haystack` - The bytes to execute the search. The search always starts
/// at the beginning of `haystack` and ends before or at the end of
/// `haystack`.
/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
/// must be contained within `context` such that `context` is at least as big
/// as `haystack`.
///
/// This split is crucial for dealing with look-around. For example, consider
/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
/// regex should _not_ match the haystack since `bar` does not appear at the
/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
/// haystack because `bar` is not surrounded by word boundaries. But a search
/// that does not take context into account would not permit `\B` to match
/// since the beginning of any string matches a word boundary. Similarly, a
/// search that does not take context into account when searching `^bar$` in
/// the haystack `bar` would produce a match when it shouldn't.
///
/// Thus, it follows that the starting state is chosen based on the following
/// criteria, derived from the position at which the search starts in the
/// `context` (corresponding to the start of `haystack`):
///
/// 1. If the search starts at the beginning of `context`, then the `Text`
/// start state is used. (Since `^` corresponds to
/// `hir::Anchor::StartText`.)
/// 2. If the search starts at a position immediately following a line
/// terminator, then the `Line` start state is used. (Since `(?m:^)`
/// corresponds to `hir::Anchor::StartLine`.)
/// 3. If the search starts at a position immediately following a byte
/// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
/// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
/// 4. Otherwise, if the search starts at a position immediately following
/// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
/// then the `NonWordByte` start state is used. (Since `(?-u:\B)`
/// corresponds to a not-word-boundary.)
///
/// (N.B. Unicode word boundaries are not supported by the DFA because they
/// require multi-byte look-around and this is difficult to support in a DFA.)
///
/// To further complicate things, we also support constructing individual
/// anchored start states for each pattern in the DFA. (Which is required to
/// implement overlapping regexes correctly, but is also generally useful.)
/// Thus, when individual start states for each pattern are enabled, then the
/// total number of start states represented is `4 + (4 * #patterns)`, where
/// the 4 comes from each of the 4 possibilities above. The first 4 represents
/// the starting states for the entire DFA, which support searching for
/// multiple patterns simultaneously (possibly unanchored).
///
/// If individual start states are disabled, then this will only store 4
/// start states. Typically, individual start states are only enabled when
/// constructing the reverse DFA for regex matching. But they are also useful
/// for building DFAs that can search for a specific pattern or even to support
/// both anchored and unanchored searches with the same DFA.
///
/// Note though that while the start table always has either `4` or
/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
/// might be considerably smaller. That is, many of the IDs may be duplicative.
/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
/// reason to generate a unique starting state for handling word boundaries.
/// Similarly for start/end anchors.)
#[derive(Clone)]
pub(crate) struct StartTable<T> {
/// The initial start state IDs.
///
/// In practice, T is either `Vec<u32>` or `&[u32]`.
///
/// The first `stride` (currently always 4) entries always correspond to
/// the start states for the entire DFA. After that, there are
/// `stride * patterns` state IDs, where `patterns` may be zero in the
/// case of a DFA with no patterns or in the case where the DFA was built
/// without enabling starting states for each pattern.
table: T,
/// The number of starting state IDs per pattern.
stride: usize,
/// The total number of patterns for which starting states are encoded.
/// This may be zero for non-empty DFAs when the DFA was built without
/// start states for each pattern. Thus, one cannot use this field to
/// say how many patterns are in the DFA in all cases. It is specific to
/// how many patterns are represented in this start table.
patterns: usize,
}
#[cfg(feature = "alloc")]
impl StartTable<Vec<u32>> {
/// Create a valid set of start states all pointing to the dead state.
///
/// When the corresponding DFA is constructed with start states for each
/// pattern, then `patterns` should be the number of patterns. Otherwise,
/// it should be zero.
///
/// If the total table size could exceed the allocatable limit, then this
/// returns an error. In practice, this is unlikely to be able to occur,
/// since it's likely that allocation would have failed long before it got
/// to this point.
fn dead(patterns: usize) -> Result<StartTable<Vec<u32>>, Error> {
assert!(patterns <= PatternID::LIMIT);
let stride = Start::count();
let pattern_starts_len = match stride.checked_mul(patterns) {
Some(x) => x,
None => return Err(Error::too_many_start_states()),
};
let table_len = match stride.checked_add(pattern_starts_len) {
Some(x) => x,
None => return Err(Error::too_many_start_states()),
};
if table_len > core::isize::MAX as usize {
return Err(Error::too_many_start_states());
}
let table = vec![DEAD.as_u32(); table_len];
Ok(StartTable { table, stride, patterns })
}
}
impl<'a> StartTable<&'a [u32]> {
/// Deserialize a table of start state IDs starting at the beginning of
/// `slice`. Upon success, return the total number of bytes read along with
/// the table of starting state IDs.
///
/// If there was a problem deserializing any part of the starting IDs,
/// then this returns an error. Notably, if the given slice does not have
/// the same alignment as `StateID`, then this will return an error (among
/// other possible errors).
///
/// This is guaranteed to execute in constant time.
///
/// # Safety
///
/// This routine is not safe because it does not check the valdity of the
/// starting state IDs themselves. In particular, the number of starting
/// IDs can be of variable length, so it's possible that checking their
/// validity cannot be done in constant time. An invalid starting state
/// ID is not safe because other code may rely on the starting IDs being
/// correct (such as explicit bounds check elision). Therefore, an invalid
/// start ID can lead to undefined behavior.
///
/// Callers that use this function must either pass on the safety invariant
/// or guarantee that the bytes given contain valid starting state IDs.
/// This guarantee is upheld by the bytes written by `write_to`.
unsafe fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
let slice_start = slice.as_ptr() as usize;
let (stride, nr) =
bytes::try_read_u32_as_usize(slice, "start table stride")?;
slice = &slice[nr..];
let (patterns, nr) =
bytes::try_read_u32_as_usize(slice, "start table patterns")?;
slice = &slice[nr..];
if stride != Start::count() {
return Err(DeserializeError::generic(
"invalid starting table stride",
));
}
if patterns > PatternID::LIMIT {
return Err(DeserializeError::generic(
"invalid number of patterns",
));
}
let pattern_table_size =
bytes::mul(stride, patterns, "invalid pattern count")?;
// Our start states always start with a single stride of start states
// for the entire automaton which permit it to match any pattern. What
// follows it are an optional set of start states for each pattern.
let start_state_count = bytes::add(
stride,
pattern_table_size,
"invalid 'any' pattern starts size",
)?;
let table_bytes_len = bytes::mul(
start_state_count,
StateID::SIZE,
"pattern table bytes length",
)?;
bytes::check_slice_len(slice, table_bytes_len, "start ID table")?;
bytes::check_alignment::<StateID>(slice)?;
let table_bytes = &slice[..table_bytes_len];
slice = &slice[table_bytes_len..];
// SAFETY: Since StateID is always representable as a u32, all we need
// to do is ensure that we have the proper length and alignment. We've
// checked both above, so the cast below is safe.
//
// N.B. This is the only not-safe code in this function, so we mark
// it explicitly to call it out, even though it is technically
// superfluous.
#[allow(unused_unsafe)]
let table = unsafe {
core::slice::from_raw_parts(
table_bytes.as_ptr() as *const u32,
start_state_count,
)
};
let st = StartTable { table, stride, patterns };
Ok((st, slice.as_ptr() as usize - slice_start))
}
}
impl<T: AsRef<[u32]>> StartTable<T> {
/// Writes a serialized form of this start table to the buffer given. If
/// the buffer is too small, then an error is returned. To determine how
/// big the buffer must be, use `write_to_len`.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small(
"starting table ids",
));
}
dst = &mut dst[..nwrite];
// write stride
// Unwrap is OK since the stride is always 4 (currently).
E::write_u32(u32::try_from(self.stride).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write pattern count
// Unwrap is OK since number of patterns is guaranteed to fit in a u32.
E::write_u32(u32::try_from(self.patterns).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write start IDs
for &sid in self.table() {
let n = bytes::write_state_id::<E>(sid, &mut dst);
dst = &mut dst[n..];
}
Ok(nwrite)
}
/// Returns the number of bytes the serialized form of this start ID table
/// will use.
fn write_to_len(&self) -> usize {
size_of::<u32>() // stride
+ size_of::<u32>() // # patterns
+ (self.table().len() * StateID::SIZE)
}
/// Validates that every state ID in this start table is valid by checking
/// it against the given transition table (which must be for the same DFA).
///
/// That is, every state ID can be used to correctly index a state.
fn validate(
&self,
tt: &TransitionTable<T>,
) -> Result<(), DeserializeError> {
for &id in self.table() {
if !tt.is_valid(id) {
return Err(DeserializeError::generic(
"found invalid starting state ID",
));
}
}
Ok(())
}
/// Converts this start list to a borrowed value.
fn as_ref(&self) -> StartTable<&'_ [u32]> {
StartTable {
table: self.table.as_ref(),
stride: self.stride,
patterns: self.patterns,
}
}
/// Converts this start list to an owned value.
#[cfg(feature = "alloc")]
fn to_owned(&self) -> StartTable<Vec<u32>> {
StartTable {
table: self.table.as_ref().to_vec(),
stride: self.stride,
patterns: self.patterns,
}
}
/// Return the start state for the given start index and pattern ID. If the
/// pattern ID is None, then the corresponding start state for the entire
/// DFA is returned. If the pattern ID is not None, then the corresponding
/// starting state for the given pattern is returned. If this start table
/// does not have individual starting states for each pattern, then this
/// panics.
fn start(&self, index: Start, pattern_id: Option<PatternID>) -> StateID {
let start_index = index.as_usize();
let index = match pattern_id {
None => start_index,
Some(pid) => {
let pid = pid.as_usize();
assert!(pid < self.patterns, "invalid pattern ID {:?}", pid);
self.stride + (self.stride * pid) + start_index
}
};
self.table()[index]
}
/// Returns an iterator over all start state IDs in this table.
///
/// Each item is a triple of: start state ID, the start state type and the
/// pattern ID (if any).
fn iter(&self) -> StartStateIter<'_> {
StartStateIter { st: self.as_ref(), i: 0 }
}
/// Returns the table as a slice of state IDs.
fn table(&self) -> &[StateID] {
let integers = self.table.as_ref();
// SAFETY: This is safe because StateID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts(
integers.as_ptr() as *const StateID,
integers.len(),
)
}
}
/// Return the memory usage, in bytes, of this start list.
///
/// This does not include the size of a `StartList` value itself.
fn memory_usage(&self) -> usize {
self.table().len() * StateID::SIZE
}
}
#[cfg(feature = "alloc")]
impl<T: AsMut<[u32]>> StartTable<T> {
/// Set the start state for the given index and pattern.
///
/// If the pattern ID or state ID are not valid, then this will panic.
fn set_start(
&mut self,
index: Start,
pattern_id: Option<PatternID>,
id: StateID,
) {
let start_index = index.as_usize();
let index = match pattern_id {
None => start_index,
Some(pid) => self
.stride
.checked_mul(pid.as_usize())
.unwrap()
.checked_add(self.stride)
.unwrap()
.checked_add(start_index)
.unwrap(),
};
self.table_mut()[index] = id;
}
/// Returns the table as a mutable slice of state IDs.
fn table_mut(&mut self) -> &mut [StateID] {
let integers = self.table.as_mut();
// SAFETY: This is safe because StateID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts_mut(
integers.as_mut_ptr() as *mut StateID,
integers.len(),
)
}
}
}
/// An iterator over start state IDs.
///
/// This iterator yields a triple of start state ID, the start state type
/// and the pattern ID (if any). The pattern ID is None for start states
/// corresponding to the entire DFA and non-None for start states corresponding
/// to a specific pattern. The latter only occurs when the DFA is compiled with
/// start states for each pattern.
pub(crate) struct StartStateIter<'a> {
st: StartTable<&'a [u32]>,
i: usize,
}
impl<'a> Iterator for StartStateIter<'a> {
type Item = (StateID, Start, Option<PatternID>);
fn next(&mut self) -> Option<(StateID, Start, Option<PatternID>)> {
let i = self.i;
let table = self.st.table();
if i >= table.len() {
return None;
}
self.i += 1;
// This unwrap is okay since the stride of the starting state table
// must always match the number of start state types.
let start_type = Start::from_usize(i % self.st.stride).unwrap();
let pid = if i < self.st.stride {
None
} else {
Some(
PatternID::new((i - self.st.stride) / self.st.stride).unwrap(),
)
};
Some((table[i], start_type, pid))
}
}
/// This type represents that patterns that should be reported whenever a DFA
/// enters a match state. This structure exists to support DFAs that search for
/// matches for multiple regexes.
///
/// This structure relies on the fact that all match states in a DFA occur
/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
/// detailed breakdown of the representation.) Namely, when a match occurs, we
/// know its state ID. Since we know the start and end of the contiguous region
/// of match states, we can use that to compute the position at which the match
/// state occurs. That in turn is used as an offset into this structure.
#[derive(Clone, Debug)]
struct MatchStates<T> {
/// Slices is a flattened sequence of pairs, where each pair points to a
/// sub-slice of pattern_ids. The first element of the pair is an offset
/// into pattern_ids and the second element of the pair is the number
/// of 32-bit pattern IDs starting at that position. That is, each pair
/// corresponds to a single DFA match state and its corresponding match
/// IDs. The number of pairs always corresponds to the number of distinct
/// DFA match states.
///
/// In practice, T is either Vec<u32> or &[u32].
slices: T,
/// A flattened sequence of pattern IDs for each DFA match state. The only
/// way to correctly read this sequence is indirectly via `slices`.
///
/// In practice, T is either Vec<u32> or &[u32].
pattern_ids: T,
/// The total number of unique patterns represented by these match states.
patterns: usize,
}
impl<'a> MatchStates<&'a [u32]> {
unsafe fn from_bytes_unchecked(
mut slice: &'a [u8],
) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
let slice_start = slice.as_ptr() as usize;
// Read the total number of match states.
let (count, nr) =
bytes::try_read_u32_as_usize(slice, "match state count")?;
slice = &slice[nr..];
// Read the slice start/length pairs.
let pair_count = bytes::mul(2, count, "match state offset pairs")?;
let slices_bytes_len = bytes::mul(
pair_count,
PatternID::SIZE,
"match state slice offset byte length",
)?;
bytes::check_slice_len(slice, slices_bytes_len, "match state slices")?;
bytes::check_alignment::<PatternID>(slice)?;
let slices_bytes = &slice[..slices_bytes_len];
slice = &slice[slices_bytes_len..];
// SAFETY: Since PatternID is always representable as a u32, all we
// need to do is ensure that we have the proper length and alignment.
// We've checked both above, so the cast below is safe.
//
// N.B. This is one of the few not-safe snippets in this function, so
// we mark it explicitly to call it out, even though it is technically
// superfluous.
#[allow(unused_unsafe)]
let slices = unsafe {
core::slice::from_raw_parts(
slices_bytes.as_ptr() as *const u32,
pair_count,
)
};
// Read the total number of unique pattern IDs (which is always 1 more
// than the maximum pattern ID in this automaton, since pattern IDs are
// handed out contiguously starting at 0).
let (patterns, nr) =
bytes::try_read_u32_as_usize(slice, "pattern count")?;
slice = &slice[nr..];
// Now read the pattern ID count. We don't need to store this
// explicitly, but we need it to know how many pattern IDs to read.
let (idcount, nr) =
bytes::try_read_u32_as_usize(slice, "pattern ID count")?;
slice = &slice[nr..];
// Read the actual pattern IDs.
let pattern_ids_len =
bytes::mul(idcount, PatternID::SIZE, "pattern ID byte length")?;
bytes::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
bytes::check_alignment::<PatternID>(slice)?;
let pattern_ids_bytes = &slice[..pattern_ids_len];
slice = &slice[pattern_ids_len..];
// SAFETY: Since PatternID is always representable as a u32, all we
// need to do is ensure that we have the proper length and alignment.
// We've checked both above, so the cast below is safe.
//
// N.B. This is one of the few not-safe snippets in this function, so
// we mark it explicitly to call it out, even though it is technically
// superfluous.
#[allow(unused_unsafe)]
let pattern_ids = unsafe {
core::slice::from_raw_parts(
pattern_ids_bytes.as_ptr() as *const u32,
idcount,
)
};
let ms = MatchStates { slices, pattern_ids, patterns };
Ok((ms, slice.as_ptr() as usize - slice_start))
}
}
#[cfg(feature = "alloc")]
impl MatchStates<Vec<u32>> {
fn empty(pattern_count: usize) -> MatchStates<Vec<u32>> {
assert!(pattern_count <= PatternID::LIMIT);
MatchStates {
slices: vec![],
pattern_ids: vec![],
patterns: pattern_count,
}
}
fn new(
matches: &BTreeMap<StateID, Vec<PatternID>>,
pattern_count: usize,
) -> Result<MatchStates<Vec<u32>>, Error> {
let mut m = MatchStates::empty(pattern_count);
for (_, pids) in matches.iter() {
let start = PatternID::new(m.pattern_ids.len())
.map_err(|_| Error::too_many_match_pattern_ids())?;
m.slices.push(start.as_u32());
// This is always correct since the number of patterns in a single
// match state can never exceed maximum number of allowable
// patterns. Why? Because a pattern can only appear once in a
// particular match state, by construction. (And since our pattern
// ID limit is one less than u32::MAX, we're guaranteed that the
// length fits in a u32.)
m.slices.push(u32::try_from(pids.len()).unwrap());
for &pid in pids {
m.pattern_ids.push(pid.as_u32());
}
}
m.patterns = pattern_count;
Ok(m)
}
fn new_with_map(
&self,
matches: &BTreeMap<StateID, Vec<PatternID>>,
) -> Result<MatchStates<Vec<u32>>, Error> {
MatchStates::new(matches, self.patterns)
}
}
impl<T: AsRef<[u32]>> MatchStates<T> {
/// Writes a serialized form of these match states to the buffer given. If
/// the buffer is too small, then an error is returned. To determine how
/// big the buffer must be, use `write_to_len`.
fn write_to<E: Endian>(
&self,
mut dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("match states"));
}
dst = &mut dst[..nwrite];
// write state ID count
// Unwrap is OK since number of states is guaranteed to fit in a u32.
E::write_u32(u32::try_from(self.count()).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write slice offset pairs
for &pid in self.slices() {
let n = bytes::write_pattern_id::<E>(pid, &mut dst);
dst = &mut dst[n..];
}
// write unique pattern ID count
// Unwrap is OK since number of patterns is guaranteed to fit in a u32.
E::write_u32(u32::try_from(self.patterns).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write pattern ID count
// Unwrap is OK since we check at construction (and deserialization)
// that the number of patterns is representable as a u32.
E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
dst = &mut dst[size_of::<u32>()..];
// write pattern IDs
for &pid in self.pattern_ids() {
let n = bytes::write_pattern_id::<E>(pid, &mut dst);
dst = &mut dst[n..];
}
Ok(nwrite)
}
/// Returns the number of bytes the serialized form of this transition
/// table will use.
fn write_to_len(&self) -> usize {
size_of::<u32>() // match state count
+ (self.slices().len() * PatternID::SIZE)
+ size_of::<u32>() // unique pattern ID count
+ size_of::<u32>() // pattern ID count
+ (self.pattern_ids().len() * PatternID::SIZE)
}
/// Valides that the match state info is itself internally consistent and
/// consistent with the recorded match state region in the given DFA.
fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
if self.count() != dfa.special.match_len(dfa.stride()) {
return Err(DeserializeError::generic(
"match state count mismatch",
));
}
for si in 0..self.count() {
let start = self.slices()[si * 2].as_usize();
let len = self.slices()[si * 2 + 1].as_usize();
if start >= self.pattern_ids().len() {
return Err(DeserializeError::generic(
"invalid pattern ID start offset",
));
}
if start + len > self.pattern_ids().len() {
return Err(DeserializeError::generic(
"invalid pattern ID length",
));
}
for mi in 0..len {
let pid = self.pattern_id(si, mi);
if pid.as_usize() >= self.patterns {
return Err(DeserializeError::generic(
"invalid pattern ID",
));
}
}
}
Ok(())
}
/// Converts these match states back into their map form. This is useful
/// when shuffling states, as the normal MatchStates representation is not
/// amenable to easy state swapping. But with this map, to swap id1 and
/// id2, all you need to do is:
///
/// if let Some(pids) = map.remove(&id1) {
/// map.insert(id2, pids);
/// }
///
/// Once shuffling is done, use MatchStates::new to convert back.
#[cfg(feature = "alloc")]
fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
let mut map = BTreeMap::new();
for i in 0..self.count() {
let mut pids = vec![];
for j in 0..self.pattern_len(i) {
pids.push(self.pattern_id(i, j));
}
map.insert(self.match_state_id(dfa, i), pids);
}
map
}
/// Converts these match states to a borrowed value.
fn as_ref(&self) -> MatchStates<&'_ [u32]> {
MatchStates {
slices: self.slices.as_ref(),
pattern_ids: self.pattern_ids.as_ref(),
patterns: self.patterns,
}
}
/// Converts these match states to an owned value.
#[cfg(feature = "alloc")]
fn to_owned(&self) -> MatchStates<Vec<u32>> {
MatchStates {
slices: self.slices.as_ref().to_vec(),
pattern_ids: self.pattern_ids.as_ref().to_vec(),
patterns: self.patterns,
}
}
/// Returns the match state ID given the match state index. (Where the
/// first match state corresponds to index 0.)
///
/// This panics if there is no match state at the given index.
fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
assert!(dfa.special.matches(), "no match states to index");
// This is one of the places where we rely on the fact that match
// states are contiguous in the transition table. Namely, that the
// first match state ID always corresponds to dfa.special.min_start.
// From there, since we know the stride, we can compute the ID of any
// match state given its index.
let stride2 = u32::try_from(dfa.stride2()).unwrap();
let offset = index.checked_shl(stride2).unwrap();
let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
let sid = StateID::new(id).unwrap();
assert!(dfa.is_match_state(sid));
sid
}
/// Returns the pattern ID at the given match index for the given match
/// state.
///
/// The match state index is the state index minus the state index of the
/// first match state in the DFA.
///
/// The match index is the index of the pattern ID for the given state.
/// The index must be less than `self.pattern_len(state_index)`.
fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
self.pattern_id_slice(state_index)[match_index]
}
/// Returns the number of patterns in the given match state.
///
/// The match state index is the state index minus the state index of the
/// first match state in the DFA.
fn pattern_len(&self, state_index: usize) -> usize {
self.slices()[state_index * 2 + 1].as_usize()
}
/// Returns all of the pattern IDs for the given match state index.
///
/// The match state index is the state index minus the state index of the
/// first match state in the DFA.
fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
let start = self.slices()[state_index * 2].as_usize();
let len = self.pattern_len(state_index);
&self.pattern_ids()[start..start + len]
}
/// Returns the pattern ID offset slice of u32 as a slice of PatternID.
fn slices(&self) -> &[PatternID] {
let integers = self.slices.as_ref();
// SAFETY: This is safe because PatternID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts(
integers.as_ptr() as *const PatternID,
integers.len(),
)
}
}
/// Returns the total number of match states.
fn count(&self) -> usize {
assert_eq!(0, self.slices().len() % 2);
self.slices().len() / 2
}
/// Returns the pattern ID slice of u32 as a slice of PatternID.
fn pattern_ids(&self) -> &[PatternID] {
let integers = self.pattern_ids.as_ref();
// SAFETY: This is safe because PatternID is guaranteed to be
// representable as a u32.
unsafe {
core::slice::from_raw_parts(
integers.as_ptr() as *const PatternID,
integers.len(),
)
}
}
/// Return the memory usage, in bytes, of these match pairs.
fn memory_usage(&self) -> usize {
(self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
}
}
/// An iterator over all states in a DFA.
///
/// This iterator yields a tuple for each state. The first element of the
/// tuple corresponds to a state's identifier, and the second element
/// corresponds to the state itself (comprised of its transitions).
///
/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
/// the type of the transition table itself.
pub(crate) struct StateIter<'a, T> {
tt: &'a TransitionTable<T>,
it: iter::Enumerate<slice::Chunks<'a, StateID>>,
}
impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
type Item = State<'a>;
fn next(&mut self) -> Option<State<'a>> {
self.it.next().map(|(index, _)| {
let id = self.tt.from_index(index);
self.tt.state(id)
})
}
}
/// An immutable representation of a single DFA state.
///
/// `'a` correspondings to the lifetime of a DFA's transition table.
pub(crate) struct State<'a> {
id: StateID,
stride2: usize,
transitions: &'a [StateID],
}
impl<'a> State<'a> {
/// Return an iterator over all transitions in this state. This yields
/// a number of transitions equivalent to the alphabet length of the
/// corresponding DFA.
///
/// Each transition is represented by a tuple. The first element is
/// the input byte for that transition and the second element is the
/// transitions itself.
pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
StateTransitionIter {
len: self.transitions.len(),
it: self.transitions.iter().enumerate(),
}
}
/// Return an iterator over a sparse representation of the transitions in
/// this state. Only non-dead transitions are returned.
///
/// The "sparse" representation in this case corresponds to a sequence of
/// triples. The first two elements of the triple comprise an inclusive
/// byte range while the last element corresponds to the transition taken
/// for all bytes in the range.
///
/// This is somewhat more condensed than the classical sparse
/// representation (where you have an element for every non-dead
/// transition), but in practice, checking if a byte is in a range is very
/// cheap and using ranges tends to conserve quite a bit more space.
pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
StateSparseTransitionIter { dense: self.transitions(), cur: None }
}
/// Returns the identifier for this state.
pub(crate) fn id(&self) -> StateID {
self.id
}
/// Analyzes this state to determine whether it can be accelerated. If so,
/// it returns an accelerator that contains at least one byte.
#[cfg(feature = "alloc")]
fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
// We just try to add bytes to our accelerator. Once adding fails
// (because we've added too many bytes), then give up.
let mut accel = Accel::new();
for (class, id) in self.transitions() {
if id == self.id() {
continue;
}
for unit in classes.elements(class) {
if let Some(byte) = unit.as_u8() {
if !accel.add(byte) {
return None;
}
}
}
}
if accel.is_empty() {
None
} else {
Some(accel)
}
}
}
impl<'a> fmt::Debug for State<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for (i, (start, end, id)) in self.sparse_transitions().enumerate() {
let index = if f.alternate() {
id.as_usize()
} else {
id.as_usize() >> self.stride2
};
if i > 0 {
write!(f, ", ")?;
}
if start == end {
write!(f, "{:?} => {:?}", start, index)?;
} else {
write!(f, "{:?}-{:?} => {:?}", start, end, index)?;
}
}
Ok(())
}
}
/// A mutable representation of a single DFA state.
///
/// `'a` correspondings to the lifetime of a DFA's transition table.
#[cfg(feature = "alloc")]
pub(crate) struct StateMut<'a> {
id: StateID,
stride2: usize,
transitions: &'a mut [StateID],
}
#[cfg(feature = "alloc")]
impl<'a> StateMut<'a> {
/// Return an iterator over all transitions in this state. This yields
/// a number of transitions equivalent to the alphabet length of the
/// corresponding DFA.
///
/// Each transition is represented by a tuple. The first element is the
/// input byte for that transition and the second element is a mutable
/// reference to the transition itself.
pub(crate) fn iter_mut(&mut self) -> StateTransitionIterMut<'_> {
StateTransitionIterMut {
len: self.transitions.len(),
it: self.transitions.iter_mut().enumerate(),
}
}
}
#[cfg(feature = "alloc")]
impl<'a> fmt::Debug for StateMut<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(
&State {
id: self.id,
stride2: self.stride2,
transitions: self.transitions,
},
f,
)
}
}
/// An iterator over all transitions in a single DFA state. This yields
/// a number of transitions equivalent to the alphabet length of the
/// corresponding DFA.
///
/// Each transition is represented by a tuple. The first element is the input
/// byte for that transition and the second element is the transition itself.
#[derive(Debug)]
pub(crate) struct StateTransitionIter<'a> {
len: usize,
it: iter::Enumerate<slice::Iter<'a, StateID>>,
}
impl<'a> Iterator for StateTransitionIter<'a> {
type Item = (alphabet::Unit, StateID);
fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
self.it.next().map(|(i, &id)| {
let unit = if i + 1 == self.len {
alphabet::Unit::eoi(i)
} else {
let b = u8::try_from(i)
.expect("raw byte alphabet is never exceeded");
alphabet::Unit::u8(b)
};
(unit, id)
})
}
}
/// A mutable iterator over all transitions in a DFA state.
///
/// Each transition is represented by a tuple. The first element is the
/// input byte for that transition and the second element is a mutable
/// reference to the transition itself.
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub(crate) struct StateTransitionIterMut<'a> {
len: usize,
it: iter::Enumerate<slice::IterMut<'a, StateID>>,
}
#[cfg(feature = "alloc")]
impl<'a> Iterator for StateTransitionIterMut<'a> {
type Item = (alphabet::Unit, &'a mut StateID);
fn next(&mut self) -> Option<(alphabet::Unit, &'a mut StateID)> {
self.it.next().map(|(i, id)| {
let unit = if i + 1 == self.len {
alphabet::Unit::eoi(i)
} else {
let b = u8::try_from(i)
.expect("raw byte alphabet is never exceeded");
alphabet::Unit::u8(b)
};
(unit, id)
})
}
}
/// An iterator over all non-DEAD transitions in a single DFA state using a
/// sparse representation.
///
/// Each transition is represented by a triple. The first two elements of the
/// triple comprise an inclusive byte range while the last element corresponds
/// to the transition taken for all bytes in the range.
///
/// As a convenience, this always returns `alphabet::Unit` values of the same
/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
/// byte) and (EOI, EOI) values are yielded.
#[derive(Debug)]
pub(crate) struct StateSparseTransitionIter<'a> {
dense: StateTransitionIter<'a>,
cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
}
impl<'a> Iterator for StateSparseTransitionIter<'a> {
type Item = (alphabet::Unit, alphabet::Unit, StateID);
fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
while let Some((unit, next)) = self.dense.next() {
let (prev_start, prev_end, prev_next) = match self.cur {
Some(t) => t,
None => {
self.cur = Some((unit, unit, next));
continue;
}
};
if prev_next == next && !unit.is_eoi() {
self.cur = Some((prev_start, unit, prev_next));
} else {
self.cur = Some((unit, unit, next));
if prev_next != DEAD {
return Some((prev_start, prev_end, prev_next));
}
}
}
if let Some((start, end, next)) = self.cur.take() {
if next != DEAD {
return Some((start, end, next));
}
}
None
}
}
/// An iterator over pattern IDs for a single match state.
#[derive(Debug)]
pub(crate) struct PatternIDIter<'a>(slice::Iter<'a, PatternID>);
impl<'a> Iterator for PatternIDIter<'a> {
type Item = PatternID;
fn next(&mut self) -> Option<PatternID> {
self.0.next().copied()
}
}
/// Remapper is an abstraction the manages the remapping of state IDs in a
/// dense DFA. This is useful when one wants to shuffle states into different
/// positions in the DFA.
///
/// One of the key complexities this manages is the ability to correctly move
/// one state multiple times.
///
/// Once shuffling is complete, `remap` should be called, which will rewrite
/// all pertinent transitions to updated state IDs.
#[cfg(feature = "alloc")]
#[derive(Debug)]
struct Remapper {
/// A map from the index of a state to its pre-multiplied identifier.
///
/// When a state is swapped with another, then their corresponding
/// locations in this map are also swapped. Thus, its new position will
/// still point to its old pre-multiplied StateID.
///
/// While there is a bit more to it, this then allows us to rewrite the
/// state IDs in a DFA's transition table in a single pass. This is done
/// by iterating over every ID in this map, then iterating over each
/// transition for the state at that ID and re-mapping the transition from
/// `old_id` to `map[dfa.to_index(old_id)]`. That is, we find the position
/// in this map where `old_id` *started*, and set it to where it ended up
/// after all swaps have been completed.
map: Vec<StateID>,
}
#[cfg(feature = "alloc")]
impl Remapper {
fn from_dfa(dfa: &OwnedDFA) -> Remapper {
Remapper {
map: (0..dfa.state_count()).map(|i| dfa.from_index(i)).collect(),
}
}
fn swap(&mut self, dfa: &mut OwnedDFA, id1: StateID, id2: StateID) {
dfa.swap_states(id1, id2);
self.map.swap(dfa.to_index(id1), dfa.to_index(id2));
}
fn remap(mut self, dfa: &mut OwnedDFA) {
// Update the map to account for states that have been swapped
// multiple times. For example, if (A, C) and (C, G) are swapped, then
// transitions previously pointing to A should now point to G. But if
// we don't update our map, they will erroneously be set to C. All we
// do is follow the swaps in our map until we see our original state
// ID.
let oldmap = self.map.clone();
for i in 0..dfa.state_count() {
let cur_id = dfa.from_index(i);
let mut new = oldmap[i];
if cur_id == new {
continue;
}
loop {
let id = oldmap[dfa.to_index(new)];
if cur_id == id {
self.map[i] = new;
break;
}
new = id;
}
}
// To work around the borrow checker for converting state IDs to
// indices. We cannot borrow self while mutably iterating over a
// state's transitions. Otherwise, we'd just use dfa.to_index(..).
let stride2 = dfa.stride2();
let to_index = |id: StateID| -> usize { id.as_usize() >> stride2 };
// Now that we've finished shuffling, we need to remap all of our
// transitions. We don't need to handle re-mapping accelerated states
// since `accels` is only populated after shuffling.
for &id in self.map.iter() {
for (_, next_id) in dfa.state_mut(id).iter_mut() {
*next_id = self.map[to_index(*next_id)];
}
}
for start_id in dfa.st.table_mut().iter_mut() {
*start_id = self.map[to_index(*start_id)];
}
}
}
#[cfg(all(test, feature = "alloc"))]
mod tests {
use super::*;
#[test]
fn errors_with_unicode_word_boundary() {
let pattern = r"\b";
assert!(Builder::new().build(pattern).is_err());
}
#[test]
fn roundtrip_never_match() {
let dfa = DFA::never_match().unwrap();
let (buf, _) = dfa.to_bytes_native_endian();
let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
assert_eq!(None, dfa.find_leftmost_fwd(b"foo12345").unwrap());
}
#[test]
fn roundtrip_always_match() {
use crate::HalfMatch;
let dfa = DFA::always_match().unwrap();
let (buf, _) = dfa.to_bytes_native_endian();
let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
assert_eq!(
Some(HalfMatch::must(0, 0)),
dfa.find_leftmost_fwd(b"foo12345").unwrap()
);
}
}