1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
/*!
Types and routines specific to dense DFAs.

This module is the home of [`dense::DFA`](DFA).

This module also contains a [`dense::Builder`](Builder) and a
[`dense::Config`](Config) for configuring and building a dense DFA.
*/

#[cfg(feature = "alloc")]
use core::cmp;
use core::{convert::TryFrom, fmt, iter, mem::size_of, slice};

#[cfg(feature = "alloc")]
use alloc::{
    collections::{BTreeMap, BTreeSet},
    vec,
    vec::Vec,
};

#[cfg(feature = "alloc")]
use crate::{
    dfa::{
        accel::Accel, determinize, error::Error, minimize::Minimizer, sparse,
    },
    nfa::thompson,
    util::alphabet::ByteSet,
    MatchKind,
};
use crate::{
    dfa::{
        accel::Accels,
        automaton::{fmt_state_indicator, Automaton},
        special::Special,
        DEAD,
    },
    util::{
        alphabet::{self, ByteClasses},
        bytes::{self, DeserializeError, Endian, SerializeError},
        id::{PatternID, StateID},
        start::Start,
    },
};

/// The label that is pre-pended to a serialized DFA.
const LABEL: &str = "rust-regex-automata-dfa-dense";

/// The format version of dense regexes. This version gets incremented when a
/// change occurs. A change may not necessarily be a breaking change, but the
/// version does permit good error messages in the case where a breaking change
/// is made.
const VERSION: u32 = 2;

/// The configuration used for compiling a dense DFA.
///
/// A dense DFA configuration is a simple data object that is typically used
/// with [`dense::Builder::configure`](self::Builder::configure).
///
/// The default configuration guarantees that a search will _never_ return a
/// [`MatchError`](crate::MatchError) for any haystack or pattern. Setting a
/// quit byte with [`Config::quit`] or enabling heuristic support for Unicode
/// word boundaries with [`Config::unicode_word_boundary`] can in turn cause a
/// search to return an error. See the corresponding configuration options for
/// more details on when those error conditions arise.
#[cfg(feature = "alloc")]
#[derive(Clone, Copy, Debug, Default)]
pub struct Config {
    // As with other configuration types in this crate, we put all our knobs
    // in options so that we can distinguish between "default" and "not set."
    // This makes it possible to easily combine multiple configurations
    // without default values overwriting explicitly specified values. See the
    // 'overwrite' method.
    //
    // For docs on the fields below, see the corresponding method setters.
    anchored: Option<bool>,
    accelerate: Option<bool>,
    minimize: Option<bool>,
    match_kind: Option<MatchKind>,
    starts_for_each_pattern: Option<bool>,
    byte_classes: Option<bool>,
    unicode_word_boundary: Option<bool>,
    quit: Option<ByteSet>,
    dfa_size_limit: Option<Option<usize>>,
    determinize_size_limit: Option<Option<usize>>,
}

#[cfg(feature = "alloc")]
impl Config {
    /// Return a new default dense DFA compiler configuration.
    pub fn new() -> Config {
        Config::default()
    }

    /// Set whether matching must be anchored at the beginning of the input.
    ///
    /// When enabled, a match must begin at the start of a search. When
    /// disabled, the DFA will act as if the pattern started with a `(?s:.)*?`,
    /// which enables a match to appear anywhere.
    ///
    /// Note that if you want to run both anchored and unanchored
    /// searches without building multiple automatons, you can enable the
    /// [`Config::starts_for_each_pattern`] configuration instead. This will
    /// permit unanchored any-pattern searches and pattern-specific anchored
    /// searches. See the documentation for that configuration for an example.
    ///
    /// By default this is disabled.
    ///
    /// **WARNING:** this is subtly different than using a `^` at the start of
    /// your regex. A `^` forces a regex to match exclusively at the start of
    /// input, regardless of where you begin your search. In contrast, enabling
    /// this option will allow your regex to match anywhere in your input,
    /// but the match must start at the beginning of a search. (Most of the
    /// higher level convenience search routines make "start of input" and
    /// "start of search" equivalent, but some routines allow treating these as
    /// orthogonal.)
    ///
    /// For example, consider the haystack `aba` and the following searches:
    ///
    /// 1. The regex `^a` is compiled with `anchored=false` and searches
    ///    `aba` starting at position `2`. Since `^` requires the match to
    ///    start at the beginning of the input and `2 > 0`, no match is found.
    /// 2. The regex `a` is compiled with `anchored=true` and searches `aba`
    ///    starting at position `2`. This reports a match at `[2, 3]` since
    ///    the match starts where the search started. Since there is no `^`,
    ///    there is no requirement for the match to start at the beginning of
    ///    the input.
    /// 3. The regex `a` is compiled with `anchored=true` and searches `aba`
    ///    starting at position `1`. Since `b` corresponds to position `1` and
    ///    since the regex is anchored, it finds no match.
    /// 4. The regex `a` is compiled with `anchored=false` and searches `aba`
    ///    startting at position `1`. Since the regex is neither anchored nor
    ///    starts with `^`, the regex is compiled with an implicit `(?s:.)*?`
    ///    prefix that permits it to match anywhere. Thus, it reports a match
    ///    at `[2, 3]`.
    ///
    /// # Example
    ///
    /// This demonstrates the differences between an anchored search and
    /// a pattern that begins with `^` (as described in the above warning
    /// message).
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// let haystack = "aba".as_bytes();
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().anchored(false)) // default
    ///     .build(r"^a")?;
    /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?;
    /// // No match is found because 2 is not the beginning of the haystack,
    /// // which is what ^ requires.
    /// let expected = None;
    /// assert_eq!(expected, got);
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().anchored(true))
    ///     .build(r"a")?;
    /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?;
    /// // An anchored search can still match anywhere in the haystack, it just
    /// // must begin at the start of the search which is '2' in this case.
    /// let expected = Some(HalfMatch::must(0, 3));
    /// assert_eq!(expected, got);
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().anchored(true))
    ///     .build(r"a")?;
    /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?;
    /// // No match is found since we start searching at offset 1 which
    /// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match
    /// // is found.
    /// let expected = None;
    /// assert_eq!(expected, got);
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().anchored(false)) // default
    ///     .build(r"a")?;
    /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?;
    /// // Since anchored=false, an implicit '(?s:.)*?' prefix was added to the
    /// // pattern. Even though the search starts at 'b', the 'match anything'
    /// // prefix allows the search to match 'a'.
    /// let expected = Some(HalfMatch::must(0, 3));
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn anchored(mut self, yes: bool) -> Config {
        self.anchored = Some(yes);
        self
    }

    /// Enable state acceleration.
    ///
    /// When enabled, DFA construction will analyze each state to determine
    /// whether it is eligible for simple acceleration. Acceleration typically
    /// occurs when most of a state's transitions loop back to itself, leaving
    /// only a select few bytes that will exit the state. When this occurs,
    /// other routines like `memchr` can be used to look for those bytes which
    /// may be much faster than traversing the DFA.
    ///
    /// Callers may elect to disable this if consistent performance is more
    /// desirable than variable performance. Namely, acceleration can sometimes
    /// make searching slower than it otherwise would be if the transitions
    /// that leave accelerated states are traversed frequently.
    ///
    /// See [`Automaton::accelerator`](crate::dfa::Automaton::accelerator) for
    /// an example.
    ///
    /// This is enabled by default.
    pub fn accelerate(mut self, yes: bool) -> Config {
        self.accelerate = Some(yes);
        self
    }

    /// Minimize the DFA.
    ///
    /// When enabled, the DFA built will be minimized such that it is as small
    /// as possible.
    ///
    /// Whether one enables minimization or not depends on the types of costs
    /// you're willing to pay and how much you care about its benefits. In
    /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
    /// space, where `n` is the number of DFA states and `k` is the alphabet
    /// size. In practice, minimization can be quite costly in terms of both
    /// space and time, so it should only be done if you're willing to wait
    /// longer to produce a DFA. In general, you might want a minimal DFA in
    /// the following circumstances:
    ///
    /// 1. You would like to optimize for the size of the automaton. This can
    ///    manifest in one of two ways. Firstly, if you're converting the
    ///    DFA into Rust code (or a table embedded in the code), then a minimal
    ///    DFA will translate into a corresponding reduction in code  size, and
    ///    thus, also the final compiled binary size. Secondly, if you are
    ///    building many DFAs and putting them on the heap, you'll be able to
    ///    fit more if they are smaller. Note though that building a minimal
    ///    DFA itself requires additional space; you only realize the space
    ///    savings once the minimal DFA is constructed (at which point, the
    ///    space used for minimization is freed).
    /// 2. You've observed that a smaller DFA results in faster match
    ///    performance. Naively, this isn't guaranteed since there is no
    ///    inherent difference between matching with a bigger-than-minimal
    ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
    ///    CPU's cache more efficiently.
    /// 3. You are trying to establish an equivalence between regular
    ///    languages. The standard method for this is to build a minimal DFA
    ///    for each language and then compare them. If the DFAs are equivalent
    ///    (up to state renaming), then the languages are equivalent.
    ///
    /// Typically, minimization only makes sense as an offline process. That
    /// is, one might minimize a DFA before serializing it to persistent
    /// storage. In practical terms, minimization can take around an order of
    /// magnitude more time than compiling the initial DFA via determinization.
    ///
    /// This option is disabled by default.
    pub fn minimize(mut self, yes: bool) -> Config {
        self.minimize = Some(yes);
        self
    }

    /// Set the desired match semantics.
    ///
    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
    /// match semantics of Perl-like regex engines. That is, when multiple
    /// patterns would match at the same leftmost position, the pattern that
    /// appears first in the concrete syntax is chosen.
    ///
    /// Currently, the only other kind of match semantics supported is
    /// [`MatchKind::All`]. This corresponds to classical DFA construction
    /// where all possible matches are added to the DFA.
    ///
    /// Typically, `All` is used when one wants to execute an overlapping
    /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
    /// sense to use `All` with the various "leftmost" find routines, since the
    /// leftmost routines depend on the `LeftmostFirst` automata construction
    /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
    /// as a way to terminate the search and report a match. `LeftmostFirst`
    /// also supports non-greedy matches using this strategy where as `All`
    /// does not.
    ///
    /// # Example: overlapping search
    ///
    /// This example shows the typical use of `MatchKind::All`, which is to
    /// report overlapping matches.
    ///
    /// ```
    /// use regex_automata::{
    ///     dfa::{Automaton, OverlappingState, dense},
    ///     HalfMatch, MatchKind,
    /// };
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
    ///     .build_many(&[r"\w+$", r"\S+$"])?;
    /// let haystack = "@foo".as_bytes();
    /// let mut state = OverlappingState::start();
    ///
    /// let expected = Some(HalfMatch::must(1, 4));
    /// let got = dfa.find_overlapping_fwd(haystack, &mut state)?;
    /// assert_eq!(expected, got);
    ///
    /// // The first pattern also matches at the same position, so re-running
    /// // the search will yield another match. Notice also that the first
    /// // pattern is returned after the second. This is because the second
    /// // pattern begins its match before the first, is therefore an earlier
    /// // match and is thus reported first.
    /// let expected = Some(HalfMatch::must(0, 4));
    /// let got = dfa.find_overlapping_fwd(haystack, &mut state)?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: reverse automaton to find start of match
    ///
    /// Another example for using `MatchKind::All` is for constructing a
    /// reverse automaton to find the start of a match. `All` semantics are
    /// used for this in order to find the longest possible match, which
    /// corresponds to the leftmost starting position.
    ///
    /// Note that if you need the starting position then
    /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
    /// you, so it's usually not necessary to do this yourself.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, MatchKind};
    ///
    /// let haystack = "123foobar456".as_bytes();
    /// let pattern = r"[a-z]+";
    ///
    /// let dfa_fwd = dense::DFA::new(pattern)?;
    /// let dfa_rev = dense::Builder::new()
    ///     .configure(dense::Config::new()
    ///         .anchored(true)
    ///         .match_kind(MatchKind::All)
    ///     )
    ///     .build(pattern)?;
    /// let expected_fwd = HalfMatch::must(0, 9);
    /// let expected_rev = HalfMatch::must(0, 3);
    /// let got_fwd = dfa_fwd.find_leftmost_fwd(haystack)?.unwrap();
    /// // Here we don't specify the pattern to search for since there's only
    /// // one pattern and we're doing a leftmost search. But if this were an
    /// // overlapping search, you'd need to specify the pattern that matched
    /// // in the forward direction. (Otherwise, you might wind up finding the
    /// // starting position of a match of some other pattern.) That in turn
    /// // requires building the reverse automaton with starts_for_each_pattern
    /// // enabled. Indeed, this is what Regex does internally.
    /// let got_rev = dfa_rev.find_leftmost_rev_at(
    ///     None, haystack, 0, got_fwd.offset(),
    /// )?.unwrap();
    /// assert_eq!(expected_fwd, got_fwd);
    /// assert_eq!(expected_rev, got_rev);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn match_kind(mut self, kind: MatchKind) -> Config {
        self.match_kind = Some(kind);
        self
    }

    /// Whether to compile a separate start state for each pattern in the
    /// automaton.
    ///
    /// When enabled, a separate **anchored** start state is added for each
    /// pattern in the DFA. When this start state is used, then the DFA will
    /// only search for matches for the pattern specified, even if there are
    /// other patterns in the DFA.
    ///
    /// The main downside of this option is that it can potentially increase
    /// the size of the DFA and/or increase the time it takes to build the DFA.
    ///
    /// There are a few reasons one might want to enable this (it's disabled
    /// by default):
    ///
    /// 1. When looking for the start of an overlapping match (using a
    /// reverse DFA), doing it correctly requires starting the reverse search
    /// using the starting state of the pattern that matched in the forward
    /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
    /// it will automatically enable this option when building the reverse DFA
    /// internally.
    /// 2. When you want to use a DFA with multiple patterns to both search
    /// for matches of any pattern or to search for anchored matches of one
    /// particular pattern while using the same DFA. (Otherwise, you would need
    /// to compile a new DFA for each pattern.)
    /// 3. Since the start states added for each pattern are anchored, if you
    /// compile an unanchored DFA with one pattern while also enabling this
    /// option, then you can use the same DFA to perform anchored or unanchored
    /// searches. The latter you get with the standard search APIs. The former
    /// you get from the various `_at` search methods that allow you specify a
    /// pattern ID to search for.
    ///
    /// By default this is disabled.
    ///
    /// # Example
    ///
    /// This example shows how to use this option to permit the same DFA to
    /// run both anchored and unanchored searches for a single pattern.
    ///
    /// ```
    /// use regex_automata::{
    ///     dfa::{Automaton, dense},
    ///     HalfMatch, PatternID,
    /// };
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().starts_for_each_pattern(true))
    ///     .build(r"foo[0-9]+")?;
    /// let haystack = b"quux foo123";
    ///
    /// // Here's a normal unanchored search. Notice that we use 'None' for the
    /// // pattern ID. Since the DFA was built as an unanchored machine, it
    /// // use its default unanchored starting state.
    /// let expected = HalfMatch::must(0, 11);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
    ///     None, None, haystack, 0, haystack.len(),
    /// )?);
    /// // But now if we explicitly specify the pattern to search ('0' being
    /// // the only pattern in the DFA), then it will use the starting state
    /// // for that specific pattern which is always anchored. Since the
    /// // pattern doesn't have a match at the beginning of the haystack, we
    /// // find nothing.
    /// assert_eq!(None, dfa.find_leftmost_fwd_at(
    ///     None, Some(PatternID::must(0)), haystack, 0, haystack.len(),
    /// )?);
    /// // And finally, an anchored search is not the same as putting a '^' at
    /// // beginning of the pattern. An anchored search can only match at the
    /// // beginning of the *search*, which we can change:
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at(
    ///     None, Some(PatternID::must(0)), haystack, 5, haystack.len(),
    /// )?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
        self.starts_for_each_pattern = Some(yes);
        self
    }

    /// Whether to attempt to shrink the size of the DFA's alphabet or not.
    ///
    /// This option is enabled by default and should never be disabled unless
    /// one is debugging a generated DFA.
    ///
    /// When enabled, the DFA will use a map from all possible bytes to their
    /// corresponding equivalence class. Each equivalence class represents a
    /// set of bytes that does not discriminate between a match and a non-match
    /// in the DFA. For example, the pattern `[ab]+` has at least two
    /// equivalence classes: a set containing `a` and `b` and a set containing
    /// every byte except for `a` and `b`. `a` and `b` are in the same
    /// equivalence classes because they never discriminate between a match
    /// and a non-match.
    ///
    /// The advantage of this map is that the size of the transition table
    /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
    /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
    /// classes (rounded up to the nearest power of 2). As a result, total
    /// space usage can decrease substantially. Moreover, since a smaller
    /// alphabet is used, DFA compilation becomes faster as well.
    ///
    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
    /// does not yield any speed advantages. Namely, even when this is
    /// disabled, a byte class map is still used while searching. The only
    /// difference is that every byte will be forced into its own distinct
    /// equivalence class. This is useful for debugging the actual generated
    /// transitions because it lets one see the transitions defined on actual
    /// bytes instead of the equivalence classes.
    pub fn byte_classes(mut self, yes: bool) -> Config {
        self.byte_classes = Some(yes);
        self
    }

    /// Heuristically enable Unicode word boundaries.
    ///
    /// When set, this will attempt to implement Unicode word boundaries as if
    /// they were ASCII word boundaries. This only works when the search input
    /// is ASCII only. If a non-ASCII byte is observed while searching, then a
    /// [`MatchError::Quit`](crate::MatchError::Quit) error is returned.
    ///
    /// A possible alternative to enabling this option is to simply use an
    /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
    /// option is if you absolutely need Unicode support. This option lets one
    /// use a fast search implementation (a DFA) for some potentially very
    /// common cases, while providing the option to fall back to some other
    /// regex engine to handle the general case when an error is returned.
    ///
    /// If the pattern provided has no Unicode word boundary in it, then this
    /// option has no effect. (That is, quitting on a non-ASCII byte only
    /// occurs when this option is enabled _and_ a Unicode word boundary is
    /// present in the pattern.)
    ///
    /// This is almost equivalent to setting all non-ASCII bytes to be quit
    /// bytes. The only difference is that this will cause non-ASCII bytes to
    /// be quit bytes _only_ when a Unicode word boundary is present in the
    /// pattern.
    ///
    /// When enabling this option, callers _must_ be prepared to handle
    /// a [`MatchError`](crate::MatchError) error during search.
    /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
    /// to using the `try_` suite of methods. Alternatively, if
    /// callers can guarantee that their input is ASCII only, then a
    /// [`MatchError::Quit`](crate::MatchError::Quit) error will never be
    /// returned while searching.
    ///
    /// This is disabled by default.
    ///
    /// # Example
    ///
    /// This example shows how to heuristically enable Unicode word boundaries
    /// in a pattern. It also shows what happens when a search comes across a
    /// non-ASCII byte.
    ///
    /// ```
    /// use regex_automata::{
    ///     dfa::{Automaton, dense},
    ///     HalfMatch, MatchError, MatchKind,
    /// };
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().unicode_word_boundary(true))
    ///     .build(r"\b[0-9]+\b")?;
    ///
    /// // The match occurs before the search ever observes the snowman
    /// // character, so no error occurs.
    /// let haystack = "foo 123 ☃".as_bytes();
    /// let expected = Some(HalfMatch::must(0, 7));
    /// let got = dfa.find_leftmost_fwd(haystack)?;
    /// assert_eq!(expected, got);
    ///
    /// // Notice that this search fails, even though the snowman character
    /// // occurs after the ending match offset. This is because search
    /// // routines read one byte past the end of the search to account for
    /// // look-around, and indeed, this is required here to determine whether
    /// // the trailing \b matches.
    /// let haystack = "foo 123☃".as_bytes();
    /// let expected = MatchError::Quit { byte: 0xE2, offset: 7 };
    /// let got = dfa.find_leftmost_fwd(haystack);
    /// assert_eq!(Err(expected), got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
        // We have a separate option for this instead of just setting the
        // appropriate quit bytes here because we don't want to set quit bytes
        // for every regex. We only want to set them when the regex contains a
        // Unicode word boundary.
        self.unicode_word_boundary = Some(yes);
        self
    }

    /// Add a "quit" byte to the DFA.
    ///
    /// When a quit byte is seen during search time, then search will return
    /// a [`MatchError::Quit`](crate::MatchError::Quit) error indicating the
    /// offset at which the search stopped.
    ///
    /// A quit byte will always overrule any other aspects of a regex. For
    /// example, if the `x` byte is added as a quit byte and the regex `\w` is
    /// used, then observing `x` will cause the search to quit immediately
    /// despite the fact that `x` is in the `\w` class.
    ///
    /// This mechanism is primarily useful for heuristically enabling certain
    /// features like Unicode word boundaries in a DFA. Namely, if the input
    /// to search is ASCII, then a Unicode word boundary can be implemented
    /// via an ASCII word boundary with no change in semantics. Thus, a DFA
    /// can attempt to match a Unicode word boundary but give up as soon as it
    /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
    /// to be quit bytes, then Unicode word boundaries will be permitted when
    /// building DFAs. Of course, callers should enable
    /// [`Config::unicode_word_boundary`] if they want this behavior instead.
    /// (The advantage being that non-ASCII quit bytes will only be added if a
    /// Unicode word boundary is in the pattern.)
    ///
    /// When enabling this option, callers _must_ be prepared to handle a
    /// [`MatchError`](crate::MatchError) error during search. When using a
    /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
    /// `try_` suite of methods.
    ///
    /// By default, there are no quit bytes set.
    ///
    /// # Panics
    ///
    /// This panics if heuristic Unicode word boundaries are enabled and any
    /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
    /// Unicode word boundaries requires setting every non-ASCII byte to a quit
    /// byte. So if the caller attempts to undo any of that, then this will
    /// panic.
    ///
    /// # Example
    ///
    /// This example shows how to cause a search to terminate if it sees a
    /// `\n` byte. This could be useful if, for example, you wanted to prevent
    /// a user supplied pattern from matching across a line boundary.
    ///
    /// ```
    /// use regex_automata::{
    ///     dfa::{Automaton, dense},
    ///     HalfMatch, MatchError,
    /// };
    ///
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().quit(b'\n', true))
    ///     .build(r"foo\p{any}+bar")?;
    ///
    /// let haystack = "foo\nbar".as_bytes();
    /// // Normally this would produce a match, since \p{any} contains '\n'.
    /// // But since we instructed the automaton to enter a quit state if a
    /// // '\n' is observed, this produces a match error instead.
    /// let expected = MatchError::Quit { byte: 0x0A, offset: 3 };
    /// let got = dfa.find_leftmost_fwd(haystack).unwrap_err();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn quit(mut self, byte: u8, yes: bool) -> Config {
        if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
            panic!(
                "cannot set non-ASCII byte to be non-quit when \
                 Unicode word boundaries are enabled"
            );
        }
        if self.quit.is_none() {
            self.quit = Some(ByteSet::empty());
        }
        if yes {
            self.quit.as_mut().unwrap().add(byte);
        } else {
            self.quit.as_mut().unwrap().remove(byte);
        }
        self
    }

    /// Set a size limit on the total heap used by a DFA.
    ///
    /// This size limit is expressed in bytes and is applied during
    /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
    /// the DFA, exceeds this configured limit, then determinization is stopped
    /// and an error is returned.
    ///
    /// This limit does not apply to auxiliary storage used during
    /// determinization that isn't part of the generated DFA.
    ///
    /// This limit is only applied during determinization. Currently, there is
    /// no way to post-pone this check to after minimization if minimization
    /// was enabled.
    ///
    /// The total limit on heap used during determinization is the sum of the
    /// DFA and determinization size limits.
    ///
    /// The default is no limit.
    ///
    /// # Example
    ///
    /// This example shows a DFA that fails to build because of a configured
    /// size limit. This particular example also serves as a cautionary tale
    /// demonstrating just how big DFAs with large Unicode character classes
    /// can get.
    ///
    /// ```
    /// use regex_automata::dfa::{dense, Automaton};
    ///
    /// // 3MB isn't enough!
    /// dense::Builder::new()
    ///     .configure(dense::Config::new().dfa_size_limit(Some(3_000_000)))
    ///     .build(r"\w{20}")
    ///     .unwrap_err();
    ///
    /// // ... but 4MB probably is!
    /// // (Note that DFA sizes aren't necessarily stable between releases.)
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new().dfa_size_limit(Some(4_000_000)))
    ///     .build(r"\w{20}")?;
    /// let haystack = "A".repeat(20).into_bytes();
    /// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// While one needs a little more than 3MB to represent `\w{20}`, it
    /// turns out that you only need a little more than 4KB to represent
    /// `(?-u:\w{20})`. So only use Unicode if you need it!
    pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
        self.dfa_size_limit = Some(bytes);
        self
    }

    /// Set a size limit on the total heap used by determinization.
    ///
    /// This size limit is expressed in bytes and is applied during
    /// determinization of an NFA into a DFA. If the heap used for auxiliary
    /// storage during determinization (memory that is not in the DFA but
    /// necessary for building the DFA) exceeds this configured limit, then
    /// determinization is stopped and an error is returned.
    ///
    /// This limit does not apply to heap used by the DFA itself.
    ///
    /// The total limit on heap used during determinization is the sum of the
    /// DFA and determinization size limits.
    ///
    /// The default is no limit.
    ///
    /// # Example
    ///
    /// This example shows a DFA that fails to build because of a
    /// configured size limit on the amount of heap space used by
    /// determinization. This particular example complements the example for
    /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
    /// potentially make DFAs themselves big, but it also results in more
    /// auxiliary storage during determinization. (Although, auxiliary storage
    /// is still not as much as the DFA itself.)
    ///
    /// ```
    /// use regex_automata::dfa::{dense, Automaton};
    ///
    /// // 300KB isn't enough!
    /// dense::Builder::new()
    ///     .configure(dense::Config::new()
    ///         .determinize_size_limit(Some(300_000))
    ///     )
    ///     .build(r"\w{20}")
    ///     .unwrap_err();
    ///
    /// // ... but 400KB probably is!
    /// // (Note that auxiliary storage sizes aren't necessarily stable between
    /// // releases.)
    /// let dfa = dense::Builder::new()
    ///     .configure(dense::Config::new()
    ///         .determinize_size_limit(Some(400_000))
    ///     )
    ///     .build(r"\w{20}")?;
    /// let haystack = "A".repeat(20).into_bytes();
    /// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
        self.determinize_size_limit = Some(bytes);
        self
    }

    /// Returns whether this configuration has enabled anchored searches.
    pub fn get_anchored(&self) -> bool {
        self.anchored.unwrap_or(false)
    }

    /// Returns whether this configuration has enabled simple state
    /// acceleration.
    pub fn get_accelerate(&self) -> bool {
        self.accelerate.unwrap_or(true)
    }

    /// Returns whether this configuration has enabled the expensive process
    /// of minimizing a DFA.
    pub fn get_minimize(&self) -> bool {
        self.minimize.unwrap_or(false)
    }

    /// Returns the match semantics set in this configuration.
    pub fn get_match_kind(&self) -> MatchKind {
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
    }

    /// Returns whether this configuration has enabled anchored starting states
    /// for every pattern in the DFA.
    pub fn get_starts_for_each_pattern(&self) -> bool {
        self.starts_for_each_pattern.unwrap_or(false)
    }

    /// Returns whether this configuration has enabled byte classes or not.
    /// This is typically a debugging oriented option, as disabling it confers
    /// no speed benefit.
    pub fn get_byte_classes(&self) -> bool {
        self.byte_classes.unwrap_or(true)
    }

    /// Returns whether this configuration has enabled heuristic Unicode word
    /// boundary support. When enabled, it is possible for a search to return
    /// an error.
    pub fn get_unicode_word_boundary(&self) -> bool {
        self.unicode_word_boundary.unwrap_or(false)
    }

    /// Returns whether this configuration will instruct the DFA to enter a
    /// quit state whenever the given byte is seen during a search. When at
    /// least one byte has this enabled, it is possible for a search to return
    /// an error.
    pub fn get_quit(&self, byte: u8) -> bool {
        self.quit.map_or(false, |q| q.contains(byte))
    }

    /// Returns the DFA size limit of this configuration if one was set.
    /// The size limit is total number of bytes on the heap that a DFA is
    /// permitted to use. If the DFA exceeds this limit during construction,
    /// then construction is stopped and an error is returned.
    pub fn get_dfa_size_limit(&self) -> Option<usize> {
        self.dfa_size_limit.unwrap_or(None)
    }

    /// Returns the determinization size limit of this configuration if one
    /// was set. The size limit is total number of bytes on the heap that
    /// determinization is permitted to use. If determinization exceeds this
    /// limit during construction, then construction is stopped and an error is
    /// returned.
    ///
    /// This is different from the DFA size limit in that this only applies to
    /// the auxiliary storage used during determinization. Once determinization
    /// is complete, this memory is freed.
    ///
    /// The limit on the total heap memory used is the sum of the DFA and
    /// determinization size limits.
    pub fn get_determinize_size_limit(&self) -> Option<usize> {
        self.determinize_size_limit.unwrap_or(None)
    }

    /// Overwrite the default configuration such that the options in `o` are
    /// always used. If an option in `o` is not set, then the corresponding
    /// option in `self` is used. If it's not set in `self` either, then it
    /// remains not set.
    pub(crate) fn overwrite(self, o: Config) -> Config {
        Config {
            anchored: o.anchored.or(self.anchored),
            accelerate: o.accelerate.or(self.accelerate),
            minimize: o.minimize.or(self.minimize),
            match_kind: o.match_kind.or(self.match_kind),
            starts_for_each_pattern: o
                .starts_for_each_pattern
                .or(self.starts_for_each_pattern),
            byte_classes: o.byte_classes.or(self.byte_classes),
            unicode_word_boundary: o
                .unicode_word_boundary
                .or(self.unicode_word_boundary),
            quit: o.quit.or(self.quit),
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
            determinize_size_limit: o
                .determinize_size_limit
                .or(self.determinize_size_limit),
        }
    }
}

/// A builder for constructing a deterministic finite automaton from regular
/// expressions.
///
/// This builder provides two main things:
///
/// 1. It provides a few different `build` routines for actually constructing
/// a DFA from different kinds of inputs. The most convenient is
/// [`Builder::build`], which builds a DFA directly from a pattern string. The
/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
/// from an NFA.
/// 2. The builder permits configuring a number of things.
/// [`Builder::configure`] is used with [`Config`] to configure aspects of
/// the DFA and the construction process itself. [`Builder::syntax`] and
/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
/// construction, respectively. The syntax and thompson configurations only
/// apply when building from a pattern string.
///
/// This builder always constructs a *single* DFA. As such, this builder
/// can only be used to construct regexes that either detect the presence
/// of a match or find the end location of a match. A single DFA cannot
/// produce both the start and end of a match. For that information, use a
/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
/// use a DFA directly is if the end location of a match is enough for your use
/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
/// second reverse DFA is needed to find the start of a match.
///
/// Note that if one wants to build a sparse DFA, you must first build a dense
/// DFA and convert that to a sparse DFA. There is no way to build a sparse
/// DFA without first building a dense DFA.
///
/// # Example
///
/// This example shows how to build a minimized DFA that completely disables
/// Unicode. That is:
///
/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
///   and `\b` are ASCII-only while `.` matches any byte except for `\n`
///   (instead of any UTF-8 encoding of a Unicode scalar value except for
///   `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
/// * The pattern itself is permitted to match invalid UTF-8. For example,
///   things like `[^a]` that match any byte except for `a` are permitted.
/// * Unanchored patterns can search through invalid UTF-8. That is, for
///   unanchored patterns, the implicit prefix is `(?s-u:.)*?` instead of
///   `(?s:.)*?`.
///
/// ```
/// use regex_automata::{
///     dfa::{Automaton, dense},
///     nfa::thompson,
///     HalfMatch, SyntaxConfig,
/// };
///
/// let dfa = dense::Builder::new()
///     .configure(dense::Config::new().minimize(false))
///     .syntax(SyntaxConfig::new().unicode(false).utf8(false))
///     .thompson(thompson::Config::new().utf8(false))
///     .build(r"foo[^b]ar.*")?;
///
/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
/// let expected = Some(HalfMatch::must(0, 10));
/// let got = dfa.find_leftmost_fwd(haystack)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct Builder {
    config: Config,
    thompson: thompson::Builder,
}

#[cfg(feature = "alloc")]
impl Builder {
    /// Create a new dense DFA builder with the default configuration.
    pub fn new() -> Builder {
        Builder {
            config: Config::default(),
            thompson: thompson::Builder::new(),
        }
    }

    /// Build a DFA from the given pattern.
    ///
    /// If there was a problem parsing or compiling the pattern, then an error
    /// is returned.
    pub fn build(&self, pattern: &str) -> Result<OwnedDFA, Error> {
        self.build_many(&[pattern])
    }

    /// Build a DFA from the given patterns.
    ///
    /// When matches are returned, the pattern ID corresponds to the index of
    /// the pattern in the slice given.
    pub fn build_many<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<OwnedDFA, Error> {
        let nfa = self.thompson.build_many(patterns).map_err(Error::nfa)?;
        self.build_from_nfa(&nfa)
    }

    /// Build a DFA from the given NFA.
    ///
    /// # Example
    ///
    /// This example shows how to build a DFA if you already have an NFA in
    /// hand.
    ///
    /// ```
    /// use regex_automata::{
    ///     dfa::{Automaton, dense},
    ///     nfa::thompson,
    ///     HalfMatch,
    /// };
    ///
    /// let haystack = "foo123bar".as_bytes();
    ///
    /// // This shows how to set non-default options for building an NFA.
    /// let nfa = thompson::Builder::new()
    ///     .configure(thompson::Config::new().shrink(false))
    ///     .build(r"[0-9]+")?;
    /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
    /// let expected = Some(HalfMatch::must(0, 6));
    /// let got = dfa.find_leftmost_fwd(haystack)?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_from_nfa(
        &self,
        nfa: &thompson::NFA,
    ) -> Result<OwnedDFA, Error> {
        let mut quit = self.config.quit.unwrap_or(ByteSet::empty());
        if self.config.get_unicode_word_boundary()
            && nfa.has_word_boundary_unicode()
        {
            for b in 0x80..=0xFF {
                quit.add(b);
            }
        }
        let classes = if !self.config.get_byte_classes() {
            // DFAs will always use the equivalence class map, but enabling
            // this option is useful for debugging. Namely, this will cause all
            // transitions to be defined over their actual bytes instead of an
            // opaque equivalence class identifier. The former is much easier
            // to grok as a human.
            ByteClasses::singletons()
        } else {
            let mut set = nfa.byte_class_set().clone();
            // It is important to distinguish any "quit" bytes from all other
            // bytes. Otherwise, a non-quit byte may end up in the same class
            // as a quit byte, and thus cause the DFA stop when it shouldn't.
            if !quit.is_empty() {
                set.add_set(&quit);
            }
            set.byte_classes()
        };

        let mut dfa = DFA::initial(
            classes,
            nfa.pattern_len(),
            self.config.get_starts_for_each_pattern(),
        )?;
        determinize::Config::new()
            .anchored(self.config.get_anchored())
            .match_kind(self.config.get_match_kind())
            .quit(quit)
            .dfa_size_limit(self.config.get_dfa_size_limit())
            .determinize_size_limit(self.config.get_determinize_size_limit())
            .run(nfa, &mut dfa)?;
        if self.config.get_minimize() {
            dfa.minimize();
        }
        if self.config.get_accelerate() {
            dfa.accelerate();
        }
        Ok(dfa)
    }

    /// Apply the given dense DFA configuration options to this builder.
    pub fn configure(&mut self, config: Config) -> &mut Builder {
        self.config = self.config.overwrite(config);
        self
    }

    /// Set the syntax configuration for this builder using
    /// [`SyntaxConfig`](crate::SyntaxConfig).
    ///
    /// This permits setting things like case insensitivity, Unicode and multi
    /// line mode.
    ///
    /// These settings only apply when constructing a DFA directly from a
    /// pattern.
    pub fn syntax(
        &mut self,
        config: crate::util::syntax::SyntaxConfig,
    ) -> &mut Builder {
        self.thompson.syntax(config);
        self
    }

    /// Set the Thompson NFA configuration for this builder using
    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
    ///
    /// This permits setting things like whether the DFA should match the regex
    /// in reverse or if additional time should be spent shrinking the size of
    /// the NFA.
    ///
    /// These settings only apply when constructing a DFA directly from a
    /// pattern.
    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
        self.thompson.configure(config);
        self
    }
}

#[cfg(feature = "alloc")]
impl Default for Builder {
    fn default() -> Builder {
        Builder::new()
    }
}

/// A convenience alias for an owned DFA. We use this particular instantiation
/// a lot in this crate, so it's worth giving it a name. This instantiation
/// is commonly used for mutable APIs on the DFA while building it. The main
/// reason for making DFAs generic is no_std support, and more generally,
/// making it possible to load a DFA from an arbitrary slice of bytes.
#[cfg(feature = "alloc")]
pub(crate) type OwnedDFA = DFA<Vec<u32>>;

/// A dense table-based deterministic finite automaton (DFA).
///
/// All dense DFAs have one or more start states, zero or more match states
/// and a transition table that maps the current state and the current byte
/// of input to the next state. A DFA can use this information to implement
/// fast searching. In particular, the use of a dense DFA generally makes the
/// trade off that match speed is the most valuable characteristic, even if
/// building the DFA may take significant time *and* space. (More concretely,
/// building a DFA takes time and space that is exponential in the size of the
/// pattern in the worst case.) As such, the processing of every byte of input
/// is done with a small constant number of operations that does not vary with
/// the pattern, its size or the size of the alphabet. If your needs don't line
/// up with this trade off, then a dense DFA may not be an adequate solution to
/// your problem.
///
/// In contrast, a [`sparse::DFA`] makes the opposite
/// trade off: it uses less space but will execute a variable number of
/// instructions per byte at match time, which makes it slower for matching.
/// (Note that space usage is still exponential in the size of the pattern in
/// the worst case.)
///
/// A DFA can be built using the default configuration via the
/// [`DFA::new`] constructor. Otherwise, one can
/// configure various aspects via [`dense::Builder`](Builder).
///
/// A single DFA fundamentally supports the following operations:
///
/// 1. Detection of a match.
/// 2. Location of the end of a match.
/// 3. In the case of a DFA with multiple patterns, which pattern matched is
///    reported as well.
///
/// A notable absence from the above list of capabilities is the location of
/// the *start* of a match. In order to provide both the start and end of
/// a match, *two* DFAs are required. This functionality is provided by a
/// [`Regex`](crate::dfa::regex::Regex).
///
/// # Type parameters
///
/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
///
/// # The `Automaton` trait
///
/// This type implements the [`Automaton`] trait, which means it can be used
/// for searching. For example:
///
/// ```
/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct DFA<T> {
    /// The transition table for this DFA. This includes the transitions
    /// themselves, along with the stride, number of states and the equivalence
    /// class mapping.
    tt: TransitionTable<T>,
    /// The set of starting state identifiers for this DFA. The starting state
    /// IDs act as pointers into the transition table. The specific starting
    /// state chosen for each search is dependent on the context at which the
    /// search begins.
    st: StartTable<T>,
    /// The set of match states and the patterns that match for each
    /// corresponding match state.
    ///
    /// This structure is technically only needed because of support for
    /// multi-regexes. Namely, multi-regexes require answering not just whether
    /// a match exists, but _which_ patterns match. So we need to store the
    /// matching pattern IDs for each match state. We do this even when there
    /// is only one pattern for the sake of simplicity. In practice, this uses
    /// up very little space for the case of on pattern.
    ms: MatchStates<T>,
    /// Information about which states are "special." Special states are states
    /// that are dead, quit, matching, starting or accelerated. For more info,
    /// see the docs for `Special`.
    special: Special,
    /// The accelerators for this DFA.
    ///
    /// If a state is accelerated, then there exist only a small number of
    /// bytes that can cause the DFA to leave the state. This permits searching
    /// to use optimized routines to find those specific bytes instead of using
    /// the transition table.
    ///
    /// All accelerated states exist in a contiguous range in the DFA's
    /// transition table. See dfa/special.rs for more details on how states are
    /// arranged.
    accels: Accels<T>,
}

#[cfg(feature = "alloc")]
impl OwnedDFA {
    /// Parse the given regular expression using a default configuration and
    /// return the corresponding DFA.
    ///
    /// If you want a non-default configuration, then use the
    /// [`dense::Builder`](Builder) to set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
    /// let expected = HalfMatch::must(0, 11);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new(pattern: &str) -> Result<OwnedDFA, Error> {
        Builder::new().build(pattern)
    }

    /// Parse the given regular expressions using a default configuration and
    /// return the corresponding multi-DFA.
    ///
    /// If you want a non-default configuration, then use the
    /// [`dense::Builder`](Builder) to set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
    /// let expected = HalfMatch::must(1, 3);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<OwnedDFA, Error> {
        Builder::new().build_many(patterns)
    }
}

#[cfg(feature = "alloc")]
impl OwnedDFA {
    /// Create a new DFA that matches every input.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// let dfa = dense::DFA::always_match()?;
    ///
    /// let expected = HalfMatch::must(0, 0);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"")?);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn always_match() -> Result<OwnedDFA, Error> {
        let nfa = thompson::NFA::always_match();
        Builder::new().build_from_nfa(&nfa)
    }

    /// Create a new DFA that never matches any input.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::dfa::{Automaton, dense};
    ///
    /// let dfa = dense::DFA::never_match()?;
    /// assert_eq!(None, dfa.find_leftmost_fwd(b"")?);
    /// assert_eq!(None, dfa.find_leftmost_fwd(b"foo")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn never_match() -> Result<OwnedDFA, Error> {
        let nfa = thompson::NFA::never_match();
        Builder::new().build_from_nfa(&nfa)
    }

    /// Create an initial DFA with the given equivalence classes, pattern count
    /// and whether anchored starting states are enabled for each pattern. An
    /// initial DFA can be further mutated via determinization.
    fn initial(
        classes: ByteClasses,
        pattern_count: usize,
        starts_for_each_pattern: bool,
    ) -> Result<OwnedDFA, Error> {
        let start_pattern_count =
            if starts_for_each_pattern { pattern_count } else { 0 };
        Ok(DFA {
            tt: TransitionTable::minimal(classes),
            st: StartTable::dead(start_pattern_count)?,
            ms: MatchStates::empty(pattern_count),
            special: Special::new(),
            accels: Accels::empty(),
        })
    }
}

impl<T: AsRef<[u32]>> DFA<T> {
    /// Cheaply return a borrowed version of this dense DFA. Specifically,
    /// the DFA returned always uses `&[u32]` for its transition table.
    pub fn as_ref(&self) -> DFA<&'_ [u32]> {
        DFA {
            tt: self.tt.as_ref(),
            st: self.st.as_ref(),
            ms: self.ms.as_ref(),
            special: self.special,
            accels: self.accels(),
        }
    }

    /// Return an owned version of this sparse DFA. Specifically, the DFA
    /// returned always uses `Vec<u32>` for its transition table.
    ///
    /// Effectively, this returns a dense DFA whose transition table lives on
    /// the heap.
    #[cfg(feature = "alloc")]
    pub fn to_owned(&self) -> OwnedDFA {
        DFA {
            tt: self.tt.to_owned(),
            st: self.st.to_owned(),
            ms: self.ms.to_owned(),
            special: self.special,
            accels: self.accels().to_owned(),
        }
    }

    /// Returns true only if this DFA has starting states for each pattern.
    ///
    /// When a DFA has starting states for each pattern, then a search with the
    /// DFA can be configured to only look for anchored matches of a specific
    /// pattern. Specifically, APIs like [`Automaton::find_earliest_fwd_at`]
    /// can accept a non-None `pattern_id` if and only if this method returns
    /// true. Otherwise, calling `find_earliest_fwd_at` will panic.
    ///
    /// Note that if the DFA has no patterns, this always returns false.
    pub fn has_starts_for_each_pattern(&self) -> bool {
        self.st.patterns > 0
    }

    /// Returns the total number of elements in the alphabet for this DFA.
    ///
    /// That is, this returns the total number of transitions that each state
    /// in this DFA must have. Typically, a normal byte oriented DFA would
    /// always have an alphabet size of 256, corresponding to the number of
    /// unique values in a single byte. However, this implementation has two
    /// peculiarities that impact the alphabet length:
    ///
    /// * Every state has a special "EOI" transition that is only followed
    /// after the end of some haystack is reached. This EOI transition is
    /// necessary to account for one byte of look-ahead when implementing
    /// things like `\b` and `$`.
    /// * Bytes are grouped into equivalence classes such that no two bytes in
    /// the same class can distinguish a match from a non-match. For example,
    /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
    /// same equivalence class. This leads to a massive space savings.
    ///
    /// Note though that the alphabet length does _not_ necessarily equal the
    /// total stride space taken up by a single DFA state in the transition
    /// table. Namely, for performance reasons, the stride is always the
    /// smallest power of two that is greater than or equal to the alphabet
    /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
    /// often more useful. The alphabet length is typically useful only for
    /// informational purposes.
    pub fn alphabet_len(&self) -> usize {
        self.tt.alphabet_len()
    }

    /// Returns the total stride for every state in this DFA, expressed as the
    /// exponent of a power of 2. The stride is the amount of space each state
    /// takes up in the transition table, expressed as a number of transitions.
    /// (Unused transitions map to dead states.)
    ///
    /// The stride of a DFA is always equivalent to the smallest power of 2
    /// that is greater than or equal to the DFA's alphabet length. This
    /// definition uses extra space, but permits faster translation between
    /// premultiplied state identifiers and contiguous indices (by using shifts
    /// instead of relying on integer division).
    ///
    /// For example, if the DFA's stride is 16 transitions, then its `stride2`
    /// is `4` since `2^4 = 16`.
    ///
    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
    /// while the maximum `stride2` value is `9` (corresponding to a stride of
    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
    /// when accounting for the special EOI transition. However, an alphabet
    /// length of that size is exceptionally rare since the alphabet is shrunk
    /// into equivalence classes.
    pub fn stride2(&self) -> usize {
        self.tt.stride2
    }

    /// Returns the total stride for every state in this DFA. This corresponds
    /// to the total number of transitions used by each state in this DFA's
    /// transition table.
    ///
    /// Please see [`DFA::stride2`] for more information. In particular, this
    /// returns the stride as the number of transitions, where as `stride2`
    /// returns it as the exponent of a power of 2.
    pub fn stride(&self) -> usize {
        self.tt.stride()
    }

    /// Returns the "universal" start state for this DFA.
    ///
    /// A universal start state occurs only when all of the starting states
    /// for this DFA are precisely the same. This occurs when there are no
    /// look-around assertions at the beginning (or end for a reverse DFA) of
    /// the pattern.
    ///
    /// Using this as a starting state for a DFA without a universal starting
    /// state has unspecified behavior. This condition is not checked, so the
    /// caller must guarantee it themselves.
    pub(crate) fn universal_start_state(&self) -> StateID {
        // We choose 'NonWordByte' for no particular reason, other than
        // the fact that this is the 'main' starting configuration used in
        // determinization. But in essence, it doesn't really matter.
        //
        // Also, we might consider exposing this routine, but it seems
        // a little tricky to use correctly. Maybe if we also expose a
        // 'has_universal_start_state' method?
        self.st.start(Start::NonWordByte, None)
    }

    /// Returns the memory usage, in bytes, of this DFA.
    ///
    /// The memory usage is computed based on the number of bytes used to
    /// represent this DFA.
    ///
    /// This does **not** include the stack size used up by this DFA. To
    /// compute that, use `std::mem::size_of::<dense::DFA>()`.
    pub fn memory_usage(&self) -> usize {
        self.tt.memory_usage()
            + self.st.memory_usage()
            + self.ms.memory_usage()
            + self.accels.memory_usage()
    }
}

/// Routines for converting a dense DFA to other representations, such as
/// sparse DFAs or raw bytes suitable for persistent storage.
impl<T: AsRef<[u32]>> DFA<T> {
    /// Convert this dense DFA to a sparse DFA.
    ///
    /// If a `StateID` is too small to represent all states in the sparse
    /// DFA, then this returns an error. In most cases, if a dense DFA is
    /// constructable with `StateID` then a sparse DFA will be as well.
    /// However, it is not guaranteed.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// let dense = dense::DFA::new("foo[0-9]+")?;
    /// let sparse = dense.to_sparse()?;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), sparse.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "alloc")]
    pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, Error> {
        sparse::DFA::from_dense(self)
    }

    /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
    /// format. Upon success, the `Vec<u8>` and the initial padding length are
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
    /// an address that does not have the same alignment as `u32`. The padding
    /// corresponds to the number of leading bytes written to the returned
    /// `Vec<u8>`.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA:
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// // N.B. We use native endianness here to make the example work, but
    /// // using to_bytes_little_endian would work on a little endian target.
    /// let (buf, _) = original_dfa.to_bytes_native_endian();
    /// // Even if buf has initial padding, DFA::from_bytes will automatically
    /// // ignore it.
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "alloc")]
    pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
        self.to_bytes::<bytes::LE>()
    }

    /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
    /// format. Upon success, the `Vec<u8>` and the initial padding length are
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
    /// an address that does not have the same alignment as `u32`. The padding
    /// corresponds to the number of leading bytes written to the returned
    /// `Vec<u8>`.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA:
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// // N.B. We use native endianness here to make the example work, but
    /// // using to_bytes_big_endian would work on a big endian target.
    /// let (buf, _) = original_dfa.to_bytes_native_endian();
    /// // Even if buf has initial padding, DFA::from_bytes will automatically
    /// // ignore it.
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "alloc")]
    pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
        self.to_bytes::<bytes::BE>()
    }

    /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
    /// format. Upon success, the `Vec<u8>` and the initial padding length are
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
    /// an address that does not have the same alignment as `u32`. The padding
    /// corresponds to the number of leading bytes written to the returned
    /// `Vec<u8>`.
    ///
    /// Generally speaking, native endian format should only be used when
    /// you know that the target you're compiling the DFA for matches the
    /// endianness of the target on which you're compiling DFA. For example,
    /// if serialization and deserialization happen in the same process or on
    /// the same machine. Otherwise, when serializing a DFA for use in a
    /// portable environment, you'll almost certainly want to serialize _both_
    /// a little endian and a big endian version and then load the correct one
    /// based on the target's configuration.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA:
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// let (buf, _) = original_dfa.to_bytes_native_endian();
    /// // Even if buf has initial padding, DFA::from_bytes will automatically
    /// // ignore it.
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "alloc")]
    pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
        self.to_bytes::<bytes::NE>()
    }

    /// The implementation of the public `to_bytes` serialization methods,
    /// which is generic over endianness.
    #[cfg(feature = "alloc")]
    fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
        let len = self.write_to_len();
        let (mut buf, padding) = bytes::alloc_aligned_buffer::<u32>(len);
        // This should always succeed since the only possible serialization
        // error is providing a buffer that's too small, but we've ensured that
        // `buf` is big enough here.
        self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
        (buf, padding)
    }

    /// Serialize this DFA as raw bytes to the given slice, in little endian
    /// format. Upon success, the total number of bytes written to `dst` is
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// Note that unlike the various `to_byte_*` routines, this does not write
    /// any padding. Callers are responsible for handling alignment correctly.
    ///
    /// # Errors
    ///
    /// This returns an error if the given destination slice is not big enough
    /// to contain the full serialized DFA. If an error occurs, then nothing
    /// is written to `dst`.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA without
    /// dynamic memory allocation.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// // Create a 4KB buffer on the stack to store our serialized DFA.
    /// let mut buf = [0u8; 4 * (1<<10)];
    /// // N.B. We use native endianness here to make the example work, but
    /// // using write_to_little_endian would work on a little endian target.
    /// let written = original_dfa.write_to_native_endian(&mut buf)?;
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn write_to_little_endian(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        self.as_ref().write_to::<bytes::LE>(dst)
    }

    /// Serialize this DFA as raw bytes to the given slice, in big endian
    /// format. Upon success, the total number of bytes written to `dst` is
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// Note that unlike the various `to_byte_*` routines, this does not write
    /// any padding. Callers are responsible for handling alignment correctly.
    ///
    /// # Errors
    ///
    /// This returns an error if the given destination slice is not big enough
    /// to contain the full serialized DFA. If an error occurs, then nothing
    /// is written to `dst`.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA without
    /// dynamic memory allocation.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// // Create a 4KB buffer on the stack to store our serialized DFA.
    /// let mut buf = [0u8; 4 * (1<<10)];
    /// // N.B. We use native endianness here to make the example work, but
    /// // using write_to_big_endian would work on a big endian target.
    /// let written = original_dfa.write_to_native_endian(&mut buf)?;
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn write_to_big_endian(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        self.as_ref().write_to::<bytes::BE>(dst)
    }

    /// Serialize this DFA as raw bytes to the given slice, in native endian
    /// format. Upon success, the total number of bytes written to `dst` is
    /// returned.
    ///
    /// The written bytes are guaranteed to be deserialized correctly and
    /// without errors in a semver compatible release of this crate by a
    /// `DFA`'s deserialization APIs (assuming all other criteria for the
    /// deserialization APIs has been satisfied):
    ///
    /// * [`DFA::from_bytes`]
    /// * [`DFA::from_bytes_unchecked`]
    ///
    /// Generally speaking, native endian format should only be used when
    /// you know that the target you're compiling the DFA for matches the
    /// endianness of the target on which you're compiling DFA. For example,
    /// if serialization and deserialization happen in the same process or on
    /// the same machine. Otherwise, when serializing a DFA for use in a
    /// portable environment, you'll almost certainly want to serialize _both_
    /// a little endian and a big endian version and then load the correct one
    /// based on the target's configuration.
    ///
    /// Note that unlike the various `to_byte_*` routines, this does not write
    /// any padding. Callers are responsible for handling alignment correctly.
    ///
    /// # Errors
    ///
    /// This returns an error if the given destination slice is not big enough
    /// to contain the full serialized DFA. If an error occurs, then nothing
    /// is written to `dst`.
    ///
    /// # Example
    ///
    /// This example shows how to serialize and deserialize a DFA without
    /// dynamic memory allocation.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// // Create a 4KB buffer on the stack to store our serialized DFA.
    /// let mut buf = [0u8; 4 * (1<<10)];
    /// let written = original_dfa.write_to_native_endian(&mut buf)?;
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn write_to_native_endian(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        self.as_ref().write_to::<bytes::NE>(dst)
    }

    /// Return the total number of bytes required to serialize this DFA.
    ///
    /// This is useful for determining the size of the buffer required to pass
    /// to one of the serialization routines:
    ///
    /// * [`DFA::write_to_little_endian`]
    /// * [`DFA::write_to_big_endian`]
    /// * [`DFA::write_to_native_endian`]
    ///
    /// Passing a buffer smaller than the size returned by this method will
    /// result in a serialization error. Serialization routines are guaranteed
    /// to succeed when the buffer is big enough.
    ///
    /// # Example
    ///
    /// This example shows how to dynamically allocate enough room to serialize
    /// a DFA.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// // Compile our original DFA.
    /// let original_dfa = DFA::new("foo[0-9]+")?;
    ///
    /// let mut buf = vec![0; original_dfa.write_to_len()];
    /// let written = original_dfa.write_to_native_endian(&mut buf)?;
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Note that this example isn't actually guaranteed to work! In
    /// particular, if `buf` is not aligned to a 4-byte boundary, then the
    /// `DFA::from_bytes` call will fail. If you need this to work, then you
    /// either need to deal with adding some initial padding yourself, or use
    /// one of the `to_bytes` methods, which will do it for you.
    pub fn write_to_len(&self) -> usize {
        bytes::write_label_len(LABEL)
        + bytes::write_endianness_check_len()
        + bytes::write_version_len()
        + size_of::<u32>() // unused, intended for future flexibility
        + self.tt.write_to_len()
        + self.st.write_to_len()
        + self.ms.write_to_len()
        + self.special.write_to_len()
        + self.accels.write_to_len()
    }
}

impl<'a> DFA<&'a [u32]> {
    /// Safely deserialize a DFA with a specific state identifier
    /// representation. Upon success, this returns both the deserialized DFA
    /// and the number of bytes read from the given slice. Namely, the contents
    /// of the slice beyond the DFA are not read.
    ///
    /// Deserializing a DFA using this routine will never allocate heap memory.
    /// For safety purposes, the DFA's transition table will be verified such
    /// that every transition points to a valid state. If this verification is
    /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
    /// will always execute in constant time.
    ///
    /// The bytes given must be generated by one of the serialization APIs
    /// of a `DFA` using a semver compatible release of this crate. Those
    /// include:
    ///
    /// * [`DFA::to_bytes_little_endian`]
    /// * [`DFA::to_bytes_big_endian`]
    /// * [`DFA::to_bytes_native_endian`]
    /// * [`DFA::write_to_little_endian`]
    /// * [`DFA::write_to_big_endian`]
    /// * [`DFA::write_to_native_endian`]
    ///
    /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
    /// with handling alignment correctly. The `write_to` methods do not
    /// allocate and write to an existing slice (which may be on the stack).
    /// Since deserialization always uses the native endianness of the target
    /// platform, the serialization API you use should match the endianness of
    /// the target platform. (It's often a good idea to generate serialized
    /// DFAs for both forms of endianness and then load the correct one based
    /// on endianness.)
    ///
    /// # Errors
    ///
    /// Generally speaking, it's easier to state the conditions in which an
    /// error is _not_ returned. All of the following must be true:
    ///
    /// * The bytes given must be produced by one of the serialization APIs
    ///   on this DFA, as mentioned above.
    /// * The endianness of the target platform matches the endianness used to
    ///   serialized the provided DFA.
    /// * The slice given must have the same alignment as `u32`.
    ///
    /// If any of the above are not true, then an error will be returned.
    ///
    /// # Panics
    ///
    /// This routine will never panic for any input.
    ///
    /// # Example
    ///
    /// This example shows how to serialize a DFA to raw bytes, deserialize it
    /// and then use it for searching.
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// let initial = DFA::new("foo[0-9]+")?;
    /// let (bytes, _) = initial.to_bytes_native_endian();
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: dealing with alignment and padding
    ///
    /// In the above example, we used the `to_bytes_native_endian` method to
    /// serialize a DFA, but we ignored part of its return value corresponding
    /// to padding added to the beginning of the serialized DFA. This is OK
    /// because deserialization will skip this initial padding. What matters
    /// is that the address immediately following the padding has an alignment
    /// that matches `u32`. That is, the following is an equivalent but
    /// alternative way to write the above example:
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// let initial = DFA::new("foo[0-9]+")?;
    /// // Serialization returns the number of leading padding bytes added to
    /// // the returned Vec<u8>.
    /// let (bytes, pad) = initial.to_bytes_native_endian();
    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This padding is necessary because Rust's standard library does
    /// not expose any safe and robust way of creating a `Vec<u8>` with a
    /// guaranteed alignment other than 1. Now, in practice, the underlying
    /// allocator is likely to provide a `Vec<u8>` that meets our alignment
    /// requirements, which means `pad` is zero in practice most of the time.
    ///
    /// The purpose of exposing the padding like this is flexibility for the
    /// caller. For example, if one wants to embed a serialized DFA into a
    /// compiled program, then it's important to guarantee that it starts at a
    /// `u32`-aligned address. The simplest way to do this is to discard the
    /// padding bytes and set it up so that the serialized DFA itself begins at
    /// a properly aligned address. We can show this in two parts. The first
    /// part is serializing the DFA to a file:
    ///
    /// ```no_run
    /// use regex_automata::dfa::{Automaton, dense::DFA};
    ///
    /// let dfa = DFA::new("foo[0-9]+")?;
    ///
    /// let (bytes, pad) = dfa.to_bytes_big_endian();
    /// // Write the contents of the DFA *without* the initial padding.
    /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
    ///
    /// // Do it again, but this time for little endian.
    /// let (bytes, pad) = dfa.to_bytes_little_endian();
    /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// And now the second part is embedding the DFA into the compiled program
    /// and deserializing it at runtime on first use. We use conditional
    /// compilation to choose the correct endianness.
    ///
    /// ```no_run
    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch};
    ///
    /// type S = u32;
    /// type DFA = dense::DFA<&'static [S]>;
    ///
    /// fn get_foo() -> &'static DFA {
    ///     use std::cell::Cell;
    ///     use std::mem::MaybeUninit;
    ///     use std::sync::Once;
    ///
    ///     // This struct with a generic B is used to permit unsizing
    ///     // coercions, specifically, where B winds up being a [u8]. We also
    ///     // need repr(C) to guarantee that _align comes first, which forces
    ///     // a correct alignment.
    ///     #[repr(C)]
    ///     struct Aligned<B: ?Sized> {
    ///         _align: [S; 0],
    ///         bytes: B,
    ///     }
    ///
    ///     # const _: &str = stringify! {
    ///     // This assignment is made possible (implicitly) via the
    ///     // CoerceUnsized trait.
    ///     static ALIGNED: &Aligned<[u8]> = &Aligned {
    ///         _align: [],
    ///         #[cfg(target_endian = "big")]
    ///         bytes: *include_bytes!("foo.bigendian.dfa"),
    ///         #[cfg(target_endian = "little")]
    ///         bytes: *include_bytes!("foo.littleendian.dfa"),
    ///     };
    ///     # };
    ///     # static ALIGNED: &Aligned<[u8]> = &Aligned {
    ///     #     _align: [],
    ///     #     bytes: [],
    ///     # };
    ///
    ///     struct Lazy(Cell<MaybeUninit<DFA>>);
    ///     // SAFETY: This is safe because DFA impls Sync.
    ///     unsafe impl Sync for Lazy {}
    ///
    ///     static INIT: Once = Once::new();
    ///     static DFA: Lazy = Lazy(Cell::new(MaybeUninit::uninit()));
    ///
    ///     INIT.call_once(|| {
    ///         let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
    ///             .expect("serialized DFA should be valid");
    ///         // SAFETY: This is guaranteed to only execute once, and all
    ///         // we do with the pointer is write the DFA to it.
    ///         unsafe {
    ///             (*DFA.0.as_ptr()).as_mut_ptr().write(dfa);
    ///         }
    ///     });
    ///     // SAFETY: DFA is guaranteed to by initialized via INIT and is
    ///     // stored in static memory.
    ///     unsafe {
    ///         let dfa = (*DFA.0.as_ptr()).as_ptr();
    ///         std::mem::transmute::<*const DFA, &'static DFA>(dfa)
    ///     }
    /// }
    ///
    /// let dfa = get_foo();
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Ok(Some(expected)), dfa.find_leftmost_fwd(b"foo12345"));
    /// ```
    ///
    /// Alternatively, consider using
    /// [`lazy_static`](https://crates.io/crates/lazy_static)
    /// or
    /// [`once_cell`](https://crates.io/crates/once_cell),
    /// which will guarantee safety for you. You will still need to use the
    /// `Aligned` trick above to force correct alignment, but this is safe to
    /// do and `from_bytes` will return an error if you get it wrong.
    pub fn from_bytes(
        slice: &'a [u8],
    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
        // SAFETY: This is safe because we validate both the transition table,
        // start state ID list and the match states below. If either validation
        // fails, then we return an error.
        let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
        dfa.tt.validate()?;
        dfa.st.validate(&dfa.tt)?;
        dfa.ms.validate(&dfa)?;
        dfa.accels.validate()?;
        // N.B. dfa.special doesn't have a way to do unchecked deserialization,
        // so it has already been validated.
        Ok((dfa, nread))
    }

    /// Deserialize a DFA with a specific state identifier representation in
    /// constant time by omitting the verification of the validity of the
    /// transition table and other data inside the DFA.
    ///
    /// This is just like [`DFA::from_bytes`], except it can potentially return
    /// a DFA that exhibits undefined behavior if its transition table contains
    /// invalid state identifiers.
    ///
    /// This routine is useful if you need to deserialize a DFA cheaply
    /// and cannot afford the transition table validation performed by
    /// `from_bytes`.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch};
    ///
    /// let initial = DFA::new("foo[0-9]+")?;
    /// let (bytes, _) = initial.to_bytes_native_endian();
    /// // SAFETY: This is guaranteed to be safe since the bytes given come
    /// // directly from a compatible serialization routine.
    /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
    ///
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub unsafe fn from_bytes_unchecked(
        slice: &'a [u8],
    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
        let mut nr = 0;

        nr += bytes::skip_initial_padding(slice);
        bytes::check_alignment::<StateID>(&slice[nr..])?;
        nr += bytes::read_label(&slice[nr..], LABEL)?;
        nr += bytes::read_endianness_check(&slice[nr..])?;
        nr += bytes::read_version(&slice[nr..], VERSION)?;

        let _unused = bytes::try_read_u32(&slice[nr..], "unused space")?;
        nr += size_of::<u32>();

        let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
        nr += nread;

        let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
        nr += nread;

        let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
        nr += nread;

        let (special, nread) = Special::from_bytes(&slice[nr..])?;
        nr += nread;
        special.validate_state_count(tt.count(), tt.stride2)?;

        let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
        nr += nread;

        Ok((DFA { tt, st, ms, special, accels }, nr))
    }

    /// The implementation of the public `write_to` serialization methods,
    /// which is generic over endianness.
    ///
    /// This is defined only for &[u32] to reduce binary size/compilation time.
    fn write_to<E: Endian>(
        &self,
        mut dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("dense DFA"));
        }
        dst = &mut dst[..nwrite];

        let mut nw = 0;
        nw += bytes::write_label(LABEL, &mut dst[nw..])?;
        nw += bytes::write_endianness_check::<E>(&mut dst[nw..])?;
        nw += bytes::write_version::<E>(VERSION, &mut dst[nw..])?;
        nw += {
            // Currently unused, intended for future flexibility
            E::write_u32(0, &mut dst[nw..]);
            size_of::<u32>()
        };
        nw += self.tt.write_to::<E>(&mut dst[nw..])?;
        nw += self.st.write_to::<E>(&mut dst[nw..])?;
        nw += self.ms.write_to::<E>(&mut dst[nw..])?;
        nw += self.special.write_to::<E>(&mut dst[nw..])?;
        nw += self.accels.write_to::<E>(&mut dst[nw..])?;
        Ok(nw)
    }
}

/// The following methods implement mutable routines on the internal
/// representation of a DFA. As such, we must fix the first type parameter to a
/// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
/// can get away with this because these methods are internal to the crate and
/// are exclusively used during construction of the DFA.
#[cfg(feature = "alloc")]
impl OwnedDFA {
    /// Add a start state of this DFA.
    pub(crate) fn set_start_state(
        &mut self,
        index: Start,
        pattern_id: Option<PatternID>,
        id: StateID,
    ) {
        assert!(self.tt.is_valid(id), "invalid start state");
        self.st.set_start(index, pattern_id, id);
    }

    /// Set the given transition to this DFA. Both the `from` and `to` states
    /// must already exist.
    pub(crate) fn set_transition(
        &mut self,
        from: StateID,
        byte: alphabet::Unit,
        to: StateID,
    ) {
        self.tt.set(from, byte, to);
    }

    /// An an empty state (a state where all transitions lead to a dead state)
    /// and return its identifier. The identifier returned is guaranteed to
    /// not point to any other existing state.
    ///
    /// If adding a state would exceed `StateID::LIMIT`, then this returns an
    /// error.
    pub(crate) fn add_empty_state(&mut self) -> Result<StateID, Error> {
        self.tt.add_empty_state()
    }

    /// Swap the two states given in the transition table.
    ///
    /// This routine does not do anything to check the correctness of this
    /// swap. Callers must ensure that other states pointing to id1 and id2 are
    /// updated appropriately.
    pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
        self.tt.swap(id1, id2);
    }

    /// Truncate the states in this DFA to the given count.
    ///
    /// This routine does not do anything to check the correctness of this
    /// truncation. Callers must ensure that other states pointing to truncated
    /// states are updated appropriately.
    pub(crate) fn truncate_states(&mut self, count: usize) {
        self.tt.truncate(count);
    }

    /// Return a mutable representation of the state corresponding to the given
    /// id. This is useful for implementing routines that manipulate DFA states
    /// (e.g., swapping states).
    pub(crate) fn state_mut(&mut self, id: StateID) -> StateMut<'_> {
        self.tt.state_mut(id)
    }

    /// Minimize this DFA in place using Hopcroft's algorithm.
    pub(crate) fn minimize(&mut self) {
        Minimizer::new(self).run();
    }

    /// Updates the match state pattern ID map to use the one provided.
    ///
    /// This is useful when it's convenient to manipulate matching states
    /// (and their corresponding pattern IDs) as a map. In particular, the
    /// representation used by a DFA for this map is not amenable to mutation,
    /// so if things need to be changed (like when shuffling states), it's
    /// often easier to work with the map form.
    pub(crate) fn set_pattern_map(
        &mut self,
        map: &BTreeMap<StateID, Vec<PatternID>>,
    ) -> Result<(), Error> {
        self.ms = self.ms.new_with_map(map)?;
        Ok(())
    }

    /// Find states that have a small number of non-loop transitions and mark
    /// them as candidates for acceleration during search.
    pub(crate) fn accelerate(&mut self) {
        // dead and quit states can never be accelerated.
        if self.state_count() <= 2 {
            return;
        }

        // Go through every state and record their accelerator, if possible.
        let mut accels = BTreeMap::new();
        // Count the number of accelerated match, start and non-match/start
        // states.
        let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
        for state in self.states() {
            if let Some(accel) = state.accelerate(self.byte_classes()) {
                accels.insert(state.id(), accel);
                if self.is_match_state(state.id()) {
                    cmatch += 1;
                } else if self.is_start_state(state.id()) {
                    cstart += 1;
                } else {
                    assert!(!self.is_dead_state(state.id()));
                    assert!(!self.is_quit_state(state.id()));
                    cnormal += 1;
                }
            }
        }
        // If no states were able to be accelerated, then we're done.
        if accels.is_empty() {
            return;
        }
        let original_accels_len = accels.len();

        // A remapper keeps track of state ID changes. Once we're done
        // shuffling, the remapper is used to rewrite all transitions in the
        // DFA based on the new positions of states.
        let mut remapper = Remapper::from_dfa(self);

        // As we swap states, if they are match states, we need to swap their
        // pattern ID lists too (for multi-regexes). We do this by converting
        // the lists to an easily swappable map, and then convert back to
        // MatchStates once we're done.
        let mut new_matches = self.ms.to_map(self);

        // There is at least one state that gets accelerated, so these are
        // guaranteed to get set to sensible values below.
        self.special.min_accel = StateID::MAX;
        self.special.max_accel = StateID::ZERO;
        let update_special_accel =
            |special: &mut Special, accel_id: StateID| {
                special.min_accel = cmp::min(special.min_accel, accel_id);
                special.max_accel = cmp::max(special.max_accel, accel_id);
            };

        // Start by shuffling match states. Any match states that are
        // accelerated get moved to the end of the match state range.
        if cmatch > 0 && self.special.matches() {
            // N.B. special.{min,max}_match do not need updating, since the
            // range/number of match states does not change. Only the ordering
            // of match states may change.
            let mut next_id = self.special.max_match;
            let mut cur_id = next_id;
            while cur_id >= self.special.min_match {
                if let Some(accel) = accels.remove(&cur_id) {
                    accels.insert(next_id, accel);
                    update_special_accel(&mut self.special, next_id);

                    // No need to do any actual swapping for equivalent IDs.
                    if cur_id != next_id {
                        remapper.swap(self, cur_id, next_id);

                        // Swap pattern IDs for match states.
                        let cur_pids = new_matches.remove(&cur_id).unwrap();
                        let next_pids = new_matches.remove(&next_id).unwrap();
                        new_matches.insert(cur_id, next_pids);
                        new_matches.insert(next_id, cur_pids);
                    }
                    next_id = self.tt.prev_state_id(next_id);
                }
                cur_id = self.tt.prev_state_id(cur_id);
            }
        }

        // This is where it gets tricky. Without acceleration, start states
        // normally come right after match states. But we want accelerated
        // states to be a single contiguous range (to make it very fast
        // to determine whether a state *is* accelerated), while also keeping
        // match and starting states as contiguous ranges for the same reason.
        // So what we do here is shuffle states such that it looks like this:
        //
        //     DQMMMMAAAAASSSSSSNNNNNNN
        //         |         |
        //         |---------|
        //      accelerated states
        //
        // Where:
        //   D - dead state
        //   Q - quit state
        //   M - match state (may be accelerated)
        //   A - normal state that is accelerated
        //   S - start state (may be accelerated)
        //   N - normal state that is NOT accelerated
        //
        // We implement this by shuffling states, which is done by a sequence
        // of pairwise swaps. We start by looking at all normal states to be
        // accelerated. When we find one, we swap it with the earliest starting
        // state, and then swap that with the earliest normal state. This
        // preserves the contiguous property.
        //
        // Once we're done looking for accelerated normal states, now we look
        // for accelerated starting states by moving them to the beginning
        // of the starting state range (just like we moved accelerated match
        // states to the end of the matching state range).
        //
        // For a more detailed/different perspective on this, see the docs
        // in dfa/special.rs.
        if cnormal > 0 {
            // our next available starting and normal states for swapping.
            let mut next_start_id = self.special.min_start;
            let mut cur_id = self.from_index(self.state_count() - 1);
            // This is guaranteed to exist since cnormal > 0.
            let mut next_norm_id =
                self.tt.next_state_id(self.special.max_start);
            while cur_id >= next_norm_id {
                if let Some(accel) = accels.remove(&cur_id) {
                    remapper.swap(self, next_start_id, cur_id);
                    remapper.swap(self, next_norm_id, cur_id);
                    // Keep our accelerator map updated with new IDs if the
                    // states we swapped were also accelerated.
                    if let Some(accel2) = accels.remove(&next_norm_id) {
                        accels.insert(cur_id, accel2);
                    }
                    if let Some(accel2) = accels.remove(&next_start_id) {
                        accels.insert(next_norm_id, accel2);
                    }
                    accels.insert(next_start_id, accel);
                    update_special_accel(&mut self.special, next_start_id);
                    // Our start range shifts one to the right now.
                    self.special.min_start =
                        self.tt.next_state_id(self.special.min_start);
                    self.special.max_start =
                        self.tt.next_state_id(self.special.max_start);
                    next_start_id = self.tt.next_state_id(next_start_id);
                    next_norm_id = self.tt.next_state_id(next_norm_id);
                }
                // This is pretty tricky, but if our 'next_norm_id' state also
                // happened to be accelerated, then the result is that it is
                // now in the position of cur_id, so we need to consider it
                // again. This loop is still guaranteed to terminate though,
                // because when accels contains cur_id, we're guaranteed to
                // increment next_norm_id even if cur_id remains unchanged.
                if !accels.contains_key(&cur_id) {
                    cur_id = self.tt.prev_state_id(cur_id);
                }
            }
        }
        // Just like we did for match states, but we want to move accelerated
        // start states to the beginning of the range instead of the end.
        if cstart > 0 {
            // N.B. special.{min,max}_start do not need updating, since the
            // range/number of start states does not change at this point. Only
            // the ordering of start states may change.
            let mut next_id = self.special.min_start;
            let mut cur_id = next_id;
            while cur_id <= self.special.max_start {
                if let Some(accel) = accels.remove(&cur_id) {
                    remapper.swap(self, cur_id, next_id);
                    accels.insert(next_id, accel);
                    update_special_accel(&mut self.special, next_id);
                    next_id = self.tt.next_state_id(next_id);
                }
                cur_id = self.tt.next_state_id(cur_id);
            }
        }

        // Remap all transitions in our DFA and assert some things.
        remapper.remap(self);
        // This unwrap is OK because acceleration never changes the number of
        // match states or patterns in those match states. Since acceleration
        // runs after the pattern map has been set at least once, we know that
        // our match states cannot error.
        self.set_pattern_map(&new_matches).unwrap();
        self.special.set_max();
        self.special.validate().expect("special state ranges should validate");
        self.special
            .validate_state_count(self.state_count(), self.stride2())
            .expect(
                "special state ranges should be consistent with state count",
            );
        assert_eq!(
            self.special.accel_len(self.stride()),
            // We record the number of accelerated states initially detected
            // since the accels map is itself mutated in the process above.
            // If mutated incorrectly, its size may change, and thus can't be
            // trusted as a source of truth of how many accelerated states we
            // expected there to be.
            original_accels_len,
            "mismatch with expected number of accelerated states",
        );

        // And finally record our accelerators. We kept our accels map updated
        // as we shuffled states above, so the accelerators should now
        // correspond to a contiguous range in the state ID space. (Which we
        // assert.)
        let mut prev: Option<StateID> = None;
        for (id, accel) in accels {
            assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
            prev = Some(id);
            self.accels.add(accel);
        }
    }

    /// Shuffle the states in this DFA so that starting states, match
    /// states and accelerated states are all contiguous.
    ///
    /// See dfa/special.rs for more details.
    pub(crate) fn shuffle(
        &mut self,
        mut matches: BTreeMap<StateID, Vec<PatternID>>,
    ) -> Result<(), Error> {
        // The determinizer always adds a quit state and it is always second.
        self.special.quit_id = self.from_index(1);
        // If all we have are the dead and quit states, then we're done and
        // the DFA will never produce a match.
        if self.state_count() <= 2 {
            self.special.set_max();
            return Ok(());
        }

        // Collect all our start states into a convenient set and confirm there
        // is no overlap with match states. In the classicl DFA construction,
        // start states can be match states. But because of look-around, we
        // delay all matches by a byte, which prevents start states from being
        // match states.
        let mut is_start: BTreeSet<StateID> = BTreeSet::new();
        for (start_id, _, _) in self.starts() {
            // While there's nothing theoretically wrong with setting a start
            // state to a dead ID (indeed, it could be an optimization!), the
            // shuffling code below assumes that start states aren't dead. If
            // this assumption is violated, the dead state could be shuffled
            // to a new location, which must never happen. So if we do want
            // to allow start states to be dead, then this assert should be
            // removed and the code below fixed.
            //
            // N.B. Minimization can cause start states to be dead, but that
            // happens after states are shuffled, so it's OK. Also, start
            // states are dead for the DFA that never matches anything, but
            // in that case, there are no states to shuffle.
            assert_ne!(start_id, DEAD, "start state cannot be dead");
            assert!(
                !matches.contains_key(&start_id),
                "{:?} is both a start and a match state, which is not allowed",
                start_id,
            );
            is_start.insert(start_id);
        }

        // We implement shuffling by a sequence of pairwise swaps of states.
        // Since we have a number of things referencing states via their
        // IDs and swapping them changes their IDs, we need to record every
        // swap we make so that we can remap IDs. The remapper handles this
        // book-keeping for us.
        let mut remapper = Remapper::from_dfa(self);

        // Shuffle matching states.
        if matches.is_empty() {
            self.special.min_match = DEAD;
            self.special.max_match = DEAD;
        } else {
            // The determinizer guarantees that the first two states are the
            // dead and quit states, respectively. We want our match states to
            // come right after quit.
            let mut next_id = self.from_index(2);
            let mut new_matches = BTreeMap::new();
            self.special.min_match = next_id;
            for (id, pids) in matches {
                remapper.swap(self, next_id, id);
                new_matches.insert(next_id, pids);
                // If we swapped a start state, then update our set.
                if is_start.contains(&next_id) {
                    is_start.remove(&next_id);
                    is_start.insert(id);
                }
                next_id = self.tt.next_state_id(next_id);
            }
            matches = new_matches;
            self.special.max_match = cmp::max(
                self.special.min_match,
                self.tt.prev_state_id(next_id),
            );
        }

        // Shuffle starting states.
        {
            let mut next_id = self.from_index(2);
            if self.special.matches() {
                next_id = self.tt.next_state_id(self.special.max_match);
            }
            self.special.min_start = next_id;
            for id in is_start {
                remapper.swap(self, next_id, id);
                next_id = self.tt.next_state_id(next_id);
            }
            self.special.max_start = cmp::max(
                self.special.min_start,
                self.tt.prev_state_id(next_id),
            );
        }

        // Finally remap all transitions in our DFA.
        remapper.remap(self);
        self.set_pattern_map(&matches)?;
        self.special.set_max();
        self.special.validate().expect("special state ranges should validate");
        self.special
            .validate_state_count(self.state_count(), self.stride2())
            .expect(
                "special state ranges should be consistent with state count",
            );
        Ok(())
    }
}

/// A variety of generic internal methods for accessing DFA internals.
impl<T: AsRef<[u32]>> DFA<T> {
    /// Return the byte classes used by this DFA.
    pub(crate) fn byte_classes(&self) -> &ByteClasses {
        &self.tt.classes
    }

    /// Return the info about special states.
    pub(crate) fn special(&self) -> &Special {
        &self.special
    }

    /// Return the info about special states as a mutable borrow.
    #[cfg(feature = "alloc")]
    pub(crate) fn special_mut(&mut self) -> &mut Special {
        &mut self.special
    }

    /// Returns an iterator over all states in this DFA.
    ///
    /// This iterator yields a tuple for each state. The first element of the
    /// tuple corresponds to a state's identifier, and the second element
    /// corresponds to the state itself (comprised of its transitions).
    pub(crate) fn states(&self) -> StateIter<'_, T> {
        self.tt.states()
    }

    /// Return the total number of states in this DFA. Every DFA has at least
    /// 1 state, even the empty DFA.
    pub(crate) fn state_count(&self) -> usize {
        self.tt.count()
    }

    /// Return an iterator over all pattern IDs for the given match state.
    ///
    /// If the given state is not a match state, then this panics.
    #[cfg(feature = "alloc")]
    pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
        assert!(self.is_match_state(id));
        self.ms.pattern_id_slice(self.match_state_index(id))
    }

    /// Return the total number of pattern IDs for the given match state.
    ///
    /// If the given state is not a match state, then this panics.
    pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
        assert!(self.is_match_state(id));
        self.ms.pattern_len(self.match_state_index(id))
    }

    /// Returns the total number of patterns matched by this DFA.
    pub(crate) fn pattern_count(&self) -> usize {
        self.ms.patterns
    }

    /// Returns a map from match state ID to a list of pattern IDs that match
    /// in that state.
    #[cfg(feature = "alloc")]
    pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
        self.ms.to_map(self)
    }

    /// Returns the ID of the quit state for this DFA.
    #[cfg(feature = "alloc")]
    pub(crate) fn quit_id(&self) -> StateID {
        self.from_index(1)
    }

    /// Convert the given state identifier to the state's index. The state's
    /// index corresponds to the position in which it appears in the transition
    /// table. When a DFA is NOT premultiplied, then a state's identifier is
    /// also its index. When a DFA is premultiplied, then a state's identifier
    /// is equal to `index * alphabet_len`. This routine reverses that.
    pub(crate) fn to_index(&self, id: StateID) -> usize {
        self.tt.to_index(id)
    }

    /// Convert an index to a state (in the range 0..self.state_count()) to an
    /// actual state identifier.
    ///
    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
    /// to some other information (such as a remapped state ID).
    #[cfg(feature = "alloc")]
    pub(crate) fn from_index(&self, index: usize) -> StateID {
        self.tt.from_index(index)
    }

    /// Return the table of state IDs for this DFA's start states.
    pub(crate) fn starts(&self) -> StartStateIter<'_> {
        self.st.iter()
    }

    /// Returns the index of the match state for the given ID. If the
    /// given ID does not correspond to a match state, then this may
    /// panic or produce an incorrect result.
    fn match_state_index(&self, id: StateID) -> usize {
        debug_assert!(self.is_match_state(id));
        // This is one of the places where we rely on the fact that match
        // states are contiguous in the transition table. Namely, that the
        // first match state ID always corresponds to dfa.special.min_start.
        // From there, since we know the stride, we can compute the overall
        // index of any match state given the match state's ID.
        let min = self.special().min_match.as_usize();
        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
        // so both the subtraction and the unchecked StateID construction is
        // OK.
        self.to_index(StateID::new_unchecked(id.as_usize() - min))
    }

    /// Returns the index of the accelerator state for the given ID. If the
    /// given ID does not correspond to an accelerator state, then this may
    /// panic or produce an incorrect result.
    fn accelerator_index(&self, id: StateID) -> usize {
        let min = self.special().min_accel.as_usize();
        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
        // so both the subtraction and the unchecked StateID construction is
        // OK.
        self.to_index(StateID::new_unchecked(id.as_usize() - min))
    }

    /// Return the accelerators for this DFA.
    fn accels(&self) -> Accels<&[u32]> {
        self.accels.as_ref()
    }

    /// Return this DFA's transition table as a slice.
    fn trans(&self) -> &[StateID] {
        self.tt.table()
    }
}

impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "dense::DFA(")?;
        for state in self.states() {
            fmt_state_indicator(f, self, state.id())?;
            let id = if f.alternate() {
                state.id().as_usize()
            } else {
                self.to_index(state.id())
            };
            write!(f, "{:06?}: ", id)?;
            state.fmt(f)?;
            write!(f, "\n")?;
        }
        writeln!(f, "")?;
        for (i, (start_id, sty, pid)) in self.starts().enumerate() {
            let id = if f.alternate() {
                start_id.as_usize()
            } else {
                self.to_index(start_id)
            };
            if i % self.st.stride == 0 {
                match pid {
                    None => writeln!(f, "START-GROUP(ALL)")?,
                    Some(pid) => {
                        writeln!(f, "START_GROUP(pattern: {:?})", pid)?
                    }
                }
            }
            writeln!(f, "  {:?} => {:06?}", sty, id)?;
        }
        if self.pattern_count() > 1 {
            writeln!(f, "")?;
            for i in 0..self.ms.count() {
                let id = self.ms.match_state_id(self, i);
                let id = if f.alternate() {
                    id.as_usize()
                } else {
                    self.to_index(id)
                };
                write!(f, "MATCH({:06?}): ", id)?;
                for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
                {
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{:?}", pid)?;
                }
                writeln!(f, "")?;
            }
        }
        writeln!(f, "state count: {:?}", self.state_count())?;
        writeln!(f, "pattern count: {:?}", self.pattern_count())?;
        writeln!(f, ")")?;
        Ok(())
    }
}

unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
    #[inline]
    fn is_special_state(&self, id: StateID) -> bool {
        self.special.is_special_state(id)
    }

    #[inline]
    fn is_dead_state(&self, id: StateID) -> bool {
        self.special.is_dead_state(id)
    }

    #[inline]
    fn is_quit_state(&self, id: StateID) -> bool {
        self.special.is_quit_state(id)
    }

    #[inline]
    fn is_match_state(&self, id: StateID) -> bool {
        self.special.is_match_state(id)
    }

    #[inline]
    fn is_start_state(&self, id: StateID) -> bool {
        self.special.is_start_state(id)
    }

    #[inline]
    fn is_accel_state(&self, id: StateID) -> bool {
        self.special.is_accel_state(id)
    }

    #[inline]
    fn next_state(&self, current: StateID, input: u8) -> StateID {
        let input = self.byte_classes().get(input);
        let o = current.as_usize() + usize::from(input);
        self.trans()[o]
    }

    #[inline]
    unsafe fn next_state_unchecked(
        &self,
        current: StateID,
        input: u8,
    ) -> StateID {
        let input = self.byte_classes().get_unchecked(input);
        let o = current.as_usize() + usize::from(input);
        *self.trans().get_unchecked(o)
    }

    #[inline]
    fn next_eoi_state(&self, current: StateID) -> StateID {
        let eoi = self.byte_classes().eoi().as_usize();
        let o = current.as_usize() + eoi;
        self.trans()[o]
    }

    #[inline]
    fn pattern_count(&self) -> usize {
        self.ms.patterns
    }

    #[inline]
    fn match_count(&self, id: StateID) -> usize {
        self.match_pattern_len(id)
    }

    #[inline]
    fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
        // This is an optimization for the very common case of a DFA with a
        // single pattern. This conditional avoids a somewhat more costly path
        // that finds the pattern ID from the state machine, which requires
        // a bit of slicing/pointer-chasing. This optimization tends to only
        // matter when matches are frequent.
        if self.ms.patterns == 1 {
            return PatternID::ZERO;
        }
        let state_index = self.match_state_index(id);
        self.ms.pattern_id(state_index, match_index)
    }

    #[inline]
    fn start_state_forward(
        &self,
        pattern_id: Option<PatternID>,
        bytes: &[u8],
        start: usize,
        end: usize,
    ) -> StateID {
        let index = Start::from_position_fwd(bytes, start, end);
        self.st.start(index, pattern_id)
    }

    #[inline]
    fn start_state_reverse(
        &self,
        pattern_id: Option<PatternID>,
        bytes: &[u8],
        start: usize,
        end: usize,
    ) -> StateID {
        let index = Start::from_position_rev(bytes, start, end);
        self.st.start(index, pattern_id)
    }

    #[inline(always)]
    fn accelerator(&self, id: StateID) -> &[u8] {
        if !self.is_accel_state(id) {
            return &[];
        }
        self.accels.needles(self.accelerator_index(id))
    }
}

/// The transition table portion of a dense DFA.
///
/// The transition table is the core part of the DFA in that it describes how
/// to move from one state to another based on the input sequence observed.
#[derive(Clone)]
pub(crate) struct TransitionTable<T> {
    /// A contiguous region of memory representing the transition table in
    /// row-major order. The representation is dense. That is, every state
    /// has precisely the same number of transitions. The maximum number of
    /// transitions per state is 257 (256 for each possible byte value, plus 1
    /// for the special EOI transition). If a DFA has been instructed to use
    /// byte classes (the default), then the number of transitions is usually
    /// substantially fewer.
    ///
    /// In practice, T is either `Vec<u32>` or `&[u32]`.
    table: T,
    /// A set of equivalence classes, where a single equivalence class
    /// represents a set of bytes that never discriminate between a match
    /// and a non-match in the DFA. Each equivalence class corresponds to a
    /// single character in this DFA's alphabet, where the maximum number of
    /// characters is 257 (each possible value of a byte plus the special
    /// EOI transition). Consequently, the number of equivalence classes
    /// corresponds to the number of transitions for each DFA state. Note
    /// though that the *space* used by each DFA state in the transition table
    /// may be larger. The total space used by each DFA state is known as the
    /// stride.
    ///
    /// The only time the number of equivalence classes is fewer than 257 is if
    /// the DFA's kind uses byte classes (which is the default). Equivalence
    /// classes should generally only be disabled when debugging, so that
    /// the transitions themselves aren't obscured. Disabling them has no
    /// other benefit, since the equivalence class map is always used while
    /// searching. In the vast majority of cases, the number of equivalence
    /// classes is substantially smaller than 257, particularly when large
    /// Unicode classes aren't used.
    classes: ByteClasses,
    /// The stride of each DFA state, expressed as a power-of-two exponent.
    ///
    /// The stride of a DFA corresponds to the total amount of space used by
    /// each DFA state in the transition table. This may be bigger than the
    /// size of a DFA's alphabet, since the stride is always the smallest
    /// power of two greater than or equal to the alphabet size.
    ///
    /// While this wastes space, this avoids the need for integer division
    /// to convert between premultiplied state IDs and their corresponding
    /// indices. Instead, we can use simple bit-shifts.
    ///
    /// See the docs for the `stride2` method for more details.
    ///
    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
    /// while the maximum `stride2` value is `9` (corresponding to a stride of
    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
    /// when accounting for the special EOI transition. However, an alphabet
    /// length of that size is exceptionally rare since the alphabet is shrunk
    /// into equivalence classes.
    stride2: usize,
}

impl<'a> TransitionTable<&'a [u32]> {
    /// Deserialize a transition table starting at the beginning of `slice`.
    /// Upon success, return the total number of bytes read along with the
    /// transition table.
    ///
    /// If there was a problem deserializing any part of the transition table,
    /// then this returns an error. Notably, if the given slice does not have
    /// the same alignment as `StateID`, then this will return an error (among
    /// other possible errors).
    ///
    /// This is guaranteed to execute in constant time.
    ///
    /// # Safety
    ///
    /// This routine is not safe because it does not check the valdity of the
    /// transition table itself. In particular, the transition table can be
    /// quite large, so checking its validity can be somewhat expensive. An
    /// invalid transition table is not safe because other code may rely on the
    /// transition table being correct (such as explicit bounds check elision).
    /// Therefore, an invalid transition table can lead to undefined behavior.
    ///
    /// Callers that use this function must either pass on the safety invariant
    /// or guarantee that the bytes given contain a valid transition table.
    /// This guarantee is upheld by the bytes written by `write_to`.
    unsafe fn from_bytes_unchecked(
        mut slice: &'a [u8],
    ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
        let slice_start = slice.as_ptr() as usize;

        let (count, nr) = bytes::try_read_u32_as_usize(slice, "state count")?;
        slice = &slice[nr..];

        let (stride2, nr) = bytes::try_read_u32_as_usize(slice, "stride2")?;
        slice = &slice[nr..];

        let (classes, nr) = ByteClasses::from_bytes(slice)?;
        slice = &slice[nr..];

        // The alphabet length (determined by the byte class map) cannot be
        // bigger than the stride (total space used by each DFA state).
        if stride2 > 9 {
            return Err(DeserializeError::generic(
                "dense DFA has invalid stride2 (too big)",
            ));
        }
        // It also cannot be zero, since even a DFA that never matches anything
        // has a non-zero number of states with at least two equivalence
        // classes: one for all 256 byte values and another for the EOI
        // sentinel.
        if stride2 < 1 {
            return Err(DeserializeError::generic(
                "dense DFA has invalid stride2 (too small)",
            ));
        }
        // This is OK since 1 <= stride2 <= 9.
        let stride =
            1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
        if classes.alphabet_len() > stride {
            return Err(DeserializeError::generic(
                "alphabet size cannot be bigger than transition table stride",
            ));
        }

        let trans_count =
            bytes::shl(count, stride2, "dense table transition count")?;
        let table_bytes_len = bytes::mul(
            trans_count,
            StateID::SIZE,
            "dense table state byte count",
        )?;
        bytes::check_slice_len(slice, table_bytes_len, "transition table")?;
        bytes::check_alignment::<StateID>(slice)?;
        let table_bytes = &slice[..table_bytes_len];
        slice = &slice[table_bytes_len..];
        // SAFETY: Since StateID is always representable as a u32, all we need
        // to do is ensure that we have the proper length and alignment. We've
        // checked both above, so the cast below is safe.
        //
        // N.B. This is the only not-safe code in this function, so we mark
        // it explicitly to call it out, even though it is technically
        // superfluous.
        #[allow(unused_unsafe)]
        let table = unsafe {
            core::slice::from_raw_parts(
                table_bytes.as_ptr() as *const u32,
                trans_count,
            )
        };
        let tt = TransitionTable { table, classes, stride2 };
        Ok((tt, slice.as_ptr() as usize - slice_start))
    }
}

#[cfg(feature = "alloc")]
impl TransitionTable<Vec<u32>> {
    /// Create a minimal transition table with just two states: a dead state
    /// and a quit state. The alphabet length and stride of the transition
    /// table is determined by the given set of equivalence classes.
    fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
        let mut tt = TransitionTable {
            table: vec![],
            classes,
            stride2: classes.stride2(),
        };
        // Two states, regardless of alphabet size, can always fit into u32.
        tt.add_empty_state().unwrap(); // dead state
        tt.add_empty_state().unwrap(); // quit state
        tt
    }

    /// Set a transition in this table. Both the `from` and `to` states must
    /// already exist, otherwise this panics. `unit` should correspond to the
    /// transition out of `from` to set to `to`.
    fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
        assert!(self.is_valid(from), "invalid 'from' state");
        assert!(self.is_valid(to), "invalid 'to' state");
        self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
            to.as_u32();
    }

    /// Add an empty state (a state where all transitions lead to a dead state)
    /// and return its identifier. The identifier returned is guaranteed to
    /// not point to any other existing state.
    ///
    /// If adding a state would exhaust the state identifier space, then this
    /// returns an error.
    fn add_empty_state(&mut self) -> Result<StateID, Error> {
        // Normally, to get a fresh state identifier, we would just
        // take the index of the next state added to the transition
        // table. However, we actually perform an optimization here
        // that premultiplies state IDs by the stride, such that they
        // point immediately at the beginning of their transitions in
        // the transition table. This avoids an extra multiplication
        // instruction for state lookup at search time.
        //
        // Premultiplied identifiers means that instead of your matching
        // loop looking something like this:
        //
        //   state = dfa.start
        //   for byte in haystack:
        //       next = dfa.transitions[state * stride + byte]
        //       if dfa.is_match(next):
        //           return true
        //   return false
        //
        // it can instead look like this:
        //
        //   state = dfa.start
        //   for byte in haystack:
        //       next = dfa.transitions[state + byte]
        //       if dfa.is_match(next):
        //           return true
        //   return false
        //
        // In other words, we save a multiplication instruction in the
        // critical path. This turns out to be a decent performance win.
        // The cost of using premultiplied state ids is that they can
        // require a bigger state id representation. (And they also make
        // the code a bit more complex, especially during minimization and
        // when reshuffling states, as one needs to convert back and forth
        // between state IDs and state indices.)
        //
        // To do this, we simply take the index of the state into the
        // entire transition table, rather than the index of the state
        // itself. e.g., If the stride is 64, then the ID of the 3rd state
        // is 192, not 2.
        let next = self.table.len();
        let id = StateID::new(next).map_err(|_| Error::too_many_states())?;
        self.table.extend(iter::repeat(0).take(self.stride()));
        Ok(id)
    }

    /// Swap the two states given in this transition table.
    ///
    /// This routine does not do anything to check the correctness of this
    /// swap. Callers must ensure that other states pointing to id1 and id2 are
    /// updated appropriately.
    ///
    /// Both id1 and id2 must point to valid states, otherwise this panics.
    fn swap(&mut self, id1: StateID, id2: StateID) {
        assert!(self.is_valid(id1), "invalid 'id1' state: {:?}", id1);
        assert!(self.is_valid(id2), "invalid 'id2' state: {:?}", id2);
        // We only need to swap the parts of the state that are used. So if the
        // stride is 64, but the alphabet length is only 33, then we save a lot
        // of work.
        for b in 0..self.classes.alphabet_len() {
            self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
        }
    }

    /// Truncate the states in this transition table to the given count.
    ///
    /// This routine does not do anything to check the correctness of this
    /// truncation. Callers must ensure that other states pointing to truncated
    /// states are updated appropriately.
    fn truncate(&mut self, count: usize) {
        self.table.truncate(count << self.stride2);
    }

    /// Return a mutable representation of the state corresponding to the given
    /// id. This is useful for implementing routines that manipulate DFA states
    /// (e.g., swapping states).
    fn state_mut(&mut self, id: StateID) -> StateMut<'_> {
        let alphabet_len = self.alphabet_len();
        let i = id.as_usize();
        StateMut {
            id,
            stride2: self.stride2,
            transitions: &mut self.table_mut()[i..i + alphabet_len],
        }
    }
}

impl<T: AsRef<[u32]>> TransitionTable<T> {
    /// Writes a serialized form of this transition table to the buffer given.
    /// If the buffer is too small, then an error is returned. To determine
    /// how big the buffer must be, use `write_to_len`.
    fn write_to<E: Endian>(
        &self,
        mut dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("transition table"));
        }
        dst = &mut dst[..nwrite];

        // write state count
        // Unwrap is OK since number of states is guaranteed to fit in a u32.
        E::write_u32(u32::try_from(self.count()).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];

        // write state stride (as power of 2)
        // Unwrap is OK since stride2 is guaranteed to be <= 9.
        E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];

        // write byte class map
        let n = self.classes.write_to(dst)?;
        dst = &mut dst[n..];

        // write actual transitions
        for &sid in self.table() {
            let n = bytes::write_state_id::<E>(sid, &mut dst);
            dst = &mut dst[n..];
        }
        Ok(nwrite)
    }

    /// Returns the number of bytes the serialized form of this transition
    /// table will use.
    fn write_to_len(&self) -> usize {
        size_of::<u32>()   // state count
        + size_of::<u32>() // stride2
        + self.classes.write_to_len()
        + (self.table().len() * StateID::SIZE)
    }

    /// Validates that every state ID in this transition table is valid.
    ///
    /// That is, every state ID can be used to correctly index a state in this
    /// table.
    fn validate(&self) -> Result<(), DeserializeError> {
        for state in self.states() {
            for (_, to) in state.transitions() {
                if !self.is_valid(to) {
                    return Err(DeserializeError::generic(
                        "found invalid state ID in transition table",
                    ));
                }
            }
        }
        Ok(())
    }

    /// Converts this transition table to a borrowed value.
    fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
        TransitionTable {
            table: self.table.as_ref(),
            classes: self.classes.clone(),
            stride2: self.stride2,
        }
    }

    /// Converts this transition table to an owned value.
    #[cfg(feature = "alloc")]
    fn to_owned(&self) -> TransitionTable<Vec<u32>> {
        TransitionTable {
            table: self.table.as_ref().to_vec(),
            classes: self.classes.clone(),
            stride2: self.stride2,
        }
    }

    /// Return the state for the given ID. If the given ID is not valid, then
    /// this panics.
    fn state(&self, id: StateID) -> State<'_> {
        assert!(self.is_valid(id));

        let i = id.as_usize();
        State {
            id,
            stride2: self.stride2,
            transitions: &self.table()[i..i + self.alphabet_len()],
        }
    }

    /// Returns an iterator over all states in this transition table.
    ///
    /// This iterator yields a tuple for each state. The first element of the
    /// tuple corresponds to a state's identifier, and the second element
    /// corresponds to the state itself (comprised of its transitions).
    fn states(&self) -> StateIter<'_, T> {
        StateIter {
            tt: self,
            it: self.table().chunks(self.stride()).enumerate(),
        }
    }

    /// Convert a state identifier to an index to a state (in the range
    /// 0..self.count()).
    ///
    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
    /// to some other information (such as a remapped state ID).
    ///
    /// If the given ID is not valid, then this may panic or produce an
    /// incorrect index.
    fn to_index(&self, id: StateID) -> usize {
        id.as_usize() >> self.stride2
    }

    /// Convert an index to a state (in the range 0..self.count()) to an actual
    /// state identifier.
    ///
    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
    /// to some other information (such as a remapped state ID).
    ///
    /// If the given index is not in the specified range, then this may panic
    /// or produce an incorrect state ID.
    fn from_index(&self, index: usize) -> StateID {
        // CORRECTNESS: If the given index is not valid, then it is not
        // required for this to panic or return a valid state ID.
        StateID::new_unchecked(index << self.stride2)
    }

    /// Returns the state ID for the state immediately following the one given.
    ///
    /// This does not check whether the state ID returned is invalid. In fact,
    /// if the state ID given is the last state in this DFA, then the state ID
    /// returned is guaranteed to be invalid.
    #[cfg(feature = "alloc")]
    fn next_state_id(&self, id: StateID) -> StateID {
        self.from_index(self.to_index(id).checked_add(1).unwrap())
    }

    /// Returns the state ID for the state immediately preceding the one given.
    ///
    /// If the dead ID given (which is zero), then this panics.
    #[cfg(feature = "alloc")]
    fn prev_state_id(&self, id: StateID) -> StateID {
        self.from_index(self.to_index(id).checked_sub(1).unwrap())
    }

    /// Returns the table as a slice of state IDs.
    fn table(&self) -> &[StateID] {
        let integers = self.table.as_ref();
        // SAFETY: This is safe because StateID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts(
                integers.as_ptr() as *const StateID,
                integers.len(),
            )
        }
    }

    /// Returns the total number of states in this transition table.
    ///
    /// Note that a DFA always has at least two states: the dead and quit
    /// states. In particular, the dead state always has ID 0 and is
    /// correspondingly always the first state. The dead state is never a match
    /// state.
    fn count(&self) -> usize {
        self.table().len() >> self.stride2
    }

    /// Returns the total stride for every state in this DFA. This corresponds
    /// to the total number of transitions used by each state in this DFA's
    /// transition table.
    fn stride(&self) -> usize {
        1 << self.stride2
    }

    /// Returns the total number of elements in the alphabet for this
    /// transition table. This is always less than or equal to `self.stride()`.
    /// It is only equal when the alphabet length is a power of 2. Otherwise,
    /// it is always strictly less.
    fn alphabet_len(&self) -> usize {
        self.classes.alphabet_len()
    }

    /// Returns true if and only if the given state ID is valid for this
    /// transition table. Validity in this context means that the given ID can
    /// be used as a valid offset with `self.stride()` to index this transition
    /// table.
    fn is_valid(&self, id: StateID) -> bool {
        let id = id.as_usize();
        id < self.table().len() && id % self.stride() == 0
    }

    /// Return the memory usage, in bytes, of this transition table.
    ///
    /// This does not include the size of a `TransitionTable` value itself.
    fn memory_usage(&self) -> usize {
        self.table().len() * StateID::SIZE
    }
}

#[cfg(feature = "alloc")]
impl<T: AsMut<[u32]>> TransitionTable<T> {
    /// Returns the table as a slice of state IDs.
    fn table_mut(&mut self) -> &mut [StateID] {
        let integers = self.table.as_mut();
        // SAFETY: This is safe because StateID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts_mut(
                integers.as_mut_ptr() as *mut StateID,
                integers.len(),
            )
        }
    }
}

/// The set of all possible starting states in a DFA.
///
/// The set of starting states corresponds to the possible choices one can make
/// in terms of starting a DFA. That is, before following the first transition,
/// you first need to select the state that you start in.
///
/// Normally, a DFA converted from an NFA that has a single starting state
/// would itself just have one starting state. However, our support for look
/// around generally requires more starting states. The correct starting state
/// is chosen based on certain properties of the position at which we begin
/// our search.
///
/// Before listing those properties, we first must define two terms:
///
/// * `haystack` - The bytes to execute the search. The search always starts
///   at the beginning of `haystack` and ends before or at the end of
///   `haystack`.
/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
///   must be contained within `context` such that `context` is at least as big
///   as `haystack`.
///
/// This split is crucial for dealing with look-around. For example, consider
/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
/// regex should _not_ match the haystack since `bar` does not appear at the
/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
/// haystack because `bar` is not surrounded by word boundaries. But a search
/// that does not take context into account would not permit `\B` to match
/// since the beginning of any string matches a word boundary. Similarly, a
/// search that does not take context into account when searching `^bar$` in
/// the haystack `bar` would produce a match when it shouldn't.
///
/// Thus, it follows that the starting state is chosen based on the following
/// criteria, derived from the position at which the search starts in the
/// `context` (corresponding to the start of `haystack`):
///
/// 1. If the search starts at the beginning of `context`, then the `Text`
///    start state is used. (Since `^` corresponds to
///    `hir::Anchor::StartText`.)
/// 2. If the search starts at a position immediately following a line
///    terminator, then the `Line` start state is used. (Since `(?m:^)`
///    corresponds to `hir::Anchor::StartLine`.)
/// 3. If the search starts at a position immediately following a byte
///    classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
///    start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
/// 4. Otherwise, if the search starts at a position immediately following
///    a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
///    then the `NonWordByte` start state is used. (Since `(?-u:\B)`
///    corresponds to a not-word-boundary.)
///
/// (N.B. Unicode word boundaries are not supported by the DFA because they
/// require multi-byte look-around and this is difficult to support in a DFA.)
///
/// To further complicate things, we also support constructing individual
/// anchored start states for each pattern in the DFA. (Which is required to
/// implement overlapping regexes correctly, but is also generally useful.)
/// Thus, when individual start states for each pattern are enabled, then the
/// total number of start states represented is `4 + (4 * #patterns)`, where
/// the 4 comes from each of the 4 possibilities above. The first 4 represents
/// the starting states for the entire DFA, which support searching for
/// multiple patterns simultaneously (possibly unanchored).
///
/// If individual start states are disabled, then this will only store 4
/// start states. Typically, individual start states are only enabled when
/// constructing the reverse DFA for regex matching. But they are also useful
/// for building DFAs that can search for a specific pattern or even to support
/// both anchored and unanchored searches with the same DFA.
///
/// Note though that while the start table always has either `4` or
/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
/// might be considerably smaller. That is, many of the IDs may be duplicative.
/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
/// reason to generate a unique starting state for handling word boundaries.
/// Similarly for start/end anchors.)
#[derive(Clone)]
pub(crate) struct StartTable<T> {
    /// The initial start state IDs.
    ///
    /// In practice, T is either `Vec<u32>` or `&[u32]`.
    ///
    /// The first `stride` (currently always 4) entries always correspond to
    /// the start states for the entire DFA. After that, there are
    /// `stride * patterns` state IDs, where `patterns` may be zero in the
    /// case of a DFA with no patterns or in the case where the DFA was built
    /// without enabling starting states for each pattern.
    table: T,
    /// The number of starting state IDs per pattern.
    stride: usize,
    /// The total number of patterns for which starting states are encoded.
    /// This may be zero for non-empty DFAs when the DFA was built without
    /// start states for each pattern. Thus, one cannot use this field to
    /// say how many patterns are in the DFA in all cases. It is specific to
    /// how many patterns are represented in this start table.
    patterns: usize,
}

#[cfg(feature = "alloc")]
impl StartTable<Vec<u32>> {
    /// Create a valid set of start states all pointing to the dead state.
    ///
    /// When the corresponding DFA is constructed with start states for each
    /// pattern, then `patterns` should be the number of patterns. Otherwise,
    /// it should be zero.
    ///
    /// If the total table size could exceed the allocatable limit, then this
    /// returns an error. In practice, this is unlikely to be able to occur,
    /// since it's likely that allocation would have failed long before it got
    /// to this point.
    fn dead(patterns: usize) -> Result<StartTable<Vec<u32>>, Error> {
        assert!(patterns <= PatternID::LIMIT);
        let stride = Start::count();
        let pattern_starts_len = match stride.checked_mul(patterns) {
            Some(x) => x,
            None => return Err(Error::too_many_start_states()),
        };
        let table_len = match stride.checked_add(pattern_starts_len) {
            Some(x) => x,
            None => return Err(Error::too_many_start_states()),
        };
        if table_len > core::isize::MAX as usize {
            return Err(Error::too_many_start_states());
        }
        let table = vec![DEAD.as_u32(); table_len];
        Ok(StartTable { table, stride, patterns })
    }
}

impl<'a> StartTable<&'a [u32]> {
    /// Deserialize a table of start state IDs starting at the beginning of
    /// `slice`. Upon success, return the total number of bytes read along with
    /// the table of starting state IDs.
    ///
    /// If there was a problem deserializing any part of the starting IDs,
    /// then this returns an error. Notably, if the given slice does not have
    /// the same alignment as `StateID`, then this will return an error (among
    /// other possible errors).
    ///
    /// This is guaranteed to execute in constant time.
    ///
    /// # Safety
    ///
    /// This routine is not safe because it does not check the valdity of the
    /// starting state IDs themselves. In particular, the number of starting
    /// IDs can be of variable length, so it's possible that checking their
    /// validity cannot be done in constant time. An invalid starting state
    /// ID is not safe because other code may rely on the starting IDs being
    /// correct (such as explicit bounds check elision). Therefore, an invalid
    /// start ID can lead to undefined behavior.
    ///
    /// Callers that use this function must either pass on the safety invariant
    /// or guarantee that the bytes given contain valid starting state IDs.
    /// This guarantee is upheld by the bytes written by `write_to`.
    unsafe fn from_bytes_unchecked(
        mut slice: &'a [u8],
    ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
        let slice_start = slice.as_ptr() as usize;

        let (stride, nr) =
            bytes::try_read_u32_as_usize(slice, "start table stride")?;
        slice = &slice[nr..];

        let (patterns, nr) =
            bytes::try_read_u32_as_usize(slice, "start table patterns")?;
        slice = &slice[nr..];

        if stride != Start::count() {
            return Err(DeserializeError::generic(
                "invalid starting table stride",
            ));
        }
        if patterns > PatternID::LIMIT {
            return Err(DeserializeError::generic(
                "invalid number of patterns",
            ));
        }
        let pattern_table_size =
            bytes::mul(stride, patterns, "invalid pattern count")?;
        // Our start states always start with a single stride of start states
        // for the entire automaton which permit it to match any pattern. What
        // follows it are an optional set of start states for each pattern.
        let start_state_count = bytes::add(
            stride,
            pattern_table_size,
            "invalid 'any' pattern starts size",
        )?;
        let table_bytes_len = bytes::mul(
            start_state_count,
            StateID::SIZE,
            "pattern table bytes length",
        )?;
        bytes::check_slice_len(slice, table_bytes_len, "start ID table")?;
        bytes::check_alignment::<StateID>(slice)?;
        let table_bytes = &slice[..table_bytes_len];
        slice = &slice[table_bytes_len..];
        // SAFETY: Since StateID is always representable as a u32, all we need
        // to do is ensure that we have the proper length and alignment. We've
        // checked both above, so the cast below is safe.
        //
        // N.B. This is the only not-safe code in this function, so we mark
        // it explicitly to call it out, even though it is technically
        // superfluous.
        #[allow(unused_unsafe)]
        let table = unsafe {
            core::slice::from_raw_parts(
                table_bytes.as_ptr() as *const u32,
                start_state_count,
            )
        };
        let st = StartTable { table, stride, patterns };
        Ok((st, slice.as_ptr() as usize - slice_start))
    }
}

impl<T: AsRef<[u32]>> StartTable<T> {
    /// Writes a serialized form of this start table to the buffer given. If
    /// the buffer is too small, then an error is returned. To determine how
    /// big the buffer must be, use `write_to_len`.
    fn write_to<E: Endian>(
        &self,
        mut dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small(
                "starting table ids",
            ));
        }
        dst = &mut dst[..nwrite];

        // write stride
        // Unwrap is OK since the stride is always 4 (currently).
        E::write_u32(u32::try_from(self.stride).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];
        // write pattern count
        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
        E::write_u32(u32::try_from(self.patterns).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];
        // write start IDs
        for &sid in self.table() {
            let n = bytes::write_state_id::<E>(sid, &mut dst);
            dst = &mut dst[n..];
        }
        Ok(nwrite)
    }

    /// Returns the number of bytes the serialized form of this start ID table
    /// will use.
    fn write_to_len(&self) -> usize {
        size_of::<u32>()   // stride
        + size_of::<u32>() // # patterns
        + (self.table().len() * StateID::SIZE)
    }

    /// Validates that every state ID in this start table is valid by checking
    /// it against the given transition table (which must be for the same DFA).
    ///
    /// That is, every state ID can be used to correctly index a state.
    fn validate(
        &self,
        tt: &TransitionTable<T>,
    ) -> Result<(), DeserializeError> {
        for &id in self.table() {
            if !tt.is_valid(id) {
                return Err(DeserializeError::generic(
                    "found invalid starting state ID",
                ));
            }
        }
        Ok(())
    }

    /// Converts this start list to a borrowed value.
    fn as_ref(&self) -> StartTable<&'_ [u32]> {
        StartTable {
            table: self.table.as_ref(),
            stride: self.stride,
            patterns: self.patterns,
        }
    }

    /// Converts this start list to an owned value.
    #[cfg(feature = "alloc")]
    fn to_owned(&self) -> StartTable<Vec<u32>> {
        StartTable {
            table: self.table.as_ref().to_vec(),
            stride: self.stride,
            patterns: self.patterns,
        }
    }

    /// Return the start state for the given start index and pattern ID. If the
    /// pattern ID is None, then the corresponding start state for the entire
    /// DFA is returned. If the pattern ID is not None, then the corresponding
    /// starting state for the given pattern is returned. If this start table
    /// does not have individual starting states for each pattern, then this
    /// panics.
    fn start(&self, index: Start, pattern_id: Option<PatternID>) -> StateID {
        let start_index = index.as_usize();
        let index = match pattern_id {
            None => start_index,
            Some(pid) => {
                let pid = pid.as_usize();
                assert!(pid < self.patterns, "invalid pattern ID {:?}", pid);
                self.stride + (self.stride * pid) + start_index
            }
        };
        self.table()[index]
    }

    /// Returns an iterator over all start state IDs in this table.
    ///
    /// Each item is a triple of: start state ID, the start state type and the
    /// pattern ID (if any).
    fn iter(&self) -> StartStateIter<'_> {
        StartStateIter { st: self.as_ref(), i: 0 }
    }

    /// Returns the table as a slice of state IDs.
    fn table(&self) -> &[StateID] {
        let integers = self.table.as_ref();
        // SAFETY: This is safe because StateID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts(
                integers.as_ptr() as *const StateID,
                integers.len(),
            )
        }
    }

    /// Return the memory usage, in bytes, of this start list.
    ///
    /// This does not include the size of a `StartList` value itself.
    fn memory_usage(&self) -> usize {
        self.table().len() * StateID::SIZE
    }
}

#[cfg(feature = "alloc")]
impl<T: AsMut<[u32]>> StartTable<T> {
    /// Set the start state for the given index and pattern.
    ///
    /// If the pattern ID or state ID are not valid, then this will panic.
    fn set_start(
        &mut self,
        index: Start,
        pattern_id: Option<PatternID>,
        id: StateID,
    ) {
        let start_index = index.as_usize();
        let index = match pattern_id {
            None => start_index,
            Some(pid) => self
                .stride
                .checked_mul(pid.as_usize())
                .unwrap()
                .checked_add(self.stride)
                .unwrap()
                .checked_add(start_index)
                .unwrap(),
        };
        self.table_mut()[index] = id;
    }

    /// Returns the table as a mutable slice of state IDs.
    fn table_mut(&mut self) -> &mut [StateID] {
        let integers = self.table.as_mut();
        // SAFETY: This is safe because StateID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts_mut(
                integers.as_mut_ptr() as *mut StateID,
                integers.len(),
            )
        }
    }
}

/// An iterator over start state IDs.
///
/// This iterator yields a triple of start state ID, the start state type
/// and the pattern ID (if any). The pattern ID is None for start states
/// corresponding to the entire DFA and non-None for start states corresponding
/// to a specific pattern. The latter only occurs when the DFA is compiled with
/// start states for each pattern.
pub(crate) struct StartStateIter<'a> {
    st: StartTable<&'a [u32]>,
    i: usize,
}

impl<'a> Iterator for StartStateIter<'a> {
    type Item = (StateID, Start, Option<PatternID>);

    fn next(&mut self) -> Option<(StateID, Start, Option<PatternID>)> {
        let i = self.i;
        let table = self.st.table();
        if i >= table.len() {
            return None;
        }
        self.i += 1;

        // This unwrap is okay since the stride of the starting state table
        // must always match the number of start state types.
        let start_type = Start::from_usize(i % self.st.stride).unwrap();
        let pid = if i < self.st.stride {
            None
        } else {
            Some(
                PatternID::new((i - self.st.stride) / self.st.stride).unwrap(),
            )
        };
        Some((table[i], start_type, pid))
    }
}

/// This type represents that patterns that should be reported whenever a DFA
/// enters a match state. This structure exists to support DFAs that search for
/// matches for multiple regexes.
///
/// This structure relies on the fact that all match states in a DFA occur
/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
/// detailed breakdown of the representation.) Namely, when a match occurs, we
/// know its state ID. Since we know the start and end of the contiguous region
/// of match states, we can use that to compute the position at which the match
/// state occurs. That in turn is used as an offset into this structure.
#[derive(Clone, Debug)]
struct MatchStates<T> {
    /// Slices is a flattened sequence of pairs, where each pair points to a
    /// sub-slice of pattern_ids. The first element of the pair is an offset
    /// into pattern_ids and the second element of the pair is the number
    /// of 32-bit pattern IDs starting at that position. That is, each pair
    /// corresponds to a single DFA match state and its corresponding match
    /// IDs. The number of pairs always corresponds to the number of distinct
    /// DFA match states.
    ///
    /// In practice, T is either Vec<u32> or &[u32].
    slices: T,
    /// A flattened sequence of pattern IDs for each DFA match state. The only
    /// way to correctly read this sequence is indirectly via `slices`.
    ///
    /// In practice, T is either Vec<u32> or &[u32].
    pattern_ids: T,
    /// The total number of unique patterns represented by these match states.
    patterns: usize,
}

impl<'a> MatchStates<&'a [u32]> {
    unsafe fn from_bytes_unchecked(
        mut slice: &'a [u8],
    ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
        let slice_start = slice.as_ptr() as usize;

        // Read the total number of match states.
        let (count, nr) =
            bytes::try_read_u32_as_usize(slice, "match state count")?;
        slice = &slice[nr..];

        // Read the slice start/length pairs.
        let pair_count = bytes::mul(2, count, "match state offset pairs")?;
        let slices_bytes_len = bytes::mul(
            pair_count,
            PatternID::SIZE,
            "match state slice offset byte length",
        )?;
        bytes::check_slice_len(slice, slices_bytes_len, "match state slices")?;
        bytes::check_alignment::<PatternID>(slice)?;
        let slices_bytes = &slice[..slices_bytes_len];
        slice = &slice[slices_bytes_len..];
        // SAFETY: Since PatternID is always representable as a u32, all we
        // need to do is ensure that we have the proper length and alignment.
        // We've checked both above, so the cast below is safe.
        //
        // N.B. This is one of the few not-safe snippets in this function, so
        // we mark it explicitly to call it out, even though it is technically
        // superfluous.
        #[allow(unused_unsafe)]
        let slices = unsafe {
            core::slice::from_raw_parts(
                slices_bytes.as_ptr() as *const u32,
                pair_count,
            )
        };

        // Read the total number of unique pattern IDs (which is always 1 more
        // than the maximum pattern ID in this automaton, since pattern IDs are
        // handed out contiguously starting at 0).
        let (patterns, nr) =
            bytes::try_read_u32_as_usize(slice, "pattern count")?;
        slice = &slice[nr..];

        // Now read the pattern ID count. We don't need to store this
        // explicitly, but we need it to know how many pattern IDs to read.
        let (idcount, nr) =
            bytes::try_read_u32_as_usize(slice, "pattern ID count")?;
        slice = &slice[nr..];

        // Read the actual pattern IDs.
        let pattern_ids_len =
            bytes::mul(idcount, PatternID::SIZE, "pattern ID byte length")?;
        bytes::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
        bytes::check_alignment::<PatternID>(slice)?;
        let pattern_ids_bytes = &slice[..pattern_ids_len];
        slice = &slice[pattern_ids_len..];
        // SAFETY: Since PatternID is always representable as a u32, all we
        // need to do is ensure that we have the proper length and alignment.
        // We've checked both above, so the cast below is safe.
        //
        // N.B. This is one of the few not-safe snippets in this function, so
        // we mark it explicitly to call it out, even though it is technically
        // superfluous.
        #[allow(unused_unsafe)]
        let pattern_ids = unsafe {
            core::slice::from_raw_parts(
                pattern_ids_bytes.as_ptr() as *const u32,
                idcount,
            )
        };

        let ms = MatchStates { slices, pattern_ids, patterns };
        Ok((ms, slice.as_ptr() as usize - slice_start))
    }
}

#[cfg(feature = "alloc")]
impl MatchStates<Vec<u32>> {
    fn empty(pattern_count: usize) -> MatchStates<Vec<u32>> {
        assert!(pattern_count <= PatternID::LIMIT);
        MatchStates {
            slices: vec![],
            pattern_ids: vec![],
            patterns: pattern_count,
        }
    }

    fn new(
        matches: &BTreeMap<StateID, Vec<PatternID>>,
        pattern_count: usize,
    ) -> Result<MatchStates<Vec<u32>>, Error> {
        let mut m = MatchStates::empty(pattern_count);
        for (_, pids) in matches.iter() {
            let start = PatternID::new(m.pattern_ids.len())
                .map_err(|_| Error::too_many_match_pattern_ids())?;
            m.slices.push(start.as_u32());
            // This is always correct since the number of patterns in a single
            // match state can never exceed maximum number of allowable
            // patterns. Why? Because a pattern can only appear once in a
            // particular match state, by construction. (And since our pattern
            // ID limit is one less than u32::MAX, we're guaranteed that the
            // length fits in a u32.)
            m.slices.push(u32::try_from(pids.len()).unwrap());
            for &pid in pids {
                m.pattern_ids.push(pid.as_u32());
            }
        }
        m.patterns = pattern_count;
        Ok(m)
    }

    fn new_with_map(
        &self,
        matches: &BTreeMap<StateID, Vec<PatternID>>,
    ) -> Result<MatchStates<Vec<u32>>, Error> {
        MatchStates::new(matches, self.patterns)
    }
}

impl<T: AsRef<[u32]>> MatchStates<T> {
    /// Writes a serialized form of these match states to the buffer given. If
    /// the buffer is too small, then an error is returned. To determine how
    /// big the buffer must be, use `write_to_len`.
    fn write_to<E: Endian>(
        &self,
        mut dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("match states"));
        }
        dst = &mut dst[..nwrite];

        // write state ID count
        // Unwrap is OK since number of states is guaranteed to fit in a u32.
        E::write_u32(u32::try_from(self.count()).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];

        // write slice offset pairs
        for &pid in self.slices() {
            let n = bytes::write_pattern_id::<E>(pid, &mut dst);
            dst = &mut dst[n..];
        }

        // write unique pattern ID count
        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
        E::write_u32(u32::try_from(self.patterns).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];

        // write pattern ID count
        // Unwrap is OK since we check at construction (and deserialization)
        // that the number of patterns is representable as a u32.
        E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
        dst = &mut dst[size_of::<u32>()..];

        // write pattern IDs
        for &pid in self.pattern_ids() {
            let n = bytes::write_pattern_id::<E>(pid, &mut dst);
            dst = &mut dst[n..];
        }

        Ok(nwrite)
    }

    /// Returns the number of bytes the serialized form of this transition
    /// table will use.
    fn write_to_len(&self) -> usize {
        size_of::<u32>()   // match state count
        + (self.slices().len() * PatternID::SIZE)
        + size_of::<u32>() // unique pattern ID count
        + size_of::<u32>() // pattern ID count
        + (self.pattern_ids().len() * PatternID::SIZE)
    }

    /// Valides that the match state info is itself internally consistent and
    /// consistent with the recorded match state region in the given DFA.
    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
        if self.count() != dfa.special.match_len(dfa.stride()) {
            return Err(DeserializeError::generic(
                "match state count mismatch",
            ));
        }
        for si in 0..self.count() {
            let start = self.slices()[si * 2].as_usize();
            let len = self.slices()[si * 2 + 1].as_usize();
            if start >= self.pattern_ids().len() {
                return Err(DeserializeError::generic(
                    "invalid pattern ID start offset",
                ));
            }
            if start + len > self.pattern_ids().len() {
                return Err(DeserializeError::generic(
                    "invalid pattern ID length",
                ));
            }
            for mi in 0..len {
                let pid = self.pattern_id(si, mi);
                if pid.as_usize() >= self.patterns {
                    return Err(DeserializeError::generic(
                        "invalid pattern ID",
                    ));
                }
            }
        }
        Ok(())
    }

    /// Converts these match states back into their map form. This is useful
    /// when shuffling states, as the normal MatchStates representation is not
    /// amenable to easy state swapping. But with this map, to swap id1 and
    /// id2, all you need to do is:
    ///
    /// if let Some(pids) = map.remove(&id1) {
    ///     map.insert(id2, pids);
    /// }
    ///
    /// Once shuffling is done, use MatchStates::new to convert back.
    #[cfg(feature = "alloc")]
    fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
        let mut map = BTreeMap::new();
        for i in 0..self.count() {
            let mut pids = vec![];
            for j in 0..self.pattern_len(i) {
                pids.push(self.pattern_id(i, j));
            }
            map.insert(self.match_state_id(dfa, i), pids);
        }
        map
    }

    /// Converts these match states to a borrowed value.
    fn as_ref(&self) -> MatchStates<&'_ [u32]> {
        MatchStates {
            slices: self.slices.as_ref(),
            pattern_ids: self.pattern_ids.as_ref(),
            patterns: self.patterns,
        }
    }

    /// Converts these match states to an owned value.
    #[cfg(feature = "alloc")]
    fn to_owned(&self) -> MatchStates<Vec<u32>> {
        MatchStates {
            slices: self.slices.as_ref().to_vec(),
            pattern_ids: self.pattern_ids.as_ref().to_vec(),
            patterns: self.patterns,
        }
    }

    /// Returns the match state ID given the match state index. (Where the
    /// first match state corresponds to index 0.)
    ///
    /// This panics if there is no match state at the given index.
    fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
        assert!(dfa.special.matches(), "no match states to index");
        // This is one of the places where we rely on the fact that match
        // states are contiguous in the transition table. Namely, that the
        // first match state ID always corresponds to dfa.special.min_start.
        // From there, since we know the stride, we can compute the ID of any
        // match state given its index.
        let stride2 = u32::try_from(dfa.stride2()).unwrap();
        let offset = index.checked_shl(stride2).unwrap();
        let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
        let sid = StateID::new(id).unwrap();
        assert!(dfa.is_match_state(sid));
        sid
    }

    /// Returns the pattern ID at the given match index for the given match
    /// state.
    ///
    /// The match state index is the state index minus the state index of the
    /// first match state in the DFA.
    ///
    /// The match index is the index of the pattern ID for the given state.
    /// The index must be less than `self.pattern_len(state_index)`.
    fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
        self.pattern_id_slice(state_index)[match_index]
    }

    /// Returns the number of patterns in the given match state.
    ///
    /// The match state index is the state index minus the state index of the
    /// first match state in the DFA.
    fn pattern_len(&self, state_index: usize) -> usize {
        self.slices()[state_index * 2 + 1].as_usize()
    }

    /// Returns all of the pattern IDs for the given match state index.
    ///
    /// The match state index is the state index minus the state index of the
    /// first match state in the DFA.
    fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
        let start = self.slices()[state_index * 2].as_usize();
        let len = self.pattern_len(state_index);
        &self.pattern_ids()[start..start + len]
    }

    /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
    fn slices(&self) -> &[PatternID] {
        let integers = self.slices.as_ref();
        // SAFETY: This is safe because PatternID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts(
                integers.as_ptr() as *const PatternID,
                integers.len(),
            )
        }
    }

    /// Returns the total number of match states.
    fn count(&self) -> usize {
        assert_eq!(0, self.slices().len() % 2);
        self.slices().len() / 2
    }

    /// Returns the pattern ID slice of u32 as a slice of PatternID.
    fn pattern_ids(&self) -> &[PatternID] {
        let integers = self.pattern_ids.as_ref();
        // SAFETY: This is safe because PatternID is guaranteed to be
        // representable as a u32.
        unsafe {
            core::slice::from_raw_parts(
                integers.as_ptr() as *const PatternID,
                integers.len(),
            )
        }
    }

    /// Return the memory usage, in bytes, of these match pairs.
    fn memory_usage(&self) -> usize {
        (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
    }
}

/// An iterator over all states in a DFA.
///
/// This iterator yields a tuple for each state. The first element of the
/// tuple corresponds to a state's identifier, and the second element
/// corresponds to the state itself (comprised of its transitions).
///
/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
/// the type of the transition table itself.
pub(crate) struct StateIter<'a, T> {
    tt: &'a TransitionTable<T>,
    it: iter::Enumerate<slice::Chunks<'a, StateID>>,
}

impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
    type Item = State<'a>;

    fn next(&mut self) -> Option<State<'a>> {
        self.it.next().map(|(index, _)| {
            let id = self.tt.from_index(index);
            self.tt.state(id)
        })
    }
}

/// An immutable representation of a single DFA state.
///
/// `'a` correspondings to the lifetime of a DFA's transition table.
pub(crate) struct State<'a> {
    id: StateID,
    stride2: usize,
    transitions: &'a [StateID],
}

impl<'a> State<'a> {
    /// Return an iterator over all transitions in this state. This yields
    /// a number of transitions equivalent to the alphabet length of the
    /// corresponding DFA.
    ///
    /// Each transition is represented by a tuple. The first element is
    /// the input byte for that transition and the second element is the
    /// transitions itself.
    pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
        StateTransitionIter {
            len: self.transitions.len(),
            it: self.transitions.iter().enumerate(),
        }
    }

    /// Return an iterator over a sparse representation of the transitions in
    /// this state. Only non-dead transitions are returned.
    ///
    /// The "sparse" representation in this case corresponds to a sequence of
    /// triples. The first two elements of the triple comprise an inclusive
    /// byte range while the last element corresponds to the transition taken
    /// for all bytes in the range.
    ///
    /// This is somewhat more condensed than the classical sparse
    /// representation (where you have an element for every non-dead
    /// transition), but in practice, checking if a byte is in a range is very
    /// cheap and using ranges tends to conserve quite a bit more space.
    pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
        StateSparseTransitionIter { dense: self.transitions(), cur: None }
    }

    /// Returns the identifier for this state.
    pub(crate) fn id(&self) -> StateID {
        self.id
    }

    /// Analyzes this state to determine whether it can be accelerated. If so,
    /// it returns an accelerator that contains at least one byte.
    #[cfg(feature = "alloc")]
    fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
        // We just try to add bytes to our accelerator. Once adding fails
        // (because we've added too many bytes), then give up.
        let mut accel = Accel::new();
        for (class, id) in self.transitions() {
            if id == self.id() {
                continue;
            }
            for unit in classes.elements(class) {
                if let Some(byte) = unit.as_u8() {
                    if !accel.add(byte) {
                        return None;
                    }
                }
            }
        }
        if accel.is_empty() {
            None
        } else {
            Some(accel)
        }
    }
}

impl<'a> fmt::Debug for State<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for (i, (start, end, id)) in self.sparse_transitions().enumerate() {
            let index = if f.alternate() {
                id.as_usize()
            } else {
                id.as_usize() >> self.stride2
            };
            if i > 0 {
                write!(f, ", ")?;
            }
            if start == end {
                write!(f, "{:?} => {:?}", start, index)?;
            } else {
                write!(f, "{:?}-{:?} => {:?}", start, end, index)?;
            }
        }
        Ok(())
    }
}

/// A mutable representation of a single DFA state.
///
/// `'a` correspondings to the lifetime of a DFA's transition table.
#[cfg(feature = "alloc")]
pub(crate) struct StateMut<'a> {
    id: StateID,
    stride2: usize,
    transitions: &'a mut [StateID],
}

#[cfg(feature = "alloc")]
impl<'a> StateMut<'a> {
    /// Return an iterator over all transitions in this state. This yields
    /// a number of transitions equivalent to the alphabet length of the
    /// corresponding DFA.
    ///
    /// Each transition is represented by a tuple. The first element is the
    /// input byte for that transition and the second element is a mutable
    /// reference to the transition itself.
    pub(crate) fn iter_mut(&mut self) -> StateTransitionIterMut<'_> {
        StateTransitionIterMut {
            len: self.transitions.len(),
            it: self.transitions.iter_mut().enumerate(),
        }
    }
}

#[cfg(feature = "alloc")]
impl<'a> fmt::Debug for StateMut<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(
            &State {
                id: self.id,
                stride2: self.stride2,
                transitions: self.transitions,
            },
            f,
        )
    }
}

/// An iterator over all transitions in a single DFA state. This yields
/// a number of transitions equivalent to the alphabet length of the
/// corresponding DFA.
///
/// Each transition is represented by a tuple. The first element is the input
/// byte for that transition and the second element is the transition itself.
#[derive(Debug)]
pub(crate) struct StateTransitionIter<'a> {
    len: usize,
    it: iter::Enumerate<slice::Iter<'a, StateID>>,
}

impl<'a> Iterator for StateTransitionIter<'a> {
    type Item = (alphabet::Unit, StateID);

    fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
        self.it.next().map(|(i, &id)| {
            let unit = if i + 1 == self.len {
                alphabet::Unit::eoi(i)
            } else {
                let b = u8::try_from(i)
                    .expect("raw byte alphabet is never exceeded");
                alphabet::Unit::u8(b)
            };
            (unit, id)
        })
    }
}

/// A mutable iterator over all transitions in a DFA state.
///
/// Each transition is represented by a tuple. The first element is the
/// input byte for that transition and the second element is a mutable
/// reference to the transition itself.
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub(crate) struct StateTransitionIterMut<'a> {
    len: usize,
    it: iter::Enumerate<slice::IterMut<'a, StateID>>,
}

#[cfg(feature = "alloc")]
impl<'a> Iterator for StateTransitionIterMut<'a> {
    type Item = (alphabet::Unit, &'a mut StateID);

    fn next(&mut self) -> Option<(alphabet::Unit, &'a mut StateID)> {
        self.it.next().map(|(i, id)| {
            let unit = if i + 1 == self.len {
                alphabet::Unit::eoi(i)
            } else {
                let b = u8::try_from(i)
                    .expect("raw byte alphabet is never exceeded");
                alphabet::Unit::u8(b)
            };
            (unit, id)
        })
    }
}

/// An iterator over all non-DEAD transitions in a single DFA state using a
/// sparse representation.
///
/// Each transition is represented by a triple. The first two elements of the
/// triple comprise an inclusive byte range while the last element corresponds
/// to the transition taken for all bytes in the range.
///
/// As a convenience, this always returns `alphabet::Unit` values of the same
/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
/// byte) and (EOI, EOI) values are yielded.
#[derive(Debug)]
pub(crate) struct StateSparseTransitionIter<'a> {
    dense: StateTransitionIter<'a>,
    cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
}

impl<'a> Iterator for StateSparseTransitionIter<'a> {
    type Item = (alphabet::Unit, alphabet::Unit, StateID);

    fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
        while let Some((unit, next)) = self.dense.next() {
            let (prev_start, prev_end, prev_next) = match self.cur {
                Some(t) => t,
                None => {
                    self.cur = Some((unit, unit, next));
                    continue;
                }
            };
            if prev_next == next && !unit.is_eoi() {
                self.cur = Some((prev_start, unit, prev_next));
            } else {
                self.cur = Some((unit, unit, next));
                if prev_next != DEAD {
                    return Some((prev_start, prev_end, prev_next));
                }
            }
        }
        if let Some((start, end, next)) = self.cur.take() {
            if next != DEAD {
                return Some((start, end, next));
            }
        }
        None
    }
}

/// An iterator over pattern IDs for a single match state.
#[derive(Debug)]
pub(crate) struct PatternIDIter<'a>(slice::Iter<'a, PatternID>);

impl<'a> Iterator for PatternIDIter<'a> {
    type Item = PatternID;

    fn next(&mut self) -> Option<PatternID> {
        self.0.next().copied()
    }
}

/// Remapper is an abstraction the manages the remapping of state IDs in a
/// dense DFA. This is useful when one wants to shuffle states into different
/// positions in the DFA.
///
/// One of the key complexities this manages is the ability to correctly move
/// one state multiple times.
///
/// Once shuffling is complete, `remap` should be called, which will rewrite
/// all pertinent transitions to updated state IDs.
#[cfg(feature = "alloc")]
#[derive(Debug)]
struct Remapper {
    /// A map from the index of a state to its pre-multiplied identifier.
    ///
    /// When a state is swapped with another, then their corresponding
    /// locations in this map are also swapped. Thus, its new position will
    /// still point to its old pre-multiplied StateID.
    ///
    /// While there is a bit more to it, this then allows us to rewrite the
    /// state IDs in a DFA's transition table in a single pass. This is done
    /// by iterating over every ID in this map, then iterating over each
    /// transition for the state at that ID and re-mapping the transition from
    /// `old_id` to `map[dfa.to_index(old_id)]`. That is, we find the position
    /// in this map where `old_id` *started*, and set it to where it ended up
    /// after all swaps have been completed.
    map: Vec<StateID>,
}

#[cfg(feature = "alloc")]
impl Remapper {
    fn from_dfa(dfa: &OwnedDFA) -> Remapper {
        Remapper {
            map: (0..dfa.state_count()).map(|i| dfa.from_index(i)).collect(),
        }
    }

    fn swap(&mut self, dfa: &mut OwnedDFA, id1: StateID, id2: StateID) {
        dfa.swap_states(id1, id2);
        self.map.swap(dfa.to_index(id1), dfa.to_index(id2));
    }

    fn remap(mut self, dfa: &mut OwnedDFA) {
        // Update the map to account for states that have been swapped
        // multiple times. For example, if (A, C) and (C, G) are swapped, then
        // transitions previously pointing to A should now point to G. But if
        // we don't update our map, they will erroneously be set to C. All we
        // do is follow the swaps in our map until we see our original state
        // ID.
        let oldmap = self.map.clone();
        for i in 0..dfa.state_count() {
            let cur_id = dfa.from_index(i);
            let mut new = oldmap[i];
            if cur_id == new {
                continue;
            }
            loop {
                let id = oldmap[dfa.to_index(new)];
                if cur_id == id {
                    self.map[i] = new;
                    break;
                }
                new = id;
            }
        }

        // To work around the borrow checker for converting state IDs to
        // indices. We cannot borrow self while mutably iterating over a
        // state's transitions. Otherwise, we'd just use dfa.to_index(..).
        let stride2 = dfa.stride2();
        let to_index = |id: StateID| -> usize { id.as_usize() >> stride2 };

        // Now that we've finished shuffling, we need to remap all of our
        // transitions. We don't need to handle re-mapping accelerated states
        // since `accels` is only populated after shuffling.
        for &id in self.map.iter() {
            for (_, next_id) in dfa.state_mut(id).iter_mut() {
                *next_id = self.map[to_index(*next_id)];
            }
        }
        for start_id in dfa.st.table_mut().iter_mut() {
            *start_id = self.map[to_index(*start_id)];
        }
    }
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use super::*;

    #[test]
    fn errors_with_unicode_word_boundary() {
        let pattern = r"\b";
        assert!(Builder::new().build(pattern).is_err());
    }

    #[test]
    fn roundtrip_never_match() {
        let dfa = DFA::never_match().unwrap();
        let (buf, _) = dfa.to_bytes_native_endian();
        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;

        assert_eq!(None, dfa.find_leftmost_fwd(b"foo12345").unwrap());
    }

    #[test]
    fn roundtrip_always_match() {
        use crate::HalfMatch;

        let dfa = DFA::always_match().unwrap();
        let (buf, _) = dfa.to_bytes_native_endian();
        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;

        assert_eq!(
            Some(HalfMatch::must(0, 0)),
            dfa.find_leftmost_fwd(b"foo12345").unwrap()
        );
    }
}