1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*!
A DFA-backed `Regex`.
This module provides [`Regex`], which is defined generically over the
[`Automaton`] trait. A `Regex` implements convenience routines you might have
come to expect, such as finding the start/end of a match and iterating over
all non-overlapping matches. This `Regex` type is limited in its capabilities
to what a DFA can provide. Therefore, APIs involving capturing groups, for
example, are not provided.
Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that
finds the end offset of a match, where as the other is a "reverse" DFA that
find the start offset of a match.
See the [parent module](crate::dfa) for examples.
*/
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use crate::{
dfa::automaton::{Automaton, OverlappingState},
util::prefilter::{self, Prefilter},
MatchError, MultiMatch,
};
#[cfg(feature = "alloc")]
use crate::{
dfa::{dense, error::Error, sparse},
nfa::thompson,
util::matchtypes::MatchKind,
};
// When the alloc feature is enabled, the regex type sets its A type parameter
// to default to an owned dense DFA. But without alloc, we set no default. This
// makes things a lot more convenient in the common case, since writing out the
// DFA types is pretty annoying.
//
// Since we have two different definitions but only want to write one doc
// string, we use a macro to capture the doc and other attributes once and then
// repeat them for each definition.
macro_rules! define_regex_type {
($(#[$doc:meta])*) => {
#[cfg(feature = "alloc")]
$(#[$doc])*
pub struct Regex<A = dense::OwnedDFA, P = prefilter::None> {
prefilter: Option<P>,
forward: A,
reverse: A,
utf8: bool,
}
#[cfg(not(feature = "alloc"))]
$(#[$doc])*
pub struct Regex<A, P = prefilter::None> {
prefilter: Option<P>,
forward: A,
reverse: A,
utf8: bool,
}
};
}
define_regex_type!(
/// A regular expression that uses deterministic finite automata for fast
/// searching.
///
/// A regular expression is comprised of two DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of
/// a match while the reverse DFA is responsible for detecting the start
/// of a match. Thus, in order to find the bounds of any given match, a
/// forward search must first be run followed by a reverse search. A match
/// found by the forward DFA guarantees that the reverse DFA will also find
/// a match.
///
/// The type of the DFA used by a `Regex` corresponds to the `A` type
/// parameter, which must satisfy the [`Automaton`] trait. Typically,
/// `A` is either a [`dense::DFA`](crate::dfa::dense::DFA) or a
/// [`sparse::DFA`](crate::dfa::sparse::DFA), where dense DFAs use more
/// memory but search faster, while sparse DFAs use less memory but search
/// more slowly.
///
/// By default, a regex's automaton type parameter is set to
/// `dense::DFA<Vec<u32>>` when the `alloc` feature is enabled. For most
/// in-memory work loads, this is the most convenient type that gives the
/// best search performance. When the `alloc` feature is disabled, no
/// default type is used.
///
/// A `Regex` also has a `P` type parameter, which is used to select the
/// prefilter used during search. By default, no prefilter is enabled by
/// setting the type to default to [`prefilter::None`]. A prefilter can be
/// enabled by using the [`Regex::prefilter`] method.
///
/// # When should I use this?
///
/// Generally speaking, if you can afford the overhead of building a full
/// DFA for your regex, and you don't need things like capturing groups,
/// then this is a good choice if you're looking to optimize for matching
/// speed. Note however that its speed may be worse than a general purpose
/// regex engine if you don't select a good [prefilter].
///
/// # Earliest vs Leftmost vs Overlapping
///
/// The search routines exposed on a `Regex` reflect three different ways
/// of searching:
///
/// * "earliest" means to stop as soon as a match has been detected.
/// * "leftmost" means to continue matching until the underlying
/// automaton cannot advance. This reflects "standard" searching you
/// might be used to in other regex engines. e.g., This permits
/// non-greedy and greedy searching to work as you would expect.
/// * "overlapping" means to find all possible matches, even if they
/// overlap.
///
/// Generally speaking, when doing an overlapping search, you'll want to
/// build your regex DFAs with [`MatchKind::All`] semantics. Using
/// [`MatchKind::LeftmostFirst`] semantics with overlapping searches is
/// likely to lead to odd behavior since `LeftmostFirst` specifically omits
/// some matches that can never be reported due to its semantics.
///
/// The following example shows the differences between how these different
/// types of searches impact looking for matches of `[a-z]+` in the
/// haystack `abc`.
///
/// ```
/// use regex_automata::{dfa::{self, dense}, MatchKind, MultiMatch};
///
/// let pattern = r"[a-z]+";
/// let haystack = "abc".as_bytes();
///
/// // With leftmost-first semantics, we test "earliest" and "leftmost".
/// let re = dfa::regex::Builder::new()
/// .dense(dense::Config::new().match_kind(MatchKind::LeftmostFirst))
/// .build(pattern)?;
///
/// // "earliest" searching isn't impacted by greediness
/// let mut it = re.find_earliest_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 2)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 2, 3)), it.next());
/// assert_eq!(None, it.next());
///
/// // "leftmost" searching supports greediness (and non-greediness)
/// let mut it = re.find_leftmost_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next());
/// assert_eq!(None, it.next());
///
/// // For overlapping, we want "all" match kind semantics.
/// let re = dfa::regex::Builder::new()
/// .dense(dense::Config::new().match_kind(MatchKind::All))
/// .build(pattern)?;
///
/// // In the overlapping search, we find all three possible matches
/// // starting at the beginning of the haystack.
/// let mut it = re.find_overlapping_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 0, 2)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Sparse DFAs
///
/// Since a `Regex` is generic over the [`Automaton`] trait, it can be
/// used with any kind of DFA. While this crate constructs dense DFAs by
/// default, it is easy enough to build corresponding sparse DFAs, and then
/// build a regex from them:
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// // First, build a regex that uses dense DFAs.
/// let dense_re = Regex::new("foo[0-9]+")?;
///
/// // Second, build sparse DFAs from the forward and reverse dense DFAs.
/// let fwd = dense_re.forward().to_sparse()?;
/// let rev = dense_re.reverse().to_sparse()?;
///
/// // Third, build a new regex from the constituent sparse DFAs.
/// let sparse_re = Regex::builder().build_from_dfas(fwd, rev);
///
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert_eq!(true, sparse_re.is_match(b"foo123"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Alternatively, one can use a [`Builder`] to construct a sparse DFA
/// more succinctly. (Note though that dense DFAs are still constructed
/// first internally, and then converted to sparse DFAs, as in the example
/// above.)
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let sparse_re = Regex::builder().build_sparse(r"foo[0-9]+")?;
/// // A regex that uses sparse DFAs can be used just like with dense DFAs.
/// assert!(sparse_re.is_match(b"foo123"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Fallibility
///
/// In non-default configurations, the DFAs generated in this module may
/// return an error during a search. (Currently, the only way this happens
/// is if quit bytes are added or Unicode word boundaries are heuristically
/// enabled, both of which are turned off by default.) For convenience, the
/// main search routines, like [`find_leftmost`](Regex::find_leftmost),
/// will panic if an error occurs. However, if you need to use DFAs
/// which may produce an error at search time, then there are fallible
/// equivalents of all search routines. For example, for `find_leftmost`,
/// its fallible analog is [`try_find_leftmost`](Regex::try_find_leftmost).
/// The routines prefixed with `try_` return `Result<Option<MultiMatch>,
/// MatchError>`, where as the infallible routines simply return
/// `Option<MultiMatch>`.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte, and handle the error returned. This could be useful if, for
/// example, you wanted to prevent a user supplied pattern from matching
/// across a line boundary.
///
/// ```
/// use regex_automata::{dfa::{self, regex::Regex}, MatchError};
///
/// let re = Regex::builder()
/// .dense(dfa::dense::Config::new().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
///
/// let haystack = "foo\nbar".as_bytes();
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::Quit { byte: 0x0A, offset: 3 };
/// let got = re.try_find_leftmost(haystack).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
);
#[cfg(feature = "alloc")]
impl Regex {
/// Parse the given regular expression using the default configuration and
/// return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(
/// Some(MultiMatch::must(0, 3, 14)),
/// re.find_leftmost(b"zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new(pattern: &str) -> Result<Regex, Error> {
Builder::new().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "regex set."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?;
///
/// let mut it = re.find_leftmost_iter(b"abc 1 foo 4567 0 quux");
/// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 4, 5)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 6, 9)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 10, 14)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 15, 16)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 17, 21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<Regex, Error> {
Builder::new().build_many(patterns)
}
}
#[cfg(feature = "alloc")]
impl Regex<sparse::DFA<Vec<u8>>> {
/// Parse the given regular expression using the default configuration,
/// except using sparse DFAs, and return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new_sparse("foo[0-9]+bar")?;
/// assert_eq!(
/// Some(MultiMatch::must(0, 3, 14)),
/// re.find_leftmost(b"zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_sparse(
pattern: &str,
) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> {
Builder::new().build_sparse(pattern)
}
/// Like `new`, but parses multiple patterns into a single "regex set"
/// using sparse DFAs. This otherwise similarly uses the default regex
/// configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new_many_sparse(&["[a-z]+", "[0-9]+"])?;
///
/// let mut it = re.find_leftmost_iter(b"abc 1 foo 4567 0 quux");
/// assert_eq!(Some(MultiMatch::must(0, 0, 3)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 4, 5)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 6, 9)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 10, 14)), it.next());
/// assert_eq!(Some(MultiMatch::must(1, 15, 16)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 17, 21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_many_sparse<P: AsRef<str>>(
patterns: &[P],
) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> {
Builder::new().build_many_sparse(patterns)
}
}
/// Convenience routines for regex construction.
#[cfg(feature = "alloc")]
impl Regex {
/// Return a default configuration for a `Regex`.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of a regex.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode for `Regex` iteration.
/// When UTF-8 mode is disabled, the position immediately following an
/// empty match is where the next search begins, instead of the next
/// position of a UTF-8 encoded codepoint.
///
/// ```
/// use regex_automata::{dfa::regex::Regex, MultiMatch};
///
/// let re = Regex::builder()
/// .configure(Regex::config().utf8(false))
/// .build(r"")?;
/// let haystack = "a☃z".as_bytes();
/// let mut it = re.find_leftmost_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 2, 2)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 3, 3)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn config() -> Config {
Config::new()
}
/// Return a builder for configuring the construction of a `Regex`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// use regex_automata::{
/// dfa::regex::Regex,
/// nfa::thompson,
/// MultiMatch, SyntaxConfig,
/// };
///
/// let re = Regex::builder()
/// .configure(Regex::config().utf8(false))
/// .syntax(SyntaxConfig::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(MultiMatch::must(0, 1, 9));
/// let got = re.find_leftmost(haystack);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
}
/// Standard search routines for finding and iterating over matches.
impl<A: Automaton, P: Prefilter> Regex<A, P> {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_is_match`](Regex::try_is_match).
///
/// # Example
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// assert_eq!(true, re.is_match(b"foo12345bar"));
/// assert_eq!(false, re.is_match(b"foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn is_match(&self, haystack: &[u8]) -> bool {
self.is_match_at(haystack, 0, haystack.len())
}
/// Returns the first position at which a match is found.
///
/// This routine stops scanning input in precisely the same circumstances
/// as `is_match`. The key difference is that this routine returns the
/// position at which it stopped scanning input if and only if a match
/// was found. If no match is found, then `None` is returned.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_earliest`](Regex::try_find_earliest).
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// // Normally, the leftmost first match would greedily consume as many
/// // decimal digits as it could. But a match is detected as soon as one
/// // digit is seen.
/// let re = Regex::new("foo[0-9]+")?;
/// assert_eq!(
/// Some(MultiMatch::must(0, 0, 4)),
/// re.find_earliest(b"foo12345"),
/// );
///
/// // Normally, the end of the leftmost first match here would be 3,
/// // but the "earliest" match semantics detect a match earlier.
/// let re = Regex::new("abc|a")?;
/// assert_eq!(Some(MultiMatch::must(0, 0, 1)), re.find_earliest(b"abc"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_earliest(&self, haystack: &[u8]) -> Option<MultiMatch> {
self.find_earliest_at(haystack, 0, haystack.len())
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_leftmost`](Regex::try_find_leftmost).
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// // Greediness is applied appropriately when compared to find_earliest.
/// let re = Regex::new("foo[0-9]+")?;
/// assert_eq!(
/// Some(MultiMatch::must(0, 3, 11)),
/// re.find_leftmost(b"zzzfoo12345zzz"),
/// );
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the default leftmost-first match semantics demand that we find the
/// // earliest match that prefers earlier parts of the pattern over latter
/// // parts.
/// let re = Regex::new("abc|a")?;
/// assert_eq!(Some(MultiMatch::must(0, 0, 3)), re.find_leftmost(b"abc"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_leftmost(&self, haystack: &[u8]) -> Option<MultiMatch> {
self.find_leftmost_at(haystack, 0, haystack.len())
}
/// Search for the first overlapping match in `haystack`.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// In particular, callers must preserve the automaton's search state from
/// prior calls so that the implementation knows where the last match
/// occurred and which pattern was reported.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_overlapping`](Regex::try_find_overlapping).
///
/// # Example
///
/// This example shows how to run an overlapping search with multiple
/// regexes.
///
/// ```
/// use regex_automata::{dfa::{self, regex::Regex}, MatchKind, MultiMatch};
///
/// let re = Regex::builder()
/// .dense(dfa::dense::Config::new().match_kind(MatchKind::All))
/// .build_many(&[r"\w+$", r"\S+$"])?;
/// let haystack = "@foo".as_bytes();
/// let mut state = dfa::OverlappingState::start();
///
/// let expected = Some(MultiMatch::must(1, 0, 4));
/// let got = re.find_overlapping(haystack, &mut state);
/// assert_eq!(expected, got);
///
/// // The first pattern also matches at the same position, so re-running
/// // the search will yield another match. Notice also that the first
/// // pattern is returned after the second. This is because the second
/// // pattern begins its match before the first, is therefore an earlier
/// // match and is thus reported first.
/// let expected = Some(MultiMatch::must(0, 1, 4));
/// let got = re.find_overlapping(haystack, &mut state);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_overlapping(
&self,
haystack: &[u8],
state: &mut OverlappingState,
) -> Option<MultiMatch> {
self.find_overlapping_at(haystack, 0, haystack.len(), state)
}
/// Returns an iterator over all non-overlapping "earliest" matches.
///
/// Match positions are reported as soon as a match is known to occur, even
/// if the standard leftmost match would be longer.
///
/// # Panics
///
/// If the underlying DFAs return an error during iteration, then iteration
/// panics. This only occurs in non-default configurations where quit bytes
/// are used or Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_earliest_iter`](Regex::try_find_earliest_iter).
///
/// # Example
///
/// This example shows how to run an "earliest" iterator.
///
/// ```
/// use regex_automata::{dfa::regex::Regex, MultiMatch};
///
/// let re = Regex::new("[0-9]+")?;
/// let haystack = "123".as_bytes();
///
/// // Normally, a standard leftmost iterator would return a single
/// // match, but since "earliest" detects matches earlier, we get
/// // three matches.
/// let mut it = re.find_earliest_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 2)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 2, 3)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_earliest_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> FindEarliestMatches<'r, 't, A, P> {
FindEarliestMatches::new(self, haystack)
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// This corresponds to the "standard" regex search iterator.
///
/// # Panics
///
/// If the underlying DFAs return an error during iteration, then iteration
/// panics. This only occurs in non-default configurations where quit bytes
/// are used or Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_leftmost_iter`](Regex::try_find_leftmost_iter).
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let text = b"foo1 foo12 foo123";
/// let matches: Vec<MultiMatch> = re.find_leftmost_iter(text).collect();
/// assert_eq!(matches, vec![
/// MultiMatch::must(0, 0, 4),
/// MultiMatch::must(0, 5, 10),
/// MultiMatch::must(0, 11, 17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_leftmost_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> FindLeftmostMatches<'r, 't, A, P> {
FindLeftmostMatches::new(self, haystack)
}
/// Returns an iterator over all overlapping matches in the given haystack.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// The iterator takes care of handling the overlapping state that must be
/// threaded through every search.
///
/// # Panics
///
/// If the underlying DFAs return an error during iteration, then iteration
/// panics. This only occurs in non-default configurations where quit bytes
/// are used or Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_overlapping_iter`](Regex::try_find_overlapping_iter).
///
/// # Example
///
/// This example shows how to run an overlapping search with multiple
/// regexes.
///
/// ```
/// use regex_automata::{dfa::{self, regex::Regex}, MatchKind, MultiMatch};
///
/// let re = Regex::builder()
/// .dense(dfa::dense::Config::new().match_kind(MatchKind::All))
/// .build_many(&[r"\w+$", r"\S+$"])?;
/// let haystack = "@foo".as_bytes();
///
/// let mut it = re.find_overlapping_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(1, 0, 4)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn find_overlapping_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> FindOverlappingMatches<'r, 't, A, P> {
FindOverlappingMatches::new(self, haystack)
}
}
/// Lower level infallible search routines that permit controlling where
/// the search starts and ends in a particular sequence. This is useful for
/// executing searches that need to take surrounding context into account. This
/// is required for correctly implementing iteration because of look-around
/// operators (`^`, `$`, `\b`).
impl<A: Automaton, P: Prefilter> Regex<A, P> {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_is_match_at`](Regex::try_is_match_at).
pub fn is_match_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> bool {
self.try_is_match_at(haystack, start, end).unwrap()
}
/// Returns the first position at which a match is found.
///
/// This routine stops scanning input in precisely the same circumstances
/// as `is_match`. The key difference is that this routine returns the
/// position at which it stopped scanning input if and only if a match
/// was found. If no match is found, then `None` is returned.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches
/// within the same haystack, which cannot be done correctly by simply
/// providing a subslice of `haystack`.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_earliest_at`](Regex::try_find_earliest_at).
pub fn find_earliest_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> Option<MultiMatch> {
self.try_find_earliest_at(haystack, start, end).unwrap()
}
/// Returns the same as `find_leftmost`, but starts the search at the given
/// offset.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, if the DFA is anchored, then
/// a match can only occur when `start == 0`.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches within the
/// same haystack, which cannot be done correctly by simply providing a
/// subslice of `haystack`.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_leftmost_at`](Regex::try_find_leftmost_at).
pub fn find_leftmost_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> Option<MultiMatch> {
self.try_find_leftmost_at(haystack, start, end).unwrap()
}
/// Search for the first overlapping match within a given range of
/// `haystack`.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// In particular, callers must preserve the automaton's search state from
/// prior calls so that the implementation knows where the last match
/// occurred and which pattern was reported.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches
/// within the same haystack, which cannot be done correctly by simply
/// providing a subslice of `haystack`.
///
/// # Panics
///
/// If the underlying DFAs return an error, then this routine panics. This
/// only occurs in non-default configurations where quit bytes are used or
/// Unicode word boundaries are heuristically enabled.
///
/// The fallible version of this routine is
/// [`try_find_overlapping_at`](Regex::try_find_overlapping_at).
pub fn find_overlapping_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
state: &mut OverlappingState,
) -> Option<MultiMatch> {
self.try_find_overlapping_at(haystack, start, end, state).unwrap()
}
}
/// Fallible search routines. These may return an error when the underlying
/// DFAs have been configured in a way that permits them to fail during a
/// search.
///
/// Errors during search only occur when the DFA has been explicitly
/// configured to do so, usually by specifying one or more "quit" bytes or by
/// heuristically enabling Unicode word boundaries.
///
/// Errors will never be returned using the default configuration. So these
/// fallible routines are only needed for particular configurations.
impl<A: Automaton, P: Prefilter> Regex<A, P> {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`is_match`](Regex::is_match).
pub fn try_is_match(&self, haystack: &[u8]) -> Result<bool, MatchError> {
self.try_is_match_at(haystack, 0, haystack.len())
}
/// Returns the first position at which a match is found.
///
/// This routine stops scanning input in precisely the same circumstances
/// as `is_match`. The key difference is that this routine returns the
/// position at which it stopped scanning input if and only if a match
/// was found. If no match is found, then `None` is returned.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_earliest`](Regex::find_earliest).
pub fn try_find_earliest(
&self,
haystack: &[u8],
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_earliest_at(haystack, 0, haystack.len())
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_leftmost`](Regex::find_leftmost).
pub fn try_find_leftmost(
&self,
haystack: &[u8],
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_leftmost_at(haystack, 0, haystack.len())
}
/// Search for the first overlapping match in `haystack`.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// In particular, callers must preserve the automaton's search state from
/// prior calls so that the implementation knows where the last match
/// occurred and which pattern was reported.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_overlapping`](Regex::find_overlapping).
pub fn try_find_overlapping(
&self,
haystack: &[u8],
state: &mut OverlappingState,
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_overlapping_at(haystack, 0, haystack.len(), state)
}
/// Returns an iterator over all non-overlapping "earliest" matches.
///
/// Match positions are reported as soon as a match is known to occur, even
/// if the standard leftmost match would be longer.
///
/// # Errors
///
/// This iterator only yields errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_earliest_iter`](Regex::find_earliest_iter).
pub fn try_find_earliest_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> TryFindEarliestMatches<'r, 't, A, P> {
TryFindEarliestMatches::new(self, haystack)
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// This corresponds to the "standard" regex search iterator.
///
/// # Errors
///
/// This iterator only yields errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_leftmost_iter`](Regex::find_leftmost_iter).
pub fn try_find_leftmost_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> TryFindLeftmostMatches<'r, 't, A, P> {
TryFindLeftmostMatches::new(self, haystack)
}
/// Returns an iterator over all overlapping matches in the given haystack.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// The iterator takes care of handling the overlapping state that must be
/// threaded through every search.
///
/// # Errors
///
/// This iterator only yields errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_overlapping_iter`](Regex::find_overlapping_iter).
pub fn try_find_overlapping_iter<'r, 't>(
&'r self,
haystack: &'t [u8],
) -> TryFindOverlappingMatches<'r, 't, A, P> {
TryFindOverlappingMatches::new(self, haystack)
}
}
/// Lower level fallible search routines that permit controlling where the
/// search starts and ends in a particular sequence.
impl<A: Automaton, P: Prefilter> Regex<A, P> {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used, Unicode word boundaries are heuristically
/// enabled or limits are set on the number of times the lazy DFA's cache
/// may be cleared.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`is_match_at`](Regex::is_match_at).
pub fn try_is_match_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> Result<bool, MatchError> {
self.forward()
.find_earliest_fwd_at(
self.scanner().as_mut(),
None,
haystack,
start,
end,
)
.map(|x| x.is_some())
}
/// Returns the first position at which a match is found.
///
/// This routine stops scanning input in precisely the same circumstances
/// as `is_match`. The key difference is that this routine returns the
/// position at which it stopped scanning input if and only if a match
/// was found. If no match is found, then `None` is returned.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches
/// within the same haystack, which cannot be done correctly by simply
/// providing a subslice of `haystack`.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_earliest_at`](Regex::find_earliest_at).
pub fn try_find_earliest_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_earliest_at_imp(
self.scanner().as_mut(),
haystack,
start,
end,
)
}
/// The implementation of "earliest" searching, where a prefilter scanner
/// may be given.
fn try_find_earliest_at_imp(
&self,
pre: Option<&mut prefilter::Scanner>,
haystack: &[u8],
start: usize,
end: usize,
) -> Result<Option<MultiMatch>, MatchError> {
// N.B. We use `&&A` here to call `Automaton` methods, which ensures
// that we always use the `impl Automaton for &A` for calling methods.
// Since this is the usual way that automata are used, this helps
// reduce the number of monomorphized copies of the search code.
let (fwd, rev) = (self.forward(), self.reverse());
let end = match (&fwd)
.find_earliest_fwd_at(pre, None, haystack, start, end)?
{
None => return Ok(None),
Some(end) => end,
};
// N.B. The only time we need to tell the reverse searcher the pattern
// to match is in the overlapping case, since it's ambiguous. In the
// leftmost case, I have tentatively convinced myself that it isn't
// necessary and the reverse search will always find the same pattern
// to match as the forward search. But I lack a rigorous proof.
let start = (&rev)
.find_earliest_rev_at(None, haystack, start, end.offset())?
.expect("reverse search must match if forward search does");
assert_eq!(
start.pattern(),
end.pattern(),
"forward and reverse search must match same pattern"
);
assert!(start.offset() <= end.offset());
Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset())))
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches
/// within the same haystack, which cannot be done correctly by simply
/// providing a subslice of `haystack`.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_leftmost_at`](Regex::find_leftmost_at).
pub fn try_find_leftmost_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_leftmost_at_imp(
self.scanner().as_mut(),
haystack,
start,
end,
)
}
/// The implementation of leftmost searching, where a prefilter scanner
/// may be given.
fn try_find_leftmost_at_imp(
&self,
scanner: Option<&mut prefilter::Scanner>,
haystack: &[u8],
start: usize,
end: usize,
) -> Result<Option<MultiMatch>, MatchError> {
// N.B. We use `&&A` here to call `Automaton` methods, which ensures
// that we always use the `impl Automaton for &A` for calling methods.
// Since this is the usual way that automata are used, this helps
// reduce the number of monomorphized copies of the search code.
let (fwd, rev) = (self.forward(), self.reverse());
let end = match (&fwd)
.find_leftmost_fwd_at(scanner, None, haystack, start, end)?
{
None => return Ok(None),
Some(end) => end,
};
// N.B. The only time we need to tell the reverse searcher the pattern
// to match is in the overlapping case, since it's ambiguous. In the
// leftmost case, I have tentatively convinced myself that it isn't
// necessary and the reverse search will always find the same pattern
// to match as the forward search. But I lack a rigorous proof. Why not
// just provide the pattern anyway? Well, if it is needed, then leaving
// it out gives us a chance to find a witness.
let start = (&rev)
.find_leftmost_rev_at(None, haystack, start, end.offset())?
.expect("reverse search must match if forward search does");
assert_eq!(
start.pattern(),
end.pattern(),
"forward and reverse search must match same pattern",
);
assert!(start.offset() <= end.offset());
Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset())))
}
/// Search for the first overlapping match within a given range of
/// `haystack`.
///
/// This routine is principally useful when searching for multiple patterns
/// on inputs where multiple patterns may match the same regions of text.
/// In particular, callers must preserve the automaton's search state from
/// prior calls so that the implementation knows where the last match
/// occurred and which pattern was reported.
///
/// # Searching a substring of the haystack
///
/// Being an "at" search routine, this permits callers to search a
/// substring of `haystack` by specifying a range in `haystack`.
/// Why expose this as an API instead of just asking callers to use
/// `&input[start..end]`? The reason is that regex matching often wants
/// to take the surrounding context into account in order to handle
/// look-around (`^`, `$` and `\b`).
///
/// This is useful when implementing an iterator over matches
/// within the same haystack, which cannot be done correctly by simply
/// providing a subslice of `haystack`.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For
/// DFA-based regexes, this only occurs in a non-default configuration
/// where quit bytes are used or Unicode word boundaries are heuristically
/// enabled.
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// The infallible (panics on error) version of this routine is
/// [`find_overlapping_at`](Regex::find_overlapping_at).
pub fn try_find_overlapping_at(
&self,
haystack: &[u8],
start: usize,
end: usize,
state: &mut OverlappingState,
) -> Result<Option<MultiMatch>, MatchError> {
self.try_find_overlapping_at_imp(
self.scanner().as_mut(),
haystack,
start,
end,
state,
)
}
/// The implementation of overlapping search at a given range in
/// `haystack`, where `scanner` is a prefilter (if active) and `state` is
/// the current state of the search.
fn try_find_overlapping_at_imp(
&self,
scanner: Option<&mut prefilter::Scanner>,
haystack: &[u8],
start: usize,
end: usize,
state: &mut OverlappingState,
) -> Result<Option<MultiMatch>, MatchError> {
// N.B. We use `&&A` here to call `Automaton` methods, which ensures
// that we always use the `impl Automaton for &A` for calling methods.
// Since this is the usual way that automata are used, this helps
// reduce the number of monomorphized copies of the search code.
let (fwd, rev) = (self.forward(), self.reverse());
// TODO: Decide whether it's worth making this assert work. It doesn't
// work currently because 'has_starts_for_each_pattern' isn't on the
// Automaton trait. Without this assert, we still get a panic, but it's
// a bit more inscrutable.
// assert!(
// rev.has_starts_for_each_pattern(),
// "overlapping searches require that the reverse DFA is \
// compiled with the 'starts_for_each_pattern' option",
// );
let end = match (&fwd).find_overlapping_fwd_at(
scanner, None, haystack, start, end, state,
)? {
None => return Ok(None),
Some(end) => end,
};
// Unlike the leftmost cases, the reverse overlapping search may match
// a different pattern than the forward search. See test failures when
// using `None` instead of `Some(end.pattern())` below. Thus, we must
// run our reverse search using the pattern that matched in the forward
// direction.
let start = (&rev)
.find_leftmost_rev_at(
Some(end.pattern()),
haystack,
0,
end.offset(),
)?
.expect("reverse search must match if forward search does");
assert!(start.offset() <= end.offset());
assert_eq!(start.pattern(), end.pattern());
Ok(Some(MultiMatch::new(end.pattern(), start.offset(), end.offset())))
}
}
/// Non-search APIs for querying information about the regex and setting a
/// prefilter.
impl<A: Automaton, P: Prefilter> Regex<A, P> {
/// Attach the given prefilter to this regex.
pub fn with_prefilter<Q: Prefilter>(self, prefilter: Q) -> Regex<A, Q> {
Regex {
prefilter: Some(prefilter),
forward: self.forward,
reverse: self.reverse,
utf8: self.utf8,
}
}
/// Remove any prefilter from this regex.
pub fn without_prefilter(self) -> Regex<A> {
Regex {
prefilter: None,
forward: self.forward,
reverse: self.reverse,
utf8: self.utf8,
}
}
/// Return the underlying DFA responsible for forward matching.
///
/// This is useful for accessing the underlying DFA and converting it to
/// some other format or size. See the [`Builder::build_from_dfas`] docs
/// for an example of where this might be useful.
pub fn forward(&self) -> &A {
&self.forward
}
/// Return the underlying DFA responsible for reverse matching.
///
/// This is useful for accessing the underlying DFA and converting it to
/// some other format or size. See the [`Builder::build_from_dfas`] docs
/// for an example of where this might be useful.
pub fn reverse(&self) -> &A {
&self.reverse
}
/// Returns the total number of patterns matched by this regex.
///
/// # Example
///
/// ```
/// use regex_automata::{MultiMatch, dfa::regex::Regex};
///
/// let re = Regex::new_many(&[r"[a-z]+", r"[0-9]+", r"\w+"])?;
/// assert_eq!(3, re.pattern_count());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_count(&self) -> usize {
assert_eq!(
self.forward().pattern_count(),
self.reverse().pattern_count()
);
self.forward().pattern_count()
}
/// Convenience function for returning this regex's prefilter as a trait
/// object.
///
/// If this regex doesn't have a prefilter, then `None` is returned.
pub fn prefilter(&self) -> Option<&dyn Prefilter> {
match self.prefilter {
None => None,
Some(ref x) => Some(&*x),
}
}
/// Convenience function for returning a prefilter scanner.
fn scanner(&self) -> Option<prefilter::Scanner> {
self.prefilter().map(prefilter::Scanner::new)
}
}
/// An iterator over all non-overlapping earliest matches for a particular
/// infallible search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found. If the underlying search returns an error, then this panics.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct FindEarliestMatches<'r, 't, A, P>(
TryFindEarliestMatches<'r, 't, A, P>,
);
impl<'r, 't, A: Automaton, P: Prefilter> FindEarliestMatches<'r, 't, A, P> {
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> FindEarliestMatches<'r, 't, A, P> {
FindEarliestMatches(TryFindEarliestMatches::new(re, text))
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for FindEarliestMatches<'r, 't, A, P>
{
type Item = MultiMatch;
fn next(&mut self) -> Option<MultiMatch> {
next_unwrap(self.0.next())
}
}
/// An iterator over all non-overlapping leftmost matches for a particular
/// infallible search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found. If the underlying search returns an error, then this panics.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct FindLeftmostMatches<'r, 't, A, P>(
TryFindLeftmostMatches<'r, 't, A, P>,
);
impl<'r, 't, A: Automaton, P: Prefilter> FindLeftmostMatches<'r, 't, A, P> {
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> FindLeftmostMatches<'r, 't, A, P> {
FindLeftmostMatches(TryFindLeftmostMatches::new(re, text))
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for FindLeftmostMatches<'r, 't, A, P>
{
type Item = MultiMatch;
fn next(&mut self) -> Option<MultiMatch> {
next_unwrap(self.0.next())
}
}
/// An iterator over all overlapping matches for a particular infallible
/// search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found. If the underlying search returns an error, then this panics.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct FindOverlappingMatches<'r, 't, A: Automaton, P>(
TryFindOverlappingMatches<'r, 't, A, P>,
);
impl<'r, 't, A: Automaton, P: Prefilter> FindOverlappingMatches<'r, 't, A, P> {
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> FindOverlappingMatches<'r, 't, A, P> {
FindOverlappingMatches(TryFindOverlappingMatches::new(re, text))
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for FindOverlappingMatches<'r, 't, A, P>
{
type Item = MultiMatch;
fn next(&mut self) -> Option<MultiMatch> {
next_unwrap(self.0.next())
}
}
/// An iterator over all non-overlapping earliest matches for a particular
/// fallible search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct TryFindEarliestMatches<'r, 't, A, P> {
re: &'r Regex<A, P>,
scanner: Option<prefilter::Scanner<'r>>,
text: &'t [u8],
last_end: usize,
last_match: Option<usize>,
}
impl<'r, 't, A: Automaton, P: Prefilter> TryFindEarliestMatches<'r, 't, A, P> {
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> TryFindEarliestMatches<'r, 't, A, P> {
let scanner = re.scanner();
TryFindEarliestMatches {
re,
scanner,
text,
last_end: 0,
last_match: None,
}
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for TryFindEarliestMatches<'r, 't, A, P>
{
type Item = Result<MultiMatch, MatchError>;
fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> {
if self.last_end > self.text.len() {
return None;
}
let result = self.re.try_find_earliest_at_imp(
self.scanner.as_mut(),
self.text,
self.last_end,
self.text.len(),
);
let m = match result {
Err(err) => return Some(Err(err)),
Ok(None) => return None,
Ok(Some(m)) => m,
};
if m.is_empty() {
// This is an empty match. To ensure we make progress, start
// the next search at the smallest possible starting position
// of the next match following this one.
self.last_end = if self.re.utf8 {
crate::util::next_utf8(self.text, m.end())
} else {
m.end() + 1
};
// Don't accept empty matches immediately following a match.
// Just move on to the next match.
if Some(m.end()) == self.last_match {
return self.next();
}
} else {
self.last_end = m.end();
}
self.last_match = Some(m.end());
Some(Ok(m))
}
}
/// An iterator over all non-overlapping leftmost matches for a particular
/// fallible search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct TryFindLeftmostMatches<'r, 't, A, P> {
re: &'r Regex<A, P>,
scanner: Option<prefilter::Scanner<'r>>,
text: &'t [u8],
last_end: usize,
last_match: Option<usize>,
}
impl<'r, 't, A: Automaton, P: Prefilter> TryFindLeftmostMatches<'r, 't, A, P> {
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> TryFindLeftmostMatches<'r, 't, A, P> {
let scanner = re.scanner();
TryFindLeftmostMatches {
re,
scanner,
text,
last_end: 0,
last_match: None,
}
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for TryFindLeftmostMatches<'r, 't, A, P>
{
type Item = Result<MultiMatch, MatchError>;
fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> {
if self.last_end > self.text.len() {
return None;
}
let result = self.re.try_find_leftmost_at_imp(
self.scanner.as_mut(),
self.text,
self.last_end,
self.text.len(),
);
let m = match result {
Err(err) => return Some(Err(err)),
Ok(None) => return None,
Ok(Some(m)) => m,
};
if m.is_empty() {
// This is an empty match. To ensure we make progress, start
// the next search at the smallest possible starting position
// of the next match following this one.
self.last_end = if self.re.utf8 {
crate::util::next_utf8(self.text, m.end())
} else {
m.end() + 1
};
// Don't accept empty matches immediately following a match.
// Just move on to the next match.
if Some(m.end()) == self.last_match {
return self.next();
}
} else {
self.last_end = m.end();
}
self.last_match = Some(m.end());
Some(Ok(m))
}
}
/// An iterator over all overlapping matches for a particular fallible search.
///
/// The iterator yields a [`MultiMatch`] value until no more matches could be
/// found.
///
/// `A` is the type used to represent the underlying DFAs used by the regex,
/// while `P` is the type of prefilter used, if any. The lifetime variables are
/// as follows:
///
/// * `'r` is the lifetime of the regular expression itself.
/// * `'t` is the lifetime of the text being searched.
#[derive(Clone, Debug)]
pub struct TryFindOverlappingMatches<'r, 't, A: Automaton, P> {
re: &'r Regex<A, P>,
scanner: Option<prefilter::Scanner<'r>>,
text: &'t [u8],
last_end: usize,
state: OverlappingState,
}
impl<'r, 't, A: Automaton, P: Prefilter>
TryFindOverlappingMatches<'r, 't, A, P>
{
fn new(
re: &'r Regex<A, P>,
text: &'t [u8],
) -> TryFindOverlappingMatches<'r, 't, A, P> {
let scanner = re.scanner();
TryFindOverlappingMatches {
re,
scanner,
text,
last_end: 0,
state: OverlappingState::start(),
}
}
}
impl<'r, 't, A: Automaton, P: Prefilter> Iterator
for TryFindOverlappingMatches<'r, 't, A, P>
{
type Item = Result<MultiMatch, MatchError>;
fn next(&mut self) -> Option<Result<MultiMatch, MatchError>> {
if self.last_end > self.text.len() {
return None;
}
let result = self.re.try_find_overlapping_at_imp(
self.scanner.as_mut(),
self.text,
self.last_end,
self.text.len(),
&mut self.state,
);
let m = match result {
Err(err) => return Some(Err(err)),
Ok(None) => return None,
Ok(Some(m)) => m,
};
// Unlike the non-overlapping case, we're OK with empty matches at this
// level. In particular, the overlapping search algorithm is itself
// responsible for ensuring that progress is always made.
self.last_end = m.end();
Some(Ok(m))
}
}
/// The configuration used for compiling a DFA-backed regex.
///
/// A regex configuration is a simple data object that is typically used with
/// [`Builder::configure`].
#[cfg(feature = "alloc")]
#[derive(Clone, Copy, Debug, Default)]
pub struct Config {
utf8: Option<bool>,
}
#[cfg(feature = "alloc")]
impl Config {
/// Return a new default regex compiler configuration.
pub fn new() -> Config {
Config::default()
}
/// Whether to enable UTF-8 mode or not.
///
/// When UTF-8 mode is enabled (the default) and an empty match is seen,
/// the iterators on [`Regex`] will always start the next search at the
/// next UTF-8 encoded codepoint when searching valid UTF-8. When UTF-8
/// mode is disabled, such searches are begun at the next byte offset.
///
/// If this mode is enabled and invalid UTF-8 is given to search, then
/// behavior is unspecified.
///
/// Generally speaking, one should enable this when
/// [`SyntaxConfig::utf8`](crate::SyntaxConfig::utf8)
/// and
/// [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8)
/// are enabled, and disable it otherwise.
///
/// # Example
///
/// This example demonstrates the differences between when this option is
/// enabled and disabled. The differences only arise when the regex can
/// return matches of length zero.
///
/// In this first snippet, we show the results when UTF-8 mode is disabled.
///
/// ```
/// use regex_automata::{dfa::regex::Regex, MultiMatch};
///
/// let re = Regex::builder()
/// .configure(Regex::config().utf8(false))
/// .build(r"")?;
/// let haystack = "a☃z".as_bytes();
/// let mut it = re.find_leftmost_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 2, 2)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 3, 3)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And in this snippet, we execute the same search on the same haystack,
/// but with UTF-8 mode enabled. Notice that byte offsets that would
/// otherwise split the encoding of `☃` are not returned.
///
/// ```
/// use regex_automata::{dfa::regex::Regex, MultiMatch};
///
/// let re = Regex::builder()
/// .configure(Regex::config().utf8(true))
/// .build(r"")?;
/// let haystack = "a☃z".as_bytes();
/// let mut it = re.find_leftmost_iter(haystack);
/// assert_eq!(Some(MultiMatch::must(0, 0, 0)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 1, 1)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 4, 4)), it.next());
/// assert_eq!(Some(MultiMatch::must(0, 5, 5)), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn utf8(mut self, yes: bool) -> Config {
self.utf8 = Some(yes);
self
}
/// Returns true if and only if this configuration has UTF-8 mode enabled.
///
/// When UTF-8 mode is enabled and an empty match is seen, the iterators on
/// [`Regex`] will always start the next search at the next UTF-8 encoded
/// codepoint. When UTF-8 mode is disabled, such searches are begun at the
/// next byte offset.
pub fn get_utf8(&self) -> bool {
self.utf8.unwrap_or(true)
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(self, o: Config) -> Config {
Config { utf8: o.utf8.or(self.utf8) }
}
}
/// A builder for a regex based on deterministic finite automatons.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction, the DFA construction and finally the regex searching
/// itself. This builder is different from a general purpose regex builder in
/// that it permits fine grain configuration of the construction process. The
/// trade off for this is complexity, and the possibility of setting a
/// configuration that might not make sense. For example, there are three
/// different UTF-8 modes:
///
/// * [`SyntaxConfig::utf8`](crate::SyntaxConfig::utf8) controls whether the
/// pattern itself can contain sub-expressions that match invalid UTF-8.
/// * [`nfa::thompson::Config::utf8`](crate::nfa::thompson::Config::utf8)
/// controls whether the implicit unanchored prefix added to the NFA can
/// match through invalid UTF-8 or not.
/// * [`Config::utf8`] controls how the regex iterators themselves advance
/// the starting position of the next search when a match with zero length is
/// found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// Internally, building a regex requires building two DFAs, where one is
/// responsible for finding the end of a match and the other is responsible
/// for finding the start of a match. If you only need to detect whether
/// something matched, or only the end of a match, then you should use a
/// [`dense::Builder`] to construct a single DFA, which is cheaper than
/// building two DFAs.
///
/// # Build methods
///
/// This builder has a few "build" methods. In general, it's the result of
/// combining the following parameters:
///
/// * Building one or many regexes.
/// * Building a regex with dense or sparse DFAs.
///
/// The simplest "build" method is [`Builder::build`]. It accepts a single
/// pattern and builds a dense DFA using `usize` for the state identifier
/// representation.
///
/// The most general "build" method is [`Builder::build_many`], which permits
/// building a regex that searches for multiple patterns simultaneously while
/// using a specific state identifier representation.
///
/// The most flexible "build" method, but hardest to use, is
/// [`Builder::build_from_dfas`]. This exposes the fact that a [`Regex`] is
/// just a pair of DFAs, and this method allows you to specify those DFAs
/// exactly.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax, the NFA and
/// the regex itself. This is generally what you want for matching on
/// arbitrary bytes.
///
/// ```
/// use regex_automata::{
/// dfa::regex::Regex, nfa::thompson, MultiMatch, SyntaxConfig
/// };
///
/// let re = Regex::builder()
/// .configure(Regex::config().utf8(false))
/// .syntax(SyntaxConfig::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(MultiMatch::must(0, 1, 9));
/// let got = re.find_leftmost(haystack);
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this. Notice also that the
/// // search was unanchored and skipped over invalid UTF-8.
/// // Disabling UTF-8 on the Thompson NFA permits this.
/// //
/// // N.B. This example does not show the impact of
/// // disabling UTF-8 mode on Config, since that
/// // only impacts regexes that can produce matches of
/// // length 0.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
dfa: dense::Builder,
}
#[cfg(feature = "alloc")]
impl Builder {
/// Create a new regex builder with the default configuration.
pub fn new() -> Builder {
Builder { config: Config::default(), dfa: dense::Builder::new() }
}
/// Build a regex from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
pub fn build(&self, pattern: &str) -> Result<Regex, Error> {
self.build_many(&[pattern])
}
/// Build a regex from the given pattern using sparse DFAs.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
pub fn build_sparse(
&self,
pattern: &str,
) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> {
self.build_many_sparse(&[pattern])
}
/// Build a regex from the given patterns.
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex, Error> {
let forward = self.dfa.build_many(patterns)?;
let reverse = self
.dfa
.clone()
.configure(
dense::Config::new()
.anchored(true)
.match_kind(MatchKind::All)
.starts_for_each_pattern(true),
)
.thompson(thompson::Config::new().reverse(true))
.build_many(patterns)?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a sparse regex from the given patterns.
pub fn build_many_sparse<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex<sparse::DFA<Vec<u8>>>, Error> {
let re = self.build_many(patterns)?;
let forward = re.forward().to_sparse()?;
let reverse = re.reverse().to_sparse()?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a regex from its component forward and reverse DFAs.
///
/// This is useful when deserializing a regex from some arbitrary
/// memory region. This is also useful for building regexes from other
/// types of DFAs.
///
/// If you're building the DFAs from scratch instead of building new DFAs
/// from other DFAs, then you'll need to make sure that the reverse DFA is
/// configured correctly to match the intended semantics. Namely:
///
/// * It should be anchored.
/// * It should use [`MatchKind::All`] semantics.
/// * It should match in reverse.
/// * It should have anchored start states compiled for each pattern.
/// * Otherwise, its configuration should match the forward DFA.
///
/// If these conditions are satisfied, then behavior of searches is
/// unspecified.
///
/// Note that when using this constructor, only the configuration from
/// [`Config`] is applied. The only configuration settings on this builder
/// only apply when the builder owns the construction of the DFAs
/// themselves.
///
/// # Example
///
/// This example is a bit a contrived. The usual use of these methods
/// would involve serializing `initial_re` somewhere and then deserializing
/// it later to build a regex. But in this case, we do everything in
/// memory.
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let (fwd, rev) = (initial_re.forward(), initial_re.reverse());
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows how to build a `Regex` that uses sparse DFAs instead
/// of dense DFAs without using one of the convenience `build_sparse`
/// routines:
///
/// ```
/// use regex_automata::dfa::regex::Regex;
///
/// let initial_re = Regex::new("foo[0-9]+")?;
/// assert_eq!(true, initial_re.is_match(b"foo123"));
///
/// let fwd = initial_re.forward().to_sparse()?;
/// let rev = initial_re.reverse().to_sparse()?;
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// assert_eq!(true, re.is_match(b"foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_dfas<A: Automaton>(
&self,
forward: A,
reverse: A,
) -> Regex<A> {
let utf8 = self.config.get_utf8();
Regex { prefilter: None, forward, reverse, utf8 }
}
/// Apply the given regex configuration options to this builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`SyntaxConfig`](crate::SyntaxConfig).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
pub fn syntax(
&mut self,
config: crate::util::syntax::SyntaxConfig,
) -> &mut Builder {
self.dfa.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](thompson::Config).
///
/// This permits setting things like whether additional time should be
/// spent shrinking the size of the NFA.
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.dfa.thompson(config);
self
}
/// Set the dense DFA compilation configuration for this builder using
/// [`dense::Config`](dense::Config).
///
/// This permits setting things like whether the underlying DFAs should
/// be minimized.
pub fn dense(&mut self, config: dense::Config) -> &mut Builder {
self.dfa.configure(config);
self
}
}
#[cfg(feature = "alloc")]
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
#[inline(always)]
fn next_unwrap(
item: Option<Result<MultiMatch, MatchError>>,
) -> Option<MultiMatch> {
match item {
None => None,
Some(Ok(m)) => Some(m),
Some(Err(err)) => panic!(
"unexpected regex search error: {}\n\
to handle search errors, use try_ methods",
err,
),
}
}