1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*!
Type definitions for identifier types.
A [`StateID`] represents the possible set of identifiers used in regex engine
implementations in this crate. For example, they are used to identify both NFA
and DFA states.
A [`PatternID`] represents the possible set of identifiers for patterns. All
regex engine implementations in this crate support searching for multiple
patterns simultaneously. A `PatternID` is how each pattern is uniquely
identified for a particular instance of a regex engine. Namely, a pattern is
assigned an auto-incrementing integer, starting at `0`, based on the order of
patterns supplied during the construction of the regex engine.
These identifier types represent a way for this crate to make correctness
guarantees around the possible set of values that a `StateID` or a `PatternID`
might represent. Similarly, they also provide a way of constraining the size of
these identifiers to reduce space usage while still guaranteeing that all such
identifiers are repsentable by a `usize` for the current target.
Moreover, the identifier types clamp the range of permissible values to a range
that is typically smaller than its internal representation. (With the maximum
value being, e.g., `StateID::MAX`.) Users of these types may not rely this
clamping for the purpose of memory safety. Users may, however, rely on these
invariants to avoid panics or other types of logic bugs.
*/
// Continuing from the above comment about correctness guarantees, an example
// of a way in which we use the guarantees on these types is delta encoding.
// Namely, we require that IDs can be at most 2^31 - 2, which means the
// difference between any two IDs is always representable as an i32.
use core::{
convert::{Infallible, TryFrom},
mem, ops,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// An identifier for a regex pattern.
///
/// The identifier for a pattern corresponds to its relative position among
/// other patterns in a single finite state machine. Namely, when building
/// a multi-pattern regex engine, one must supply a sequence of patterns to
/// match. The position (starting at 0) of each pattern in that sequence
/// represents its identifier. This identifier is in turn used to identify and
/// report matches of that pattern in various APIs.
///
/// A pattern ID is guaranteed to be representable by a `usize`. Similarly,
/// the number of patterns in any regex engine in this crate is guaranteed to
/// be representable by a `usize`. This applies to regex engines that have
/// been deserialized; a deserialization error will be returned if it contains
/// pattern IDs that violate these requirements in your current environment.
///
/// For extra convenience in some cases, this type also guarantees that all
/// IDs can fit into an `i32` and an `isize` without overflowing.
///
/// # Representation
///
/// This type is always represented internally by a `u32` and is marked as
/// `repr(transparent)`. Thus, this type always has the same representation as
/// a `u32`.
///
/// # Indexing
///
/// For convenience, callers may use a `PatternID` to index slices.
///
/// # Safety
///
/// While a `PatternID` is meant to guarantee that its value fits into `usize`
/// (while using a possibly smaller representation than `usize` on some
/// targets), callers must not rely on this property for safety. Callers may
/// choose to rely on this property for correctness however.
#[repr(transparent)]
#[derive(
Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
)]
pub struct PatternID(u32);
impl PatternID {
/// The maximum pattern ID value, represented as a `usize`.
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
pub const MAX: PatternID =
PatternID::new_unchecked(core::i32::MAX as usize - 1);
/// The maximum pattern ID value, represented as a `usize`.
#[cfg(target_pointer_width = "16")]
pub const MAX: PatternID = PatternID::new_unchecked(core::isize::MAX - 1);
/// The total number of patterns that are allowed in any single regex
/// engine.
pub const LIMIT: usize = PatternID::MAX.as_usize() + 1;
/// The zero pattern ID value.
pub const ZERO: PatternID = PatternID::new_unchecked(0);
/// The number of bytes that a single `PatternID` uses in memory.
pub const SIZE: usize = core::mem::size_of::<PatternID>();
/// Create a new pattern ID.
///
/// If the given identifier exceeds [`PatternID::MAX`], then this returns
/// an error.
#[inline]
pub fn new(id: usize) -> Result<PatternID, PatternIDError> {
PatternID::try_from(id)
}
/// Create a new pattern ID without checking whether the given value
/// exceeds [`PatternID::MAX`].
///
/// While this is unchecked, providing an incorrect value must never
/// sacrifice memory safety, as documented above.
#[inline]
pub const fn new_unchecked(id: usize) -> PatternID {
PatternID(id as u32)
}
/// Like [`PatternID::new`], but panics if the given ID is not valid.
#[inline]
pub fn must(id: usize) -> PatternID {
PatternID::new(id).unwrap()
}
/// Return this pattern ID as a `usize`.
#[inline]
pub const fn as_usize(&self) -> usize {
self.0 as usize
}
/// Return the internal u32 of this pattern ID.
#[inline]
pub const fn as_u32(&self) -> u32 {
self.0
}
/// Return the internal u32 of this pattern ID represented as an i32.
///
/// This is guaranteed to never overflow an `i32`.
#[inline]
pub const fn as_i32(&self) -> i32 {
self.0 as i32
}
/// Returns one more than this pattern ID as a usize.
///
/// Since a pattern ID has constraints on its maximum value, adding `1` to
/// it will always fit in a `usize` (and a `u32`).
#[inline]
pub fn one_more(&self) -> usize {
self.as_usize().checked_add(1).unwrap()
}
/// Decode this pattern ID from the bytes given using the native endian
/// byte order for the current target.
///
/// If the decoded integer is not representable as a pattern ID for the
/// current target, then this returns an error.
#[inline]
pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<PatternID, PatternIDError> {
let id = u32::from_ne_bytes(bytes);
if id > PatternID::MAX.as_u32() {
return Err(PatternIDError { attempted: id as u64 });
}
Ok(PatternID::new_unchecked(id as usize))
}
/// Decode this pattern ID from the bytes given using the native endian
/// byte order for the current target.
///
/// This is analogous to [`PatternID::new_unchecked`] in that is does not
/// check whether the decoded integer is representable as a pattern ID.
#[inline]
pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> PatternID {
PatternID::new_unchecked(u32::from_ne_bytes(bytes) as usize)
}
/// Return the underlying pattern ID integer as raw bytes in native endian
/// format.
#[inline]
pub fn to_ne_bytes(&self) -> [u8; 4] {
self.0.to_ne_bytes()
}
/// Returns an iterator over all pattern IDs from 0 up to and not including
/// the given length.
///
/// If the given length exceeds [`PatternID::LIMIT`], then this panics.
#[cfg(feature = "alloc")]
pub(crate) fn iter(len: usize) -> PatternIDIter {
PatternIDIter::new(len)
}
}
/// This error occurs when a pattern ID could not be constructed.
///
/// This occurs when given an integer exceeding the maximum pattern ID value.
///
/// When the `std` feature is enabled, this implements the `Error` trait.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct PatternIDError {
attempted: u64,
}
impl PatternIDError {
/// Returns the value that failed to constructed a pattern ID.
pub fn attempted(&self) -> u64 {
self.attempted
}
}
#[cfg(feature = "std")]
impl std::error::Error for PatternIDError {}
impl core::fmt::Display for PatternIDError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"failed to create PatternID from {:?}, which exceeds {:?}",
self.attempted(),
PatternID::MAX,
)
}
}
/// An identifier for a state in a regex engine.
///
/// A state ID is guaranteed to be representable by a `usize`. Similarly, the
/// number of states in any regex engine in this crate is guaranteed to be
/// representable by a `usize`. This applies to regex engines that have been
/// deserialized; a deserialization error will be returned if it contains state
/// IDs that violate these requirements in your current environment.
///
/// For extra convenience in some cases, this type also guarantees that all
/// IDs can fit into an `i32` and an `isize` without overflowing.
///
/// # Representation
///
/// This type is always represented internally by a `u32` and is marked as
/// `repr(transparent)`. Thus, this type always has the same representation as
/// a `u32`.
///
/// # Indexing
///
/// For convenience, callers may use a `StateID` to index slices.
///
/// # Safety
///
/// While a `StateID` is meant to guarantee that its value fits into `usize`
/// (while using a possibly smaller representation than `usize` on some
/// targets), callers must not rely on this property for safety. Callers may
/// choose to rely on this property for correctness however.
#[repr(transparent)]
#[derive(
Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
)]
pub struct StateID(u32);
impl StateID {
/// The maximum state ID value.
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
pub const MAX: StateID =
StateID::new_unchecked(core::i32::MAX as usize - 1);
/// The maximum state ID value.
#[cfg(target_pointer_width = "16")]
pub const MAX: StateID = StateID::new_unchecked(core::isize::MAX - 1);
/// The total number of states that are allowed in any single regex
/// engine, represented as a `usize`.
pub const LIMIT: usize = StateID::MAX.as_usize() + 1;
/// The zero state ID value.
pub const ZERO: StateID = StateID::new_unchecked(0);
/// The number of bytes that a single `StateID` uses in memory.
pub const SIZE: usize = core::mem::size_of::<StateID>();
/// Create a new state ID.
///
/// If the given identifier exceeds [`StateID::MAX`], then this returns
/// an error.
#[inline]
pub fn new(id: usize) -> Result<StateID, StateIDError> {
StateID::try_from(id)
}
/// Create a new state ID without checking whether the given value
/// exceeds [`StateID::MAX`].
///
/// While this is unchecked, providing an incorrect value must never
/// sacrifice memory safety, as documented above.
#[inline]
pub const fn new_unchecked(id: usize) -> StateID {
StateID(id as u32)
}
/// Like [`StateID::new`], but panics if the given ID is not valid.
#[inline]
pub fn must(id: usize) -> StateID {
StateID::new(id).unwrap()
}
/// Return this state ID as a `usize`.
#[inline]
pub const fn as_usize(&self) -> usize {
self.0 as usize
}
/// Return the internal u32 of this state ID.
#[inline]
pub const fn as_u32(&self) -> u32 {
self.0
}
/// Return the internal u32 of this pattern ID represented as an i32.
///
/// This is guaranteed to never overflow an `i32`.
#[inline]
pub const fn as_i32(&self) -> i32 {
self.0 as i32
}
/// Returns one more than this state ID as a usize.
///
/// Since a state ID has constraints on its maximum value, adding `1` to
/// it will always fit in a `usize` (and a `u32`).
#[inline]
pub fn one_more(&self) -> usize {
self.as_usize().checked_add(1).unwrap()
}
/// Decode this state ID from the bytes given using the native endian byte
/// order for the current target.
///
/// If the decoded integer is not representable as a state ID for the
/// current target, then this returns an error.
#[inline]
pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<StateID, StateIDError> {
let id = u32::from_ne_bytes(bytes);
if id > StateID::MAX.as_u32() {
return Err(StateIDError { attempted: id as u64 });
}
Ok(StateID::new_unchecked(id as usize))
}
/// Decode this state ID from the bytes given using the native endian
/// byte order for the current target.
///
/// This is analogous to [`StateID::new_unchecked`] in that is does not
/// check whether the decoded integer is representable as a state ID.
#[inline]
pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> StateID {
StateID::new_unchecked(u32::from_ne_bytes(bytes) as usize)
}
/// Return the underlying state ID integer as raw bytes in native endian
/// format.
#[inline]
pub fn to_ne_bytes(&self) -> [u8; 4] {
self.0.to_ne_bytes()
}
/// Returns an iterator over all state IDs from 0 up to and not including
/// the given length.
///
/// If the given length exceeds [`StateID::LIMIT`], then this panics.
#[cfg(feature = "alloc")]
pub(crate) fn iter(len: usize) -> StateIDIter {
StateIDIter::new(len)
}
}
/// This error occurs when a state ID could not be constructed.
///
/// This occurs when given an integer exceeding the maximum state ID value.
///
/// When the `std` feature is enabled, this implements the `Error` trait.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct StateIDError {
attempted: u64,
}
impl StateIDError {
/// Returns the value that failed to constructed a state ID.
pub fn attempted(&self) -> u64 {
self.attempted
}
}
#[cfg(feature = "std")]
impl std::error::Error for StateIDError {}
impl core::fmt::Display for StateIDError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"failed to create StateID from {:?}, which exceeds {:?}",
self.attempted(),
StateID::MAX,
)
}
}
/// A macro for defining exactly identical (modulo names) impls for ID types.
macro_rules! impls {
($ty:ident, $tyerr:ident, $tyiter:ident) => {
#[derive(Clone, Debug)]
pub(crate) struct $tyiter {
rng: ops::Range<usize>,
}
impl $tyiter {
#[cfg(feature = "alloc")]
fn new(len: usize) -> $tyiter {
assert!(
len <= $ty::LIMIT,
"cannot create iterator with IDs when number of \
elements exceed {:?}",
$ty::LIMIT,
);
$tyiter { rng: 0..len }
}
}
impl Iterator for $tyiter {
type Item = $ty;
fn next(&mut self) -> Option<$ty> {
if self.rng.start >= self.rng.end {
return None;
}
let next_id = self.rng.start + 1;
let id = mem::replace(&mut self.rng.start, next_id);
// new_unchecked is OK since we asserted that the number of
// elements in this iterator will fit in an ID at construction.
Some($ty::new_unchecked(id))
}
}
impl<T> core::ops::Index<$ty> for [T] {
type Output = T;
#[inline]
fn index(&self, index: $ty) -> &T {
&self[index.as_usize()]
}
}
impl<T> core::ops::IndexMut<$ty> for [T] {
#[inline]
fn index_mut(&mut self, index: $ty) -> &mut T {
&mut self[index.as_usize()]
}
}
#[cfg(feature = "alloc")]
impl<T> core::ops::Index<$ty> for Vec<T> {
type Output = T;
#[inline]
fn index(&self, index: $ty) -> &T {
&self[index.as_usize()]
}
}
#[cfg(feature = "alloc")]
impl<T> core::ops::IndexMut<$ty> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: $ty) -> &mut T {
&mut self[index.as_usize()]
}
}
impl TryFrom<usize> for $ty {
type Error = $tyerr;
fn try_from(id: usize) -> Result<$ty, $tyerr> {
if id > $ty::MAX.as_usize() {
return Err($tyerr { attempted: id as u64 });
}
Ok($ty::new_unchecked(id))
}
}
impl TryFrom<u8> for $ty {
type Error = Infallible;
fn try_from(id: u8) -> Result<$ty, Infallible> {
Ok($ty::new_unchecked(id as usize))
}
}
impl TryFrom<u16> for $ty {
type Error = $tyerr;
fn try_from(id: u16) -> Result<$ty, $tyerr> {
if id as u32 > $ty::MAX.as_u32() {
return Err($tyerr { attempted: id as u64 });
}
Ok($ty::new_unchecked(id as usize))
}
}
impl TryFrom<u32> for $ty {
type Error = $tyerr;
fn try_from(id: u32) -> Result<$ty, $tyerr> {
if id > $ty::MAX.as_u32() {
return Err($tyerr { attempted: id as u64 });
}
Ok($ty::new_unchecked(id as usize))
}
}
impl TryFrom<u64> for $ty {
type Error = $tyerr;
fn try_from(id: u64) -> Result<$ty, $tyerr> {
if id > $ty::MAX.as_u32() as u64 {
return Err($tyerr { attempted: id });
}
Ok($ty::new_unchecked(id as usize))
}
}
#[cfg(test)]
impl quickcheck::Arbitrary for $ty {
fn arbitrary(gen: &mut quickcheck::Gen) -> $ty {
use core::cmp::max;
let id = max(i32::MIN + 1, i32::arbitrary(gen)).abs();
if id > $ty::MAX.as_i32() {
$ty::MAX
} else {
$ty::new(usize::try_from(id).unwrap()).unwrap()
}
}
}
};
}
impls!(PatternID, PatternIDError, PatternIDIter);
impls!(StateID, StateIDError, StateIDIter);
/// A utility trait that defines a couple of adapters for making it convenient
/// to access indices as ID types. We require ExactSizeIterator so that
/// iterator construction can do a single check to make sure the index of each
/// element is representable by its ID type.
#[cfg(feature = "alloc")]
pub(crate) trait IteratorIDExt: Iterator {
fn with_pattern_ids(self) -> WithPatternIDIter<Self>
where
Self: Sized + ExactSizeIterator,
{
WithPatternIDIter::new(self)
}
fn with_state_ids(self) -> WithStateIDIter<Self>
where
Self: Sized + ExactSizeIterator,
{
WithStateIDIter::new(self)
}
}
#[cfg(feature = "alloc")]
impl<I: Iterator> IteratorIDExt for I {}
#[cfg(feature = "alloc")]
macro_rules! iditer {
($ty:ident, $iterty:ident, $withiterty:ident) => {
/// An iterator adapter that is like std::iter::Enumerate, but attaches
/// IDs. It requires ExactSizeIterator. At construction, it ensures
/// that the index of each element in the iterator is representable in
/// the corresponding ID type.
#[derive(Clone, Debug)]
pub(crate) struct $withiterty<I> {
it: I,
ids: $iterty,
}
impl<I: Iterator + ExactSizeIterator> $withiterty<I> {
fn new(it: I) -> $withiterty<I> {
let ids = $ty::iter(it.len());
$withiterty { it, ids }
}
}
impl<I: Iterator + ExactSizeIterator> Iterator for $withiterty<I> {
type Item = ($ty, I::Item);
fn next(&mut self) -> Option<($ty, I::Item)> {
let item = self.it.next()?;
// Number of elements in this iterator must match, according
// to contract of ExactSizeIterator.
let id = self.ids.next().unwrap();
Some((id, item))
}
}
};
}
#[cfg(feature = "alloc")]
iditer!(PatternID, PatternIDIter, WithPatternIDIter);
#[cfg(feature = "alloc")]
iditer!(StateID, StateIDIter, WithStateIDIter);