regex_automata/dfa/
dense.rs

1/*!
2Types and routines specific to dense DFAs.
3
4This module is the home of [`dense::DFA`](DFA).
5
6This module also contains a [`dense::Builder`](Builder) and a
7[`dense::Config`](Config) for building and configuring a dense DFA.
8*/
9
10#[cfg(feature = "dfa-build")]
11use core::cmp;
12use core::{fmt, iter, mem::size_of, slice};
13
14#[cfg(feature = "dfa-build")]
15use alloc::{
16    collections::{BTreeMap, BTreeSet},
17    vec,
18    vec::Vec,
19};
20
21#[cfg(feature = "dfa-build")]
22use crate::{
23    dfa::{
24        accel::Accel, determinize, minimize::Minimizer, remapper::Remapper,
25        sparse,
26    },
27    nfa::thompson,
28    util::{look::LookMatcher, search::MatchKind},
29};
30use crate::{
31    dfa::{
32        accel::Accels,
33        automaton::{fmt_state_indicator, Automaton, StartError},
34        special::Special,
35        start::StartKind,
36        DEAD,
37    },
38    util::{
39        alphabet::{self, ByteClasses, ByteSet},
40        int::{Pointer, Usize},
41        prefilter::Prefilter,
42        primitives::{PatternID, StateID},
43        search::Anchored,
44        start::{self, Start, StartByteMap},
45        wire::{self, DeserializeError, Endian, SerializeError},
46    },
47};
48
49/// The label that is pre-pended to a serialized DFA.
50const LABEL: &str = "rust-regex-automata-dfa-dense";
51
52/// The format version of dense regexes. This version gets incremented when a
53/// change occurs. A change may not necessarily be a breaking change, but the
54/// version does permit good error messages in the case where a breaking change
55/// is made.
56const VERSION: u32 = 2;
57
58/// The configuration used for compiling a dense DFA.
59///
60/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
61/// advantage of the former is that it often lets you avoid importing the
62/// `Config` type directly.
63///
64/// A dense DFA configuration is a simple data object that is typically used
65/// with [`dense::Builder::configure`](self::Builder::configure).
66///
67/// The default configuration guarantees that a search will never return
68/// a "quit" error, although it is possible for a search to fail if
69/// [`Config::starts_for_each_pattern`] wasn't enabled (which it is
70/// not by default) and an [`Anchored::Pattern`] mode is requested via
71/// [`Input`](crate::Input).
72#[cfg(feature = "dfa-build")]
73#[derive(Clone, Debug, Default)]
74pub struct Config {
75    // As with other configuration types in this crate, we put all our knobs
76    // in options so that we can distinguish between "default" and "not set."
77    // This makes it possible to easily combine multiple configurations
78    // without default values overwriting explicitly specified values. See the
79    // 'overwrite' method.
80    //
81    // For docs on the fields below, see the corresponding method setters.
82    accelerate: Option<bool>,
83    pre: Option<Option<Prefilter>>,
84    minimize: Option<bool>,
85    match_kind: Option<MatchKind>,
86    start_kind: Option<StartKind>,
87    starts_for_each_pattern: Option<bool>,
88    byte_classes: Option<bool>,
89    unicode_word_boundary: Option<bool>,
90    quitset: Option<ByteSet>,
91    specialize_start_states: Option<bool>,
92    dfa_size_limit: Option<Option<usize>>,
93    determinize_size_limit: Option<Option<usize>>,
94}
95
96#[cfg(feature = "dfa-build")]
97impl Config {
98    /// Return a new default dense DFA compiler configuration.
99    pub fn new() -> Config {
100        Config::default()
101    }
102
103    /// Enable state acceleration.
104    ///
105    /// When enabled, DFA construction will analyze each state to determine
106    /// whether it is eligible for simple acceleration. Acceleration typically
107    /// occurs when most of a state's transitions loop back to itself, leaving
108    /// only a select few bytes that will exit the state. When this occurs,
109    /// other routines like `memchr` can be used to look for those bytes which
110    /// may be much faster than traversing the DFA.
111    ///
112    /// Callers may elect to disable this if consistent performance is more
113    /// desirable than variable performance. Namely, acceleration can sometimes
114    /// make searching slower than it otherwise would be if the transitions
115    /// that leave accelerated states are traversed frequently.
116    ///
117    /// See [`Automaton::accelerator`] for an example.
118    ///
119    /// This is enabled by default.
120    pub fn accelerate(mut self, yes: bool) -> Config {
121        self.accelerate = Some(yes);
122        self
123    }
124
125    /// Set a prefilter to be used whenever a start state is entered.
126    ///
127    /// A [`Prefilter`] in this context is meant to accelerate searches by
128    /// looking for literal prefixes that every match for the corresponding
129    /// pattern (or patterns) must start with. Once a prefilter produces a
130    /// match, the underlying search routine continues on to try and confirm
131    /// the match.
132    ///
133    /// Be warned that setting a prefilter does not guarantee that the search
134    /// will be faster. While it's usually a good bet, if the prefilter
135    /// produces a lot of false positive candidates (i.e., positions matched
136    /// by the prefilter but not by the regex), then the overall result can
137    /// be slower than if you had just executed the regex engine without any
138    /// prefilters.
139    ///
140    /// Note that unless [`Config::specialize_start_states`] has been
141    /// explicitly set, then setting this will also enable (when `pre` is
142    /// `Some`) or disable (when `pre` is `None`) start state specialization.
143    /// This occurs because without start state specialization, a prefilter
144    /// is likely to be less effective. And without a prefilter, start state
145    /// specialization is usually pointless.
146    ///
147    /// **WARNING:** Note that prefilters are not preserved as part of
148    /// serialization. Serializing a DFA will drop its prefilter.
149    ///
150    /// By default no prefilter is set.
151    ///
152    /// # Example
153    ///
154    /// ```
155    /// use regex_automata::{
156    ///     dfa::{dense::DFA, Automaton},
157    ///     util::prefilter::Prefilter,
158    ///     Input, HalfMatch, MatchKind,
159    /// };
160    ///
161    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
162    /// let re = DFA::builder()
163    ///     .configure(DFA::config().prefilter(pre))
164    ///     .build(r"(foo|bar)[a-z]+")?;
165    /// let input = Input::new("foo1 barfox bar");
166    /// assert_eq!(
167    ///     Some(HalfMatch::must(0, 11)),
168    ///     re.try_search_fwd(&input)?,
169    /// );
170    ///
171    /// # Ok::<(), Box<dyn std::error::Error>>(())
172    /// ```
173    ///
174    /// Be warned though that an incorrect prefilter can lead to incorrect
175    /// results!
176    ///
177    /// ```
178    /// use regex_automata::{
179    ///     dfa::{dense::DFA, Automaton},
180    ///     util::prefilter::Prefilter,
181    ///     Input, HalfMatch, MatchKind,
182    /// };
183    ///
184    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
185    /// let re = DFA::builder()
186    ///     .configure(DFA::config().prefilter(pre))
187    ///     .build(r"(foo|bar)[a-z]+")?;
188    /// let input = Input::new("foo1 barfox bar");
189    /// assert_eq!(
190    ///     // No match reported even though there clearly is one!
191    ///     None,
192    ///     re.try_search_fwd(&input)?,
193    /// );
194    ///
195    /// # Ok::<(), Box<dyn std::error::Error>>(())
196    /// ```
197    pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
198        self.pre = Some(pre);
199        if self.specialize_start_states.is_none() {
200            self.specialize_start_states =
201                Some(self.get_prefilter().is_some());
202        }
203        self
204    }
205
206    /// Minimize the DFA.
207    ///
208    /// When enabled, the DFA built will be minimized such that it is as small
209    /// as possible.
210    ///
211    /// Whether one enables minimization or not depends on the types of costs
212    /// you're willing to pay and how much you care about its benefits. In
213    /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
214    /// space, where `n` is the number of DFA states and `k` is the alphabet
215    /// size. In practice, minimization can be quite costly in terms of both
216    /// space and time, so it should only be done if you're willing to wait
217    /// longer to produce a DFA. In general, you might want a minimal DFA in
218    /// the following circumstances:
219    ///
220    /// 1. You would like to optimize for the size of the automaton. This can
221    ///    manifest in one of two ways. Firstly, if you're converting the
222    ///    DFA into Rust code (or a table embedded in the code), then a minimal
223    ///    DFA will translate into a corresponding reduction in code  size, and
224    ///    thus, also the final compiled binary size. Secondly, if you are
225    ///    building many DFAs and putting them on the heap, you'll be able to
226    ///    fit more if they are smaller. Note though that building a minimal
227    ///    DFA itself requires additional space; you only realize the space
228    ///    savings once the minimal DFA is constructed (at which point, the
229    ///    space used for minimization is freed).
230    /// 2. You've observed that a smaller DFA results in faster match
231    ///    performance. Naively, this isn't guaranteed since there is no
232    ///    inherent difference between matching with a bigger-than-minimal
233    ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
234    ///    CPU's cache more efficiently.
235    /// 3. You are trying to establish an equivalence between regular
236    ///    languages. The standard method for this is to build a minimal DFA
237    ///    for each language and then compare them. If the DFAs are equivalent
238    ///    (up to state renaming), then the languages are equivalent.
239    ///
240    /// Typically, minimization only makes sense as an offline process. That
241    /// is, one might minimize a DFA before serializing it to persistent
242    /// storage. In practical terms, minimization can take around an order of
243    /// magnitude more time than compiling the initial DFA via determinization.
244    ///
245    /// This option is disabled by default.
246    pub fn minimize(mut self, yes: bool) -> Config {
247        self.minimize = Some(yes);
248        self
249    }
250
251    /// Set the desired match semantics.
252    ///
253    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
254    /// match semantics of Perl-like regex engines. That is, when multiple
255    /// patterns would match at the same leftmost position, the pattern that
256    /// appears first in the concrete syntax is chosen.
257    ///
258    /// Currently, the only other kind of match semantics supported is
259    /// [`MatchKind::All`]. This corresponds to classical DFA construction
260    /// where all possible matches are added to the DFA.
261    ///
262    /// Typically, `All` is used when one wants to execute an overlapping
263    /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
264    /// sense to use `All` with the various "leftmost" find routines, since the
265    /// leftmost routines depend on the `LeftmostFirst` automata construction
266    /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
267    /// as a way to terminate the search and report a match. `LeftmostFirst`
268    /// also supports non-greedy matches using this strategy where as `All`
269    /// does not.
270    ///
271    /// # Example: overlapping search
272    ///
273    /// This example shows the typical use of `MatchKind::All`, which is to
274    /// report overlapping matches.
275    ///
276    /// ```
277    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
278    /// use regex_automata::{
279    ///     dfa::{Automaton, OverlappingState, dense},
280    ///     HalfMatch, Input, MatchKind,
281    /// };
282    ///
283    /// let dfa = dense::Builder::new()
284    ///     .configure(dense::Config::new().match_kind(MatchKind::All))
285    ///     .build_many(&[r"\w+$", r"\S+$"])?;
286    /// let input = Input::new("@foo");
287    /// let mut state = OverlappingState::start();
288    ///
289    /// let expected = Some(HalfMatch::must(1, 4));
290    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
291    /// assert_eq!(expected, state.get_match());
292    ///
293    /// // The first pattern also matches at the same position, so re-running
294    /// // the search will yield another match. Notice also that the first
295    /// // pattern is returned after the second. This is because the second
296    /// // pattern begins its match before the first, is therefore an earlier
297    /// // match and is thus reported first.
298    /// let expected = Some(HalfMatch::must(0, 4));
299    /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
300    /// assert_eq!(expected, state.get_match());
301    ///
302    /// # Ok::<(), Box<dyn std::error::Error>>(())
303    /// ```
304    ///
305    /// # Example: reverse automaton to find start of match
306    ///
307    /// Another example for using `MatchKind::All` is for constructing a
308    /// reverse automaton to find the start of a match. `All` semantics are
309    /// used for this in order to find the longest possible match, which
310    /// corresponds to the leftmost starting position.
311    ///
312    /// Note that if you need the starting position then
313    /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
314    /// you, so it's usually not necessary to do this yourself.
315    ///
316    /// ```
317    /// use regex_automata::{
318    ///     dfa::{dense, Automaton, StartKind},
319    ///     nfa::thompson::NFA,
320    ///     Anchored, HalfMatch, Input, MatchKind,
321    /// };
322    ///
323    /// let haystack = "123foobar456".as_bytes();
324    /// let pattern = r"[a-z]+r";
325    ///
326    /// let dfa_fwd = dense::DFA::new(pattern)?;
327    /// let dfa_rev = dense::Builder::new()
328    ///     .thompson(NFA::config().reverse(true))
329    ///     .configure(dense::Config::new()
330    ///         // This isn't strictly necessary since both anchored and
331    ///         // unanchored searches are supported by default. But since
332    ///         // finding the start-of-match only requires anchored searches,
333    ///         // we can get rid of the unanchored configuration and possibly
334    ///         // slim down our DFA considerably.
335    ///         .start_kind(StartKind::Anchored)
336    ///         .match_kind(MatchKind::All)
337    ///     )
338    ///     .build(pattern)?;
339    /// let expected_fwd = HalfMatch::must(0, 9);
340    /// let expected_rev = HalfMatch::must(0, 3);
341    /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap();
342    /// // Here we don't specify the pattern to search for since there's only
343    /// // one pattern and we're doing a leftmost search. But if this were an
344    /// // overlapping search, you'd need to specify the pattern that matched
345    /// // in the forward direction. (Otherwise, you might wind up finding the
346    /// // starting position of a match of some other pattern.) That in turn
347    /// // requires building the reverse automaton with starts_for_each_pattern
348    /// // enabled. Indeed, this is what Regex does internally.
349    /// let input = Input::new(haystack)
350    ///     .range(..got_fwd.offset())
351    ///     .anchored(Anchored::Yes);
352    /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap();
353    /// assert_eq!(expected_fwd, got_fwd);
354    /// assert_eq!(expected_rev, got_rev);
355    ///
356    /// # Ok::<(), Box<dyn std::error::Error>>(())
357    /// ```
358    pub fn match_kind(mut self, kind: MatchKind) -> Config {
359        self.match_kind = Some(kind);
360        self
361    }
362
363    /// The type of starting state configuration to use for a DFA.
364    ///
365    /// By default, the starting state configuration is [`StartKind::Both`].
366    ///
367    /// # Example
368    ///
369    /// ```
370    /// use regex_automata::{
371    ///     dfa::{dense::DFA, Automaton, StartKind},
372    ///     Anchored, HalfMatch, Input,
373    /// };
374    ///
375    /// let haystack = "quux foo123";
376    /// let expected = HalfMatch::must(0, 11);
377    ///
378    /// // By default, DFAs support both anchored and unanchored searches.
379    /// let dfa = DFA::new(r"[0-9]+")?;
380    /// let input = Input::new(haystack);
381    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
382    ///
383    /// // But if we only need anchored searches, then we can build a DFA
384    /// // that only supports anchored searches. This leads to a smaller DFA
385    /// // (potentially significantly smaller in some cases), but a DFA that
386    /// // will panic if you try to use it with an unanchored search.
387    /// let dfa = DFA::builder()
388    ///     .configure(DFA::config().start_kind(StartKind::Anchored))
389    ///     .build(r"[0-9]+")?;
390    /// let input = Input::new(haystack)
391    ///     .range(8..)
392    ///     .anchored(Anchored::Yes);
393    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
394    ///
395    /// # Ok::<(), Box<dyn std::error::Error>>(())
396    /// ```
397    pub fn start_kind(mut self, kind: StartKind) -> Config {
398        self.start_kind = Some(kind);
399        self
400    }
401
402    /// Whether to compile a separate start state for each pattern in the
403    /// automaton.
404    ///
405    /// When enabled, a separate **anchored** start state is added for each
406    /// pattern in the DFA. When this start state is used, then the DFA will
407    /// only search for matches for the pattern specified, even if there are
408    /// other patterns in the DFA.
409    ///
410    /// The main downside of this option is that it can potentially increase
411    /// the size of the DFA and/or increase the time it takes to build the DFA.
412    ///
413    /// There are a few reasons one might want to enable this (it's disabled
414    /// by default):
415    ///
416    /// 1. When looking for the start of an overlapping match (using a
417    /// reverse DFA), doing it correctly requires starting the reverse search
418    /// using the starting state of the pattern that matched in the forward
419    /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
420    /// it will automatically enable this option when building the reverse DFA
421    /// internally.
422    /// 2. When you want to use a DFA with multiple patterns to both search
423    /// for matches of any pattern or to search for anchored matches of one
424    /// particular pattern while using the same DFA. (Otherwise, you would need
425    /// to compile a new DFA for each pattern.)
426    /// 3. Since the start states added for each pattern are anchored, if you
427    /// compile an unanchored DFA with one pattern while also enabling this
428    /// option, then you can use the same DFA to perform anchored or unanchored
429    /// searches. The latter you get with the standard search APIs. The former
430    /// you get from the various `_at` search methods that allow you specify a
431    /// pattern ID to search for.
432    ///
433    /// By default this is disabled.
434    ///
435    /// # Example
436    ///
437    /// This example shows how to use this option to permit the same DFA to
438    /// run both anchored and unanchored searches for a single pattern.
439    ///
440    /// ```
441    /// use regex_automata::{
442    ///     dfa::{dense, Automaton},
443    ///     Anchored, HalfMatch, PatternID, Input,
444    /// };
445    ///
446    /// let dfa = dense::Builder::new()
447    ///     .configure(dense::Config::new().starts_for_each_pattern(true))
448    ///     .build(r"foo[0-9]+")?;
449    /// let haystack = "quux foo123";
450    ///
451    /// // Here's a normal unanchored search. Notice that we use 'None' for the
452    /// // pattern ID. Since the DFA was built as an unanchored machine, it
453    /// // use its default unanchored starting state.
454    /// let expected = HalfMatch::must(0, 11);
455    /// let input = Input::new(haystack);
456    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
457    /// // But now if we explicitly specify the pattern to search ('0' being
458    /// // the only pattern in the DFA), then it will use the starting state
459    /// // for that specific pattern which is always anchored. Since the
460    /// // pattern doesn't have a match at the beginning of the haystack, we
461    /// // find nothing.
462    /// let input = Input::new(haystack)
463    ///     .anchored(Anchored::Pattern(PatternID::must(0)));
464    /// assert_eq!(None, dfa.try_search_fwd(&input)?);
465    /// // And finally, an anchored search is not the same as putting a '^' at
466    /// // beginning of the pattern. An anchored search can only match at the
467    /// // beginning of the *search*, which we can change:
468    /// let input = Input::new(haystack)
469    ///     .anchored(Anchored::Pattern(PatternID::must(0)))
470    ///     .range(5..);
471    /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
472    ///
473    /// # Ok::<(), Box<dyn std::error::Error>>(())
474    /// ```
475    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
476        self.starts_for_each_pattern = Some(yes);
477        self
478    }
479
480    /// Whether to attempt to shrink the size of the DFA's alphabet or not.
481    ///
482    /// This option is enabled by default and should never be disabled unless
483    /// one is debugging a generated DFA.
484    ///
485    /// When enabled, the DFA will use a map from all possible bytes to their
486    /// corresponding equivalence class. Each equivalence class represents a
487    /// set of bytes that does not discriminate between a match and a non-match
488    /// in the DFA. For example, the pattern `[ab]+` has at least two
489    /// equivalence classes: a set containing `a` and `b` and a set containing
490    /// every byte except for `a` and `b`. `a` and `b` are in the same
491    /// equivalence class because they never discriminate between a match and a
492    /// non-match.
493    ///
494    /// The advantage of this map is that the size of the transition table
495    /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
496    /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
497    /// classes (rounded up to the nearest power of 2). As a result, total
498    /// space usage can decrease substantially. Moreover, since a smaller
499    /// alphabet is used, DFA compilation becomes faster as well.
500    ///
501    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
502    /// does not yield any speed advantages. Namely, even when this is
503    /// disabled, a byte class map is still used while searching. The only
504    /// difference is that every byte will be forced into its own distinct
505    /// equivalence class. This is useful for debugging the actual generated
506    /// transitions because it lets one see the transitions defined on actual
507    /// bytes instead of the equivalence classes.
508    pub fn byte_classes(mut self, yes: bool) -> Config {
509        self.byte_classes = Some(yes);
510        self
511    }
512
513    /// Heuristically enable Unicode word boundaries.
514    ///
515    /// When set, this will attempt to implement Unicode word boundaries as if
516    /// they were ASCII word boundaries. This only works when the search input
517    /// is ASCII only. If a non-ASCII byte is observed while searching, then a
518    /// [`MatchError::quit`](crate::MatchError::quit) error is returned.
519    ///
520    /// A possible alternative to enabling this option is to simply use an
521    /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
522    /// option is if you absolutely need Unicode support. This option lets one
523    /// use a fast search implementation (a DFA) for some potentially very
524    /// common cases, while providing the option to fall back to some other
525    /// regex engine to handle the general case when an error is returned.
526    ///
527    /// If the pattern provided has no Unicode word boundary in it, then this
528    /// option has no effect. (That is, quitting on a non-ASCII byte only
529    /// occurs when this option is enabled _and_ a Unicode word boundary is
530    /// present in the pattern.)
531    ///
532    /// This is almost equivalent to setting all non-ASCII bytes to be quit
533    /// bytes. The only difference is that this will cause non-ASCII bytes to
534    /// be quit bytes _only_ when a Unicode word boundary is present in the
535    /// pattern.
536    ///
537    /// When enabling this option, callers _must_ be prepared to handle
538    /// a [`MatchError`](crate::MatchError) error during search.
539    /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
540    /// to using the `try_` suite of methods. Alternatively, if
541    /// callers can guarantee that their input is ASCII only, then a
542    /// [`MatchError::quit`](crate::MatchError::quit) error will never be
543    /// returned while searching.
544    ///
545    /// This is disabled by default.
546    ///
547    /// # Example
548    ///
549    /// This example shows how to heuristically enable Unicode word boundaries
550    /// in a pattern. It also shows what happens when a search comes across a
551    /// non-ASCII byte.
552    ///
553    /// ```
554    /// use regex_automata::{
555    ///     dfa::{Automaton, dense},
556    ///     HalfMatch, Input, MatchError,
557    /// };
558    ///
559    /// let dfa = dense::Builder::new()
560    ///     .configure(dense::Config::new().unicode_word_boundary(true))
561    ///     .build(r"\b[0-9]+\b")?;
562    ///
563    /// // The match occurs before the search ever observes the snowman
564    /// // character, so no error occurs.
565    /// let haystack = "foo 123  ☃".as_bytes();
566    /// let expected = Some(HalfMatch::must(0, 7));
567    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
568    /// assert_eq!(expected, got);
569    ///
570    /// // Notice that this search fails, even though the snowman character
571    /// // occurs after the ending match offset. This is because search
572    /// // routines read one byte past the end of the search to account for
573    /// // look-around, and indeed, this is required here to determine whether
574    /// // the trailing \b matches.
575    /// let haystack = "foo 123 ☃".as_bytes();
576    /// let expected = MatchError::quit(0xE2, 8);
577    /// let got = dfa.try_search_fwd(&Input::new(haystack));
578    /// assert_eq!(Err(expected), got);
579    ///
580    /// // Another example is executing a search where the span of the haystack
581    /// // we specify is all ASCII, but there is non-ASCII just before it. This
582    /// // correctly also reports an error.
583    /// let input = Input::new("β123").range(2..);
584    /// let expected = MatchError::quit(0xB2, 1);
585    /// let got = dfa.try_search_fwd(&input);
586    /// assert_eq!(Err(expected), got);
587    ///
588    /// // And similarly for the trailing word boundary.
589    /// let input = Input::new("123β").range(..3);
590    /// let expected = MatchError::quit(0xCE, 3);
591    /// let got = dfa.try_search_fwd(&input);
592    /// assert_eq!(Err(expected), got);
593    ///
594    /// # Ok::<(), Box<dyn std::error::Error>>(())
595    /// ```
596    pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
597        // We have a separate option for this instead of just setting the
598        // appropriate quit bytes here because we don't want to set quit bytes
599        // for every regex. We only want to set them when the regex contains a
600        // Unicode word boundary.
601        self.unicode_word_boundary = Some(yes);
602        self
603    }
604
605    /// Add a "quit" byte to the DFA.
606    ///
607    /// When a quit byte is seen during search time, then search will return
608    /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the
609    /// offset at which the search stopped.
610    ///
611    /// A quit byte will always overrule any other aspects of a regex. For
612    /// example, if the `x` byte is added as a quit byte and the regex `\w` is
613    /// used, then observing `x` will cause the search to quit immediately
614    /// despite the fact that `x` is in the `\w` class.
615    ///
616    /// This mechanism is primarily useful for heuristically enabling certain
617    /// features like Unicode word boundaries in a DFA. Namely, if the input
618    /// to search is ASCII, then a Unicode word boundary can be implemented
619    /// via an ASCII word boundary with no change in semantics. Thus, a DFA
620    /// can attempt to match a Unicode word boundary but give up as soon as it
621    /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
622    /// to be quit bytes, then Unicode word boundaries will be permitted when
623    /// building DFAs. Of course, callers should enable
624    /// [`Config::unicode_word_boundary`] if they want this behavior instead.
625    /// (The advantage being that non-ASCII quit bytes will only be added if a
626    /// Unicode word boundary is in the pattern.)
627    ///
628    /// When enabling this option, callers _must_ be prepared to handle a
629    /// [`MatchError`](crate::MatchError) error during search. When using a
630    /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
631    /// `try_` suite of methods.
632    ///
633    /// By default, there are no quit bytes set.
634    ///
635    /// # Panics
636    ///
637    /// This panics if heuristic Unicode word boundaries are enabled and any
638    /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
639    /// Unicode word boundaries requires setting every non-ASCII byte to a quit
640    /// byte. So if the caller attempts to undo any of that, then this will
641    /// panic.
642    ///
643    /// # Example
644    ///
645    /// This example shows how to cause a search to terminate if it sees a
646    /// `\n` byte. This could be useful if, for example, you wanted to prevent
647    /// a user supplied pattern from matching across a line boundary.
648    ///
649    /// ```
650    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
651    /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError};
652    ///
653    /// let dfa = dense::Builder::new()
654    ///     .configure(dense::Config::new().quit(b'\n', true))
655    ///     .build(r"foo\p{any}+bar")?;
656    ///
657    /// let haystack = "foo\nbar".as_bytes();
658    /// // Normally this would produce a match, since \p{any} contains '\n'.
659    /// // But since we instructed the automaton to enter a quit state if a
660    /// // '\n' is observed, this produces a match error instead.
661    /// let expected = MatchError::quit(b'\n', 3);
662    /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err();
663    /// assert_eq!(expected, got);
664    ///
665    /// # Ok::<(), Box<dyn std::error::Error>>(())
666    /// ```
667    pub fn quit(mut self, byte: u8, yes: bool) -> Config {
668        if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
669            panic!(
670                "cannot set non-ASCII byte to be non-quit when \
671                 Unicode word boundaries are enabled"
672            );
673        }
674        if self.quitset.is_none() {
675            self.quitset = Some(ByteSet::empty());
676        }
677        if yes {
678            self.quitset.as_mut().unwrap().add(byte);
679        } else {
680            self.quitset.as_mut().unwrap().remove(byte);
681        }
682        self
683    }
684
685    /// Enable specializing start states in the DFA.
686    ///
687    /// When start states are specialized, an implementor of a search routine
688    /// using a lazy DFA can tell when the search has entered a starting state.
689    /// When start states aren't specialized, then it is impossible to know
690    /// whether the search has entered a start state.
691    ///
692    /// Ideally, this option wouldn't need to exist and we could always
693    /// specialize start states. The problem is that start states can be quite
694    /// active. This in turn means that an efficient search routine is likely
695    /// to ping-pong between a heavily optimized hot loop that handles most
696    /// states and to a less optimized specialized handling of start states.
697    /// This causes branches to get heavily mispredicted and overall can
698    /// materially decrease throughput. Therefore, specializing start states
699    /// should only be enabled when it is needed.
700    ///
701    /// Knowing whether a search is in a start state is typically useful when a
702    /// prefilter is active for the search. A prefilter is typically only run
703    /// when in a start state and a prefilter can greatly accelerate a search.
704    /// Therefore, the possible cost of specializing start states is worth it
705    /// in this case. Otherwise, if you have no prefilter, there is likely no
706    /// reason to specialize start states.
707    ///
708    /// This is disabled by default, but note that it is automatically
709    /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
710    /// `specialize_start_states` has already been set, [`Config::prefilter`]
711    /// will automatically enable or disable it based on whether a prefilter
712    /// is present or not, respectively. This is done because a prefilter's
713    /// effectiveness is rooted in being executed whenever the DFA is in a
714    /// start state, and that's only possible to do when they are specialized.
715    ///
716    /// Note that it is plausibly reasonable to _disable_ this option
717    /// explicitly while _enabling_ a prefilter. In that case, a prefilter
718    /// will still be run at the beginning of a search, but never again. This
719    /// in theory could strike a good balance if you're in a situation where a
720    /// prefilter is likely to produce many false positive candidates.
721    ///
722    /// # Example
723    ///
724    /// This example shows how to enable start state specialization and then
725    /// shows how to check whether a state is a start state or not.
726    ///
727    /// ```
728    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
729    ///
730    /// let dfa = DFA::builder()
731    ///     .configure(DFA::config().specialize_start_states(true))
732    ///     .build(r"[a-z]+")?;
733    ///
734    /// let haystack = "123 foobar 4567".as_bytes();
735    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
736    /// // The ID returned by 'start_state_forward' will always be tagged as
737    /// // a start state when start state specialization is enabled.
738    /// assert!(dfa.is_special_state(sid));
739    /// assert!(dfa.is_start_state(sid));
740    ///
741    /// # Ok::<(), Box<dyn std::error::Error>>(())
742    /// ```
743    ///
744    /// Compare the above with the default DFA configuration where start states
745    /// are _not_ specialized. In this case, the start state is not tagged at
746    /// all:
747    ///
748    /// ```
749    /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
750    ///
751    /// let dfa = DFA::new(r"[a-z]+")?;
752    ///
753    /// let haystack = "123 foobar 4567";
754    /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
755    /// // Start states are not special in the default configuration!
756    /// assert!(!dfa.is_special_state(sid));
757    /// assert!(!dfa.is_start_state(sid));
758    ///
759    /// # Ok::<(), Box<dyn std::error::Error>>(())
760    /// ```
761    pub fn specialize_start_states(mut self, yes: bool) -> Config {
762        self.specialize_start_states = Some(yes);
763        self
764    }
765
766    /// Set a size limit on the total heap used by a DFA.
767    ///
768    /// This size limit is expressed in bytes and is applied during
769    /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
770    /// the DFA, exceeds this configured limit, then determinization is stopped
771    /// and an error is returned.
772    ///
773    /// This limit does not apply to auxiliary storage used during
774    /// determinization that isn't part of the generated DFA.
775    ///
776    /// This limit is only applied during determinization. Currently, there is
777    /// no way to post-pone this check to after minimization if minimization
778    /// was enabled.
779    ///
780    /// The total limit on heap used during determinization is the sum of the
781    /// DFA and determinization size limits.
782    ///
783    /// The default is no limit.
784    ///
785    /// # Example
786    ///
787    /// This example shows a DFA that fails to build because of a configured
788    /// size limit. This particular example also serves as a cautionary tale
789    /// demonstrating just how big DFAs with large Unicode character classes
790    /// can get.
791    ///
792    /// ```
793    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
794    /// use regex_automata::{dfa::{dense, Automaton}, Input};
795    ///
796    /// // 6MB isn't enough!
797    /// dense::Builder::new()
798    ///     .configure(dense::Config::new().dfa_size_limit(Some(6_000_000)))
799    ///     .build(r"\w{20}")
800    ///     .unwrap_err();
801    ///
802    /// // ... but 7MB probably is!
803    /// // (Note that DFA sizes aren't necessarily stable between releases.)
804    /// let dfa = dense::Builder::new()
805    ///     .configure(dense::Config::new().dfa_size_limit(Some(7_000_000)))
806    ///     .build(r"\w{20}")?;
807    /// let haystack = "A".repeat(20).into_bytes();
808    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
809    ///
810    /// # Ok::<(), Box<dyn std::error::Error>>(())
811    /// ```
812    ///
813    /// While one needs a little more than 6MB to represent `\w{20}`, it
814    /// turns out that you only need a little more than 6KB to represent
815    /// `(?-u:\w{20})`. So only use Unicode if you need it!
816    ///
817    /// As with [`Config::determinize_size_limit`], the size of a DFA is
818    /// influenced by other factors, such as what start state configurations
819    /// to support. For example, if you only need unanchored searches and not
820    /// anchored searches, then configuring the DFA to only support unanchored
821    /// searches can reduce its size. By default, DFAs support both unanchored
822    /// and anchored searches.
823    ///
824    /// ```
825    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
826    /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input};
827    ///
828    /// // 3MB isn't enough!
829    /// dense::Builder::new()
830    ///     .configure(dense::Config::new()
831    ///         .dfa_size_limit(Some(3_000_000))
832    ///         .start_kind(StartKind::Unanchored)
833    ///     )
834    ///     .build(r"\w{20}")
835    ///     .unwrap_err();
836    ///
837    /// // ... but 4MB probably is!
838    /// // (Note that DFA sizes aren't necessarily stable between releases.)
839    /// let dfa = dense::Builder::new()
840    ///     .configure(dense::Config::new()
841    ///         .dfa_size_limit(Some(4_000_000))
842    ///         .start_kind(StartKind::Unanchored)
843    ///     )
844    ///     .build(r"\w{20}")?;
845    /// let haystack = "A".repeat(20).into_bytes();
846    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
847    ///
848    /// # Ok::<(), Box<dyn std::error::Error>>(())
849    /// ```
850    pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
851        self.dfa_size_limit = Some(bytes);
852        self
853    }
854
855    /// Set a size limit on the total heap used by determinization.
856    ///
857    /// This size limit is expressed in bytes and is applied during
858    /// determinization of an NFA into a DFA. If the heap used for auxiliary
859    /// storage during determinization (memory that is not in the DFA but
860    /// necessary for building the DFA) exceeds this configured limit, then
861    /// determinization is stopped and an error is returned.
862    ///
863    /// This limit does not apply to heap used by the DFA itself.
864    ///
865    /// The total limit on heap used during determinization is the sum of the
866    /// DFA and determinization size limits.
867    ///
868    /// The default is no limit.
869    ///
870    /// # Example
871    ///
872    /// This example shows a DFA that fails to build because of a
873    /// configured size limit on the amount of heap space used by
874    /// determinization. This particular example complements the example for
875    /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
876    /// potentially make DFAs themselves big, but it also results in more
877    /// auxiliary storage during determinization. (Although, auxiliary storage
878    /// is still not as much as the DFA itself.)
879    ///
880    /// ```
881    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
882    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
883    /// use regex_automata::{dfa::{dense, Automaton}, Input};
884    ///
885    /// // 700KB isn't enough!
886    /// dense::Builder::new()
887    ///     .configure(dense::Config::new()
888    ///         .determinize_size_limit(Some(700_000))
889    ///     )
890    ///     .build(r"\w{20}")
891    ///     .unwrap_err();
892    ///
893    /// // ... but 800KB probably is!
894    /// // (Note that auxiliary storage sizes aren't necessarily stable between
895    /// // releases.)
896    /// let dfa = dense::Builder::new()
897    ///     .configure(dense::Config::new()
898    ///         .determinize_size_limit(Some(800_000))
899    ///     )
900    ///     .build(r"\w{20}")?;
901    /// let haystack = "A".repeat(20).into_bytes();
902    /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
903    ///
904    /// # Ok::<(), Box<dyn std::error::Error>>(())
905    /// ```
906    ///
907    /// Note that some parts of the configuration on a DFA can have a
908    /// big impact on how big the DFA is, and thus, how much memory is
909    /// used. For example, the default setting for [`Config::start_kind`] is
910    /// [`StartKind::Both`]. But if you only need an anchored search, for
911    /// example, then it can be much cheaper to build a DFA that only supports
912    /// anchored searches. (Running an unanchored search with it would panic.)
913    ///
914    /// ```
915    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
916    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
917    /// use regex_automata::{
918    ///     dfa::{dense, Automaton, StartKind},
919    ///     Anchored, Input,
920    /// };
921    ///
922    /// // 200KB isn't enough!
923    /// dense::Builder::new()
924    ///     .configure(dense::Config::new()
925    ///         .determinize_size_limit(Some(200_000))
926    ///         .start_kind(StartKind::Anchored)
927    ///     )
928    ///     .build(r"\w{20}")
929    ///     .unwrap_err();
930    ///
931    /// // ... but 300KB probably is!
932    /// // (Note that auxiliary storage sizes aren't necessarily stable between
933    /// // releases.)
934    /// let dfa = dense::Builder::new()
935    ///     .configure(dense::Config::new()
936    ///         .determinize_size_limit(Some(300_000))
937    ///         .start_kind(StartKind::Anchored)
938    ///     )
939    ///     .build(r"\w{20}")?;
940    /// let haystack = "A".repeat(20).into_bytes();
941    /// let input = Input::new(&haystack).anchored(Anchored::Yes);
942    /// assert!(dfa.try_search_fwd(&input)?.is_some());
943    ///
944    /// # Ok::<(), Box<dyn std::error::Error>>(())
945    /// ```
946    pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
947        self.determinize_size_limit = Some(bytes);
948        self
949    }
950
951    /// Returns whether this configuration has enabled simple state
952    /// acceleration.
953    pub fn get_accelerate(&self) -> bool {
954        self.accelerate.unwrap_or(true)
955    }
956
957    /// Returns the prefilter attached to this configuration, if any.
958    pub fn get_prefilter(&self) -> Option<&Prefilter> {
959        self.pre.as_ref().unwrap_or(&None).as_ref()
960    }
961
962    /// Returns whether this configuration has enabled the expensive process
963    /// of minimizing a DFA.
964    pub fn get_minimize(&self) -> bool {
965        self.minimize.unwrap_or(false)
966    }
967
968    /// Returns the match semantics set in this configuration.
969    pub fn get_match_kind(&self) -> MatchKind {
970        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
971    }
972
973    /// Returns the starting state configuration for a DFA.
974    pub fn get_starts(&self) -> StartKind {
975        self.start_kind.unwrap_or(StartKind::Both)
976    }
977
978    /// Returns whether this configuration has enabled anchored starting states
979    /// for every pattern in the DFA.
980    pub fn get_starts_for_each_pattern(&self) -> bool {
981        self.starts_for_each_pattern.unwrap_or(false)
982    }
983
984    /// Returns whether this configuration has enabled byte classes or not.
985    /// This is typically a debugging oriented option, as disabling it confers
986    /// no speed benefit.
987    pub fn get_byte_classes(&self) -> bool {
988        self.byte_classes.unwrap_or(true)
989    }
990
991    /// Returns whether this configuration has enabled heuristic Unicode word
992    /// boundary support. When enabled, it is possible for a search to return
993    /// an error.
994    pub fn get_unicode_word_boundary(&self) -> bool {
995        self.unicode_word_boundary.unwrap_or(false)
996    }
997
998    /// Returns whether this configuration will instruct the DFA to enter a
999    /// quit state whenever the given byte is seen during a search. When at
1000    /// least one byte has this enabled, it is possible for a search to return
1001    /// an error.
1002    pub fn get_quit(&self, byte: u8) -> bool {
1003        self.quitset.map_or(false, |q| q.contains(byte))
1004    }
1005
1006    /// Returns whether this configuration will instruct the DFA to
1007    /// "specialize" start states. When enabled, the DFA will mark start states
1008    /// as "special" so that search routines using the DFA can detect when
1009    /// it's in a start state and do some kind of optimization (like run a
1010    /// prefilter).
1011    pub fn get_specialize_start_states(&self) -> bool {
1012        self.specialize_start_states.unwrap_or(false)
1013    }
1014
1015    /// Returns the DFA size limit of this configuration if one was set.
1016    /// The size limit is total number of bytes on the heap that a DFA is
1017    /// permitted to use. If the DFA exceeds this limit during construction,
1018    /// then construction is stopped and an error is returned.
1019    pub fn get_dfa_size_limit(&self) -> Option<usize> {
1020        self.dfa_size_limit.unwrap_or(None)
1021    }
1022
1023    /// Returns the determinization size limit of this configuration if one
1024    /// was set. The size limit is total number of bytes on the heap that
1025    /// determinization is permitted to use. If determinization exceeds this
1026    /// limit during construction, then construction is stopped and an error is
1027    /// returned.
1028    ///
1029    /// This is different from the DFA size limit in that this only applies to
1030    /// the auxiliary storage used during determinization. Once determinization
1031    /// is complete, this memory is freed.
1032    ///
1033    /// The limit on the total heap memory used is the sum of the DFA and
1034    /// determinization size limits.
1035    pub fn get_determinize_size_limit(&self) -> Option<usize> {
1036        self.determinize_size_limit.unwrap_or(None)
1037    }
1038
1039    /// Overwrite the default configuration such that the options in `o` are
1040    /// always used. If an option in `o` is not set, then the corresponding
1041    /// option in `self` is used. If it's not set in `self` either, then it
1042    /// remains not set.
1043    pub(crate) fn overwrite(&self, o: Config) -> Config {
1044        Config {
1045            accelerate: o.accelerate.or(self.accelerate),
1046            pre: o.pre.or_else(|| self.pre.clone()),
1047            minimize: o.minimize.or(self.minimize),
1048            match_kind: o.match_kind.or(self.match_kind),
1049            start_kind: o.start_kind.or(self.start_kind),
1050            starts_for_each_pattern: o
1051                .starts_for_each_pattern
1052                .or(self.starts_for_each_pattern),
1053            byte_classes: o.byte_classes.or(self.byte_classes),
1054            unicode_word_boundary: o
1055                .unicode_word_boundary
1056                .or(self.unicode_word_boundary),
1057            quitset: o.quitset.or(self.quitset),
1058            specialize_start_states: o
1059                .specialize_start_states
1060                .or(self.specialize_start_states),
1061            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
1062            determinize_size_limit: o
1063                .determinize_size_limit
1064                .or(self.determinize_size_limit),
1065        }
1066    }
1067}
1068
1069/// A builder for constructing a deterministic finite automaton from regular
1070/// expressions.
1071///
1072/// This builder provides two main things:
1073///
1074/// 1. It provides a few different `build` routines for actually constructing
1075/// a DFA from different kinds of inputs. The most convenient is
1076/// [`Builder::build`], which builds a DFA directly from a pattern string. The
1077/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
1078/// from an NFA.
1079/// 2. The builder permits configuring a number of things.
1080/// [`Builder::configure`] is used with [`Config`] to configure aspects of
1081/// the DFA and the construction process itself. [`Builder::syntax`] and
1082/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
1083/// construction, respectively. The syntax and thompson configurations only
1084/// apply when building from a pattern string.
1085///
1086/// This builder always constructs a *single* DFA. As such, this builder
1087/// can only be used to construct regexes that either detect the presence
1088/// of a match or find the end location of a match. A single DFA cannot
1089/// produce both the start and end of a match. For that information, use a
1090/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
1091/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
1092/// use a DFA directly is if the end location of a match is enough for your use
1093/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
1094/// second reverse DFA is needed to find the start of a match.
1095///
1096/// Note that if one wants to build a sparse DFA, you must first build a dense
1097/// DFA and convert that to a sparse DFA. There is no way to build a sparse
1098/// DFA without first building a dense DFA.
1099///
1100/// # Example
1101///
1102/// This example shows how to build a minimized DFA that completely disables
1103/// Unicode. That is:
1104///
1105/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
1106///   and `\b` are ASCII-only while `.` matches any byte except for `\n`
1107///   (instead of any UTF-8 encoding of a Unicode scalar value except for
1108///   `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
1109/// * The pattern itself is permitted to match invalid UTF-8. For example,
1110///   things like `[^a]` that match any byte except for `a` are permitted.
1111///
1112/// ```
1113/// use regex_automata::{
1114///     dfa::{Automaton, dense},
1115///     util::syntax,
1116///     HalfMatch, Input,
1117/// };
1118///
1119/// let dfa = dense::Builder::new()
1120///     .configure(dense::Config::new().minimize(false))
1121///     .syntax(syntax::Config::new().unicode(false).utf8(false))
1122///     .build(r"foo[^b]ar.*")?;
1123///
1124/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
1125/// let expected = Some(HalfMatch::must(0, 10));
1126/// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1127/// assert_eq!(expected, got);
1128///
1129/// # Ok::<(), Box<dyn std::error::Error>>(())
1130/// ```
1131#[cfg(feature = "dfa-build")]
1132#[derive(Clone, Debug)]
1133pub struct Builder {
1134    config: Config,
1135    #[cfg(feature = "syntax")]
1136    thompson: thompson::Compiler,
1137}
1138
1139#[cfg(feature = "dfa-build")]
1140impl Builder {
1141    /// Create a new dense DFA builder with the default configuration.
1142    pub fn new() -> Builder {
1143        Builder {
1144            config: Config::default(),
1145            #[cfg(feature = "syntax")]
1146            thompson: thompson::Compiler::new(),
1147        }
1148    }
1149
1150    /// Build a DFA from the given pattern.
1151    ///
1152    /// If there was a problem parsing or compiling the pattern, then an error
1153    /// is returned.
1154    #[cfg(feature = "syntax")]
1155    pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> {
1156        self.build_many(&[pattern])
1157    }
1158
1159    /// Build a DFA from the given patterns.
1160    ///
1161    /// When matches are returned, the pattern ID corresponds to the index of
1162    /// the pattern in the slice given.
1163    #[cfg(feature = "syntax")]
1164    pub fn build_many<P: AsRef<str>>(
1165        &self,
1166        patterns: &[P],
1167    ) -> Result<OwnedDFA, BuildError> {
1168        let nfa = self
1169            .thompson
1170            .clone()
1171            // We can always forcefully disable captures because DFAs do not
1172            // support them.
1173            .configure(
1174                thompson::Config::new()
1175                    .which_captures(thompson::WhichCaptures::None),
1176            )
1177            .build_many(patterns)
1178            .map_err(BuildError::nfa)?;
1179        self.build_from_nfa(&nfa)
1180    }
1181
1182    /// Build a DFA from the given NFA.
1183    ///
1184    /// # Example
1185    ///
1186    /// This example shows how to build a DFA if you already have an NFA in
1187    /// hand.
1188    ///
1189    /// ```
1190    /// use regex_automata::{
1191    ///     dfa::{Automaton, dense},
1192    ///     nfa::thompson::NFA,
1193    ///     HalfMatch, Input,
1194    /// };
1195    ///
1196    /// let haystack = "foo123bar".as_bytes();
1197    ///
1198    /// // This shows how to set non-default options for building an NFA.
1199    /// let nfa = NFA::compiler()
1200    ///     .configure(NFA::config().shrink(true))
1201    ///     .build(r"[0-9]+")?;
1202    /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
1203    /// let expected = Some(HalfMatch::must(0, 6));
1204    /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
1205    /// assert_eq!(expected, got);
1206    ///
1207    /// # Ok::<(), Box<dyn std::error::Error>>(())
1208    /// ```
1209    pub fn build_from_nfa(
1210        &self,
1211        nfa: &thompson::NFA,
1212    ) -> Result<OwnedDFA, BuildError> {
1213        let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty());
1214        if self.config.get_unicode_word_boundary()
1215            && nfa.look_set_any().contains_word_unicode()
1216        {
1217            for b in 0x80..=0xFF {
1218                quitset.add(b);
1219            }
1220        }
1221        let classes = if !self.config.get_byte_classes() {
1222            // DFAs will always use the equivalence class map, but enabling
1223            // this option is useful for debugging. Namely, this will cause all
1224            // transitions to be defined over their actual bytes instead of an
1225            // opaque equivalence class identifier. The former is much easier
1226            // to grok as a human.
1227            ByteClasses::singletons()
1228        } else {
1229            let mut set = nfa.byte_class_set().clone();
1230            // It is important to distinguish any "quit" bytes from all other
1231            // bytes. Otherwise, a non-quit byte may end up in the same
1232            // class as a quit byte, and thus cause the DFA to stop when it
1233            // shouldn't.
1234            //
1235            // Test case:
1236            //
1237            //   regex-cli find match dense --unicode-word-boundary \
1238            //     -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
1239            if !quitset.is_empty() {
1240                set.add_set(&quitset);
1241            }
1242            set.byte_classes()
1243        };
1244
1245        let mut dfa = DFA::initial(
1246            classes,
1247            nfa.pattern_len(),
1248            self.config.get_starts(),
1249            nfa.look_matcher(),
1250            self.config.get_starts_for_each_pattern(),
1251            self.config.get_prefilter().map(|p| p.clone()),
1252            quitset,
1253            Flags::from_nfa(&nfa),
1254        )?;
1255        determinize::Config::new()
1256            .match_kind(self.config.get_match_kind())
1257            .quit(quitset)
1258            .dfa_size_limit(self.config.get_dfa_size_limit())
1259            .determinize_size_limit(self.config.get_determinize_size_limit())
1260            .run(nfa, &mut dfa)?;
1261        if self.config.get_minimize() {
1262            dfa.minimize();
1263        }
1264        if self.config.get_accelerate() {
1265            dfa.accelerate();
1266        }
1267        // The state shuffling done before this point always assumes that start
1268        // states should be marked as "special," even though it isn't the
1269        // default configuration. State shuffling is complex enough as it is,
1270        // so it's simpler to just "fix" our special state ID ranges to not
1271        // include starting states after-the-fact.
1272        if !self.config.get_specialize_start_states() {
1273            dfa.special.set_no_special_start_states();
1274        }
1275        // Look for and set the universal starting states.
1276        dfa.set_universal_starts();
1277        Ok(dfa)
1278    }
1279
1280    /// Apply the given dense DFA configuration options to this builder.
1281    pub fn configure(&mut self, config: Config) -> &mut Builder {
1282        self.config = self.config.overwrite(config);
1283        self
1284    }
1285
1286    /// Set the syntax configuration for this builder using
1287    /// [`syntax::Config`](crate::util::syntax::Config).
1288    ///
1289    /// This permits setting things like case insensitivity, Unicode and multi
1290    /// line mode.
1291    ///
1292    /// These settings only apply when constructing a DFA directly from a
1293    /// pattern.
1294    #[cfg(feature = "syntax")]
1295    pub fn syntax(
1296        &mut self,
1297        config: crate::util::syntax::Config,
1298    ) -> &mut Builder {
1299        self.thompson.syntax(config);
1300        self
1301    }
1302
1303    /// Set the Thompson NFA configuration for this builder using
1304    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
1305    ///
1306    /// This permits setting things like whether the DFA should match the regex
1307    /// in reverse or if additional time should be spent shrinking the size of
1308    /// the NFA.
1309    ///
1310    /// These settings only apply when constructing a DFA directly from a
1311    /// pattern.
1312    #[cfg(feature = "syntax")]
1313    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
1314        self.thompson.configure(config);
1315        self
1316    }
1317}
1318
1319#[cfg(feature = "dfa-build")]
1320impl Default for Builder {
1321    fn default() -> Builder {
1322        Builder::new()
1323    }
1324}
1325
1326/// A convenience alias for an owned DFA. We use this particular instantiation
1327/// a lot in this crate, so it's worth giving it a name. This instantiation
1328/// is commonly used for mutable APIs on the DFA while building it. The main
1329/// reason for making DFAs generic is no_std support, and more generally,
1330/// making it possible to load a DFA from an arbitrary slice of bytes.
1331#[cfg(feature = "alloc")]
1332pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>;
1333
1334/// A dense table-based deterministic finite automaton (DFA).
1335///
1336/// All dense DFAs have one or more start states, zero or more match states
1337/// and a transition table that maps the current state and the current byte
1338/// of input to the next state. A DFA can use this information to implement
1339/// fast searching. In particular, the use of a dense DFA generally makes the
1340/// trade off that match speed is the most valuable characteristic, even if
1341/// building the DFA may take significant time *and* space. (More concretely,
1342/// building a DFA takes time and space that is exponential in the size of the
1343/// pattern in the worst case.) As such, the processing of every byte of input
1344/// is done with a small constant number of operations that does not vary with
1345/// the pattern, its size or the size of the alphabet. If your needs don't line
1346/// up with this trade off, then a dense DFA may not be an adequate solution to
1347/// your problem.
1348///
1349/// In contrast, a [`sparse::DFA`] makes the opposite
1350/// trade off: it uses less space but will execute a variable number of
1351/// instructions per byte at match time, which makes it slower for matching.
1352/// (Note that space usage is still exponential in the size of the pattern in
1353/// the worst case.)
1354///
1355/// A DFA can be built using the default configuration via the
1356/// [`DFA::new`] constructor. Otherwise, one can
1357/// configure various aspects via [`dense::Builder`](Builder).
1358///
1359/// A single DFA fundamentally supports the following operations:
1360///
1361/// 1. Detection of a match.
1362/// 2. Location of the end of a match.
1363/// 3. In the case of a DFA with multiple patterns, which pattern matched is
1364///    reported as well.
1365///
1366/// A notable absence from the above list of capabilities is the location of
1367/// the *start* of a match. In order to provide both the start and end of
1368/// a match, *two* DFAs are required. This functionality is provided by a
1369/// [`Regex`](crate::dfa::regex::Regex).
1370///
1371/// # Type parameters
1372///
1373/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
1374/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
1375///
1376/// # The `Automaton` trait
1377///
1378/// This type implements the [`Automaton`] trait, which means it can be used
1379/// for searching. For example:
1380///
1381/// ```
1382/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1383///
1384/// let dfa = DFA::new("foo[0-9]+")?;
1385/// let expected = HalfMatch::must(0, 8);
1386/// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?);
1387/// # Ok::<(), Box<dyn std::error::Error>>(())
1388/// ```
1389#[derive(Clone)]
1390pub struct DFA<T> {
1391    /// The transition table for this DFA. This includes the transitions
1392    /// themselves, along with the stride, number of states and the equivalence
1393    /// class mapping.
1394    tt: TransitionTable<T>,
1395    /// The set of starting state identifiers for this DFA. The starting state
1396    /// IDs act as pointers into the transition table. The specific starting
1397    /// state chosen for each search is dependent on the context at which the
1398    /// search begins.
1399    st: StartTable<T>,
1400    /// The set of match states and the patterns that match for each
1401    /// corresponding match state.
1402    ///
1403    /// This structure is technically only needed because of support for
1404    /// multi-regexes. Namely, multi-regexes require answering not just whether
1405    /// a match exists, but _which_ patterns match. So we need to store the
1406    /// matching pattern IDs for each match state. We do this even when there
1407    /// is only one pattern for the sake of simplicity. In practice, this uses
1408    /// up very little space for the case of one pattern.
1409    ms: MatchStates<T>,
1410    /// Information about which states are "special." Special states are states
1411    /// that are dead, quit, matching, starting or accelerated. For more info,
1412    /// see the docs for `Special`.
1413    special: Special,
1414    /// The accelerators for this DFA.
1415    ///
1416    /// If a state is accelerated, then there exist only a small number of
1417    /// bytes that can cause the DFA to leave the state. This permits searching
1418    /// to use optimized routines to find those specific bytes instead of using
1419    /// the transition table.
1420    ///
1421    /// All accelerated states exist in a contiguous range in the DFA's
1422    /// transition table. See dfa/special.rs for more details on how states are
1423    /// arranged.
1424    accels: Accels<T>,
1425    /// Any prefilter attached to this DFA.
1426    ///
1427    /// Note that currently prefilters are not serialized. When deserializing
1428    /// a DFA from bytes, this is always set to `None`.
1429    pre: Option<Prefilter>,
1430    /// The set of "quit" bytes for this DFA.
1431    ///
1432    /// This is only used when computing the start state for a particular
1433    /// position in a haystack. Namely, in the case where there is a quit
1434    /// byte immediately before the start of the search, this set needs to be
1435    /// explicitly consulted. In all other cases, quit bytes are detected by
1436    /// the DFA itself, by transitioning all quit bytes to a special "quit
1437    /// state."
1438    quitset: ByteSet,
1439    /// Various flags describing the behavior of this DFA.
1440    flags: Flags,
1441}
1442
1443#[cfg(feature = "dfa-build")]
1444impl OwnedDFA {
1445    /// Parse the given regular expression using a default configuration and
1446    /// return the corresponding DFA.
1447    ///
1448    /// If you want a non-default configuration, then use the
1449    /// [`dense::Builder`](Builder) to set your own configuration.
1450    ///
1451    /// # Example
1452    ///
1453    /// ```
1454    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1455    ///
1456    /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
1457    /// let expected = Some(HalfMatch::must(0, 11));
1458    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1459    /// # Ok::<(), Box<dyn std::error::Error>>(())
1460    /// ```
1461    #[cfg(feature = "syntax")]
1462    pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> {
1463        Builder::new().build(pattern)
1464    }
1465
1466    /// Parse the given regular expressions using a default configuration and
1467    /// return the corresponding multi-DFA.
1468    ///
1469    /// If you want a non-default configuration, then use the
1470    /// [`dense::Builder`](Builder) to set your own configuration.
1471    ///
1472    /// # Example
1473    ///
1474    /// ```
1475    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1476    ///
1477    /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
1478    /// let expected = Some(HalfMatch::must(1, 3));
1479    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
1480    /// # Ok::<(), Box<dyn std::error::Error>>(())
1481    /// ```
1482    #[cfg(feature = "syntax")]
1483    pub fn new_many<P: AsRef<str>>(
1484        patterns: &[P],
1485    ) -> Result<OwnedDFA, BuildError> {
1486        Builder::new().build_many(patterns)
1487    }
1488}
1489
1490#[cfg(feature = "dfa-build")]
1491impl OwnedDFA {
1492    /// Create a new DFA that matches every input.
1493    ///
1494    /// # Example
1495    ///
1496    /// ```
1497    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1498    ///
1499    /// let dfa = dense::DFA::always_match()?;
1500    ///
1501    /// let expected = Some(HalfMatch::must(0, 0));
1502    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
1503    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
1504    /// # Ok::<(), Box<dyn std::error::Error>>(())
1505    /// ```
1506    pub fn always_match() -> Result<OwnedDFA, BuildError> {
1507        let nfa = thompson::NFA::always_match();
1508        Builder::new().build_from_nfa(&nfa)
1509    }
1510
1511    /// Create a new DFA that never matches any input.
1512    ///
1513    /// # Example
1514    ///
1515    /// ```
1516    /// use regex_automata::{dfa::{Automaton, dense}, Input};
1517    ///
1518    /// let dfa = dense::DFA::never_match()?;
1519    /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
1520    /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
1521    /// # Ok::<(), Box<dyn std::error::Error>>(())
1522    /// ```
1523    pub fn never_match() -> Result<OwnedDFA, BuildError> {
1524        let nfa = thompson::NFA::never_match();
1525        Builder::new().build_from_nfa(&nfa)
1526    }
1527
1528    /// Create an initial DFA with the given equivalence classes, pattern
1529    /// length and whether anchored starting states are enabled for each
1530    /// pattern. An initial DFA can be further mutated via determinization.
1531    fn initial(
1532        classes: ByteClasses,
1533        pattern_len: usize,
1534        starts: StartKind,
1535        lookm: &LookMatcher,
1536        starts_for_each_pattern: bool,
1537        pre: Option<Prefilter>,
1538        quitset: ByteSet,
1539        flags: Flags,
1540    ) -> Result<OwnedDFA, BuildError> {
1541        let start_pattern_len =
1542            if starts_for_each_pattern { Some(pattern_len) } else { None };
1543        Ok(DFA {
1544            tt: TransitionTable::minimal(classes),
1545            st: StartTable::dead(starts, lookm, start_pattern_len)?,
1546            ms: MatchStates::empty(pattern_len),
1547            special: Special::new(),
1548            accels: Accels::empty(),
1549            pre,
1550            quitset,
1551            flags,
1552        })
1553    }
1554}
1555
1556#[cfg(feature = "dfa-build")]
1557impl DFA<&[u32]> {
1558    /// Return a new default dense DFA compiler configuration.
1559    ///
1560    /// This is a convenience routine to avoid needing to import the [`Config`]
1561    /// type when customizing the construction of a dense DFA.
1562    pub fn config() -> Config {
1563        Config::new()
1564    }
1565
1566    /// Create a new dense DFA builder with the default configuration.
1567    ///
1568    /// This is a convenience routine to avoid needing to import the
1569    /// [`Builder`] type in common cases.
1570    pub fn builder() -> Builder {
1571        Builder::new()
1572    }
1573}
1574
1575impl<T: AsRef<[u32]>> DFA<T> {
1576    /// Cheaply return a borrowed version of this dense DFA. Specifically,
1577    /// the DFA returned always uses `&[u32]` for its transition table.
1578    pub fn as_ref(&self) -> DFA<&'_ [u32]> {
1579        DFA {
1580            tt: self.tt.as_ref(),
1581            st: self.st.as_ref(),
1582            ms: self.ms.as_ref(),
1583            special: self.special,
1584            accels: self.accels(),
1585            pre: self.pre.clone(),
1586            quitset: self.quitset,
1587            flags: self.flags,
1588        }
1589    }
1590
1591    /// Return an owned version of this sparse DFA. Specifically, the DFA
1592    /// returned always uses `Vec<u32>` for its transition table.
1593    ///
1594    /// Effectively, this returns a dense DFA whose transition table lives on
1595    /// the heap.
1596    #[cfg(feature = "alloc")]
1597    pub fn to_owned(&self) -> OwnedDFA {
1598        DFA {
1599            tt: self.tt.to_owned(),
1600            st: self.st.to_owned(),
1601            ms: self.ms.to_owned(),
1602            special: self.special,
1603            accels: self.accels().to_owned(),
1604            pre: self.pre.clone(),
1605            quitset: self.quitset,
1606            flags: self.flags,
1607        }
1608    }
1609
1610    /// Returns the starting state configuration for this DFA.
1611    ///
1612    /// The default is [`StartKind::Both`], which means the DFA supports both
1613    /// unanchored and anchored searches. However, this can generally lead to
1614    /// bigger DFAs. Therefore, a DFA might be compiled with support for just
1615    /// unanchored or anchored searches. In that case, running a search with
1616    /// an unsupported configuration will panic.
1617    pub fn start_kind(&self) -> StartKind {
1618        self.st.kind
1619    }
1620
1621    /// Returns the start byte map used for computing the `Start` configuration
1622    /// at the beginning of a search.
1623    pub(crate) fn start_map(&self) -> &StartByteMap {
1624        &self.st.start_map
1625    }
1626
1627    /// Returns true only if this DFA has starting states for each pattern.
1628    ///
1629    /// When a DFA has starting states for each pattern, then a search with the
1630    /// DFA can be configured to only look for anchored matches of a specific
1631    /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
1632    /// accept a non-None `pattern_id` if and only if this method returns true.
1633    /// Otherwise, calling `try_search_fwd` will panic.
1634    ///
1635    /// Note that if the DFA has no patterns, this always returns false.
1636    pub fn starts_for_each_pattern(&self) -> bool {
1637        self.st.pattern_len.is_some()
1638    }
1639
1640    /// Returns the equivalence classes that make up the alphabet for this DFA.
1641    ///
1642    /// Unless [`Config::byte_classes`] was disabled, it is possible that
1643    /// multiple distinct bytes are grouped into the same equivalence class
1644    /// if it is impossible for them to discriminate between a match and a
1645    /// non-match. This has the effect of reducing the overall alphabet size
1646    /// and in turn potentially substantially reducing the size of the DFA's
1647    /// transition table.
1648    ///
1649    /// The downside of using equivalence classes like this is that every state
1650    /// transition will automatically use this map to convert an arbitrary
1651    /// byte to its corresponding equivalence class. In practice this has a
1652    /// negligible impact on performance.
1653    pub fn byte_classes(&self) -> &ByteClasses {
1654        &self.tt.classes
1655    }
1656
1657    /// Returns the total number of elements in the alphabet for this DFA.
1658    ///
1659    /// That is, this returns the total number of transitions that each state
1660    /// in this DFA must have. Typically, a normal byte oriented DFA would
1661    /// always have an alphabet size of 256, corresponding to the number of
1662    /// unique values in a single byte. However, this implementation has two
1663    /// peculiarities that impact the alphabet length:
1664    ///
1665    /// * Every state has a special "EOI" transition that is only followed
1666    /// after the end of some haystack is reached. This EOI transition is
1667    /// necessary to account for one byte of look-ahead when implementing
1668    /// things like `\b` and `$`.
1669    /// * Bytes are grouped into equivalence classes such that no two bytes in
1670    /// the same class can distinguish a match from a non-match. For example,
1671    /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
1672    /// same equivalence class. This leads to a massive space savings.
1673    ///
1674    /// Note though that the alphabet length does _not_ necessarily equal the
1675    /// total stride space taken up by a single DFA state in the transition
1676    /// table. Namely, for performance reasons, the stride is always the
1677    /// smallest power of two that is greater than or equal to the alphabet
1678    /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
1679    /// often more useful. The alphabet length is typically useful only for
1680    /// informational purposes.
1681    pub fn alphabet_len(&self) -> usize {
1682        self.tt.alphabet_len()
1683    }
1684
1685    /// Returns the total stride for every state in this DFA, expressed as the
1686    /// exponent of a power of 2. The stride is the amount of space each state
1687    /// takes up in the transition table, expressed as a number of transitions.
1688    /// (Unused transitions map to dead states.)
1689    ///
1690    /// The stride of a DFA is always equivalent to the smallest power of 2
1691    /// that is greater than or equal to the DFA's alphabet length. This
1692    /// definition uses extra space, but permits faster translation between
1693    /// premultiplied state identifiers and contiguous indices (by using shifts
1694    /// instead of relying on integer division).
1695    ///
1696    /// For example, if the DFA's stride is 16 transitions, then its `stride2`
1697    /// is `4` since `2^4 = 16`.
1698    ///
1699    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
1700    /// while the maximum `stride2` value is `9` (corresponding to a stride of
1701    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
1702    /// when accounting for the special EOI transition. However, an alphabet
1703    /// length of that size is exceptionally rare since the alphabet is shrunk
1704    /// into equivalence classes.
1705    pub fn stride2(&self) -> usize {
1706        self.tt.stride2
1707    }
1708
1709    /// Returns the total stride for every state in this DFA. This corresponds
1710    /// to the total number of transitions used by each state in this DFA's
1711    /// transition table.
1712    ///
1713    /// Please see [`DFA::stride2`] for more information. In particular, this
1714    /// returns the stride as the number of transitions, where as `stride2`
1715    /// returns it as the exponent of a power of 2.
1716    pub fn stride(&self) -> usize {
1717        self.tt.stride()
1718    }
1719
1720    /// Returns the memory usage, in bytes, of this DFA.
1721    ///
1722    /// The memory usage is computed based on the number of bytes used to
1723    /// represent this DFA.
1724    ///
1725    /// This does **not** include the stack size used up by this DFA. To
1726    /// compute that, use `std::mem::size_of::<dense::DFA>()`.
1727    pub fn memory_usage(&self) -> usize {
1728        self.tt.memory_usage()
1729            + self.st.memory_usage()
1730            + self.ms.memory_usage()
1731            + self.accels.memory_usage()
1732    }
1733}
1734
1735/// Routines for converting a dense DFA to other representations, such as
1736/// sparse DFAs or raw bytes suitable for persistent storage.
1737impl<T: AsRef<[u32]>> DFA<T> {
1738    /// Convert this dense DFA to a sparse DFA.
1739    ///
1740    /// If a `StateID` is too small to represent all states in the sparse
1741    /// DFA, then this returns an error. In most cases, if a dense DFA is
1742    /// constructable with `StateID` then a sparse DFA will be as well.
1743    /// However, it is not guaranteed.
1744    ///
1745    /// # Example
1746    ///
1747    /// ```
1748    /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
1749    ///
1750    /// let dense = dense::DFA::new("foo[0-9]+")?;
1751    /// let sparse = dense.to_sparse()?;
1752    ///
1753    /// let expected = Some(HalfMatch::must(0, 8));
1754    /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?);
1755    /// # Ok::<(), Box<dyn std::error::Error>>(())
1756    /// ```
1757    #[cfg(feature = "dfa-build")]
1758    pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> {
1759        sparse::DFA::from_dense(self)
1760    }
1761
1762    /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
1763    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1764    /// returned.
1765    ///
1766    /// The written bytes are guaranteed to be deserialized correctly and
1767    /// without errors in a semver compatible release of this crate by a
1768    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1769    /// deserialization APIs has been satisfied):
1770    ///
1771    /// * [`DFA::from_bytes`]
1772    /// * [`DFA::from_bytes_unchecked`]
1773    ///
1774    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1775    /// an address that does not have the same alignment as `u32`. The padding
1776    /// corresponds to the number of leading bytes written to the returned
1777    /// `Vec<u8>`.
1778    ///
1779    /// # Example
1780    ///
1781    /// This example shows how to serialize and deserialize a DFA:
1782    ///
1783    /// ```
1784    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1785    ///
1786    /// // Compile our original DFA.
1787    /// let original_dfa = DFA::new("foo[0-9]+")?;
1788    ///
1789    /// // N.B. We use native endianness here to make the example work, but
1790    /// // using to_bytes_little_endian would work on a little endian target.
1791    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1792    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1793    /// // ignore it.
1794    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1795    ///
1796    /// let expected = Some(HalfMatch::must(0, 8));
1797    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1798    /// # Ok::<(), Box<dyn std::error::Error>>(())
1799    /// ```
1800    #[cfg(feature = "dfa-build")]
1801    pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
1802        self.to_bytes::<wire::LE>()
1803    }
1804
1805    /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
1806    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1807    /// returned.
1808    ///
1809    /// The written bytes are guaranteed to be deserialized correctly and
1810    /// without errors in a semver compatible release of this crate by a
1811    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1812    /// deserialization APIs has been satisfied):
1813    ///
1814    /// * [`DFA::from_bytes`]
1815    /// * [`DFA::from_bytes_unchecked`]
1816    ///
1817    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1818    /// an address that does not have the same alignment as `u32`. The padding
1819    /// corresponds to the number of leading bytes written to the returned
1820    /// `Vec<u8>`.
1821    ///
1822    /// # Example
1823    ///
1824    /// This example shows how to serialize and deserialize a DFA:
1825    ///
1826    /// ```
1827    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1828    ///
1829    /// // Compile our original DFA.
1830    /// let original_dfa = DFA::new("foo[0-9]+")?;
1831    ///
1832    /// // N.B. We use native endianness here to make the example work, but
1833    /// // using to_bytes_big_endian would work on a big endian target.
1834    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1835    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1836    /// // ignore it.
1837    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1838    ///
1839    /// let expected = Some(HalfMatch::must(0, 8));
1840    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1841    /// # Ok::<(), Box<dyn std::error::Error>>(())
1842    /// ```
1843    #[cfg(feature = "dfa-build")]
1844    pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
1845        self.to_bytes::<wire::BE>()
1846    }
1847
1848    /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
1849    /// format. Upon success, the `Vec<u8>` and the initial padding length are
1850    /// returned.
1851    ///
1852    /// The written bytes are guaranteed to be deserialized correctly and
1853    /// without errors in a semver compatible release of this crate by a
1854    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1855    /// deserialization APIs has been satisfied):
1856    ///
1857    /// * [`DFA::from_bytes`]
1858    /// * [`DFA::from_bytes_unchecked`]
1859    ///
1860    /// The padding returned is non-zero if the returned `Vec<u8>` starts at
1861    /// an address that does not have the same alignment as `u32`. The padding
1862    /// corresponds to the number of leading bytes written to the returned
1863    /// `Vec<u8>`.
1864    ///
1865    /// Generally speaking, native endian format should only be used when
1866    /// you know that the target you're compiling the DFA for matches the
1867    /// endianness of the target on which you're compiling DFA. For example,
1868    /// if serialization and deserialization happen in the same process or on
1869    /// the same machine. Otherwise, when serializing a DFA for use in a
1870    /// portable environment, you'll almost certainly want to serialize _both_
1871    /// a little endian and a big endian version and then load the correct one
1872    /// based on the target's configuration.
1873    ///
1874    /// # Example
1875    ///
1876    /// This example shows how to serialize and deserialize a DFA:
1877    ///
1878    /// ```
1879    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1880    ///
1881    /// // Compile our original DFA.
1882    /// let original_dfa = DFA::new("foo[0-9]+")?;
1883    ///
1884    /// let (buf, _) = original_dfa.to_bytes_native_endian();
1885    /// // Even if buf has initial padding, DFA::from_bytes will automatically
1886    /// // ignore it.
1887    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
1888    ///
1889    /// let expected = Some(HalfMatch::must(0, 8));
1890    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1891    /// # Ok::<(), Box<dyn std::error::Error>>(())
1892    /// ```
1893    #[cfg(feature = "dfa-build")]
1894    pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
1895        self.to_bytes::<wire::NE>()
1896    }
1897
1898    /// The implementation of the public `to_bytes` serialization methods,
1899    /// which is generic over endianness.
1900    #[cfg(feature = "dfa-build")]
1901    fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
1902        let len = self.write_to_len();
1903        let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len);
1904        // This should always succeed since the only possible serialization
1905        // error is providing a buffer that's too small, but we've ensured that
1906        // `buf` is big enough here.
1907        self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
1908        (buf, padding)
1909    }
1910
1911    /// Serialize this DFA as raw bytes to the given slice, in little endian
1912    /// format. Upon success, the total number of bytes written to `dst` is
1913    /// returned.
1914    ///
1915    /// The written bytes are guaranteed to be deserialized correctly and
1916    /// without errors in a semver compatible release of this crate by a
1917    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1918    /// deserialization APIs has been satisfied):
1919    ///
1920    /// * [`DFA::from_bytes`]
1921    /// * [`DFA::from_bytes_unchecked`]
1922    ///
1923    /// Note that unlike the various `to_byte_*` routines, this does not write
1924    /// any padding. Callers are responsible for handling alignment correctly.
1925    ///
1926    /// # Errors
1927    ///
1928    /// This returns an error if the given destination slice is not big enough
1929    /// to contain the full serialized DFA. If an error occurs, then nothing
1930    /// is written to `dst`.
1931    ///
1932    /// # Example
1933    ///
1934    /// This example shows how to serialize and deserialize a DFA without
1935    /// dynamic memory allocation.
1936    ///
1937    /// ```
1938    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1939    ///
1940    /// // Compile our original DFA.
1941    /// let original_dfa = DFA::new("foo[0-9]+")?;
1942    ///
1943    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
1944    /// // need to use a special type to force the alignment of our [u8; N]
1945    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
1946    /// // the DFA may fail because of an alignment mismatch.
1947    /// #[repr(C)]
1948    /// struct Aligned<B: ?Sized> {
1949    ///     _align: [u32; 0],
1950    ///     bytes: B,
1951    /// }
1952    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
1953    /// // N.B. We use native endianness here to make the example work, but
1954    /// // using write_to_little_endian would work on a little endian target.
1955    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
1956    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
1957    ///
1958    /// let expected = Some(HalfMatch::must(0, 8));
1959    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
1960    /// # Ok::<(), Box<dyn std::error::Error>>(())
1961    /// ```
1962    pub fn write_to_little_endian(
1963        &self,
1964        dst: &mut [u8],
1965    ) -> Result<usize, SerializeError> {
1966        self.as_ref().write_to::<wire::LE>(dst)
1967    }
1968
1969    /// Serialize this DFA as raw bytes to the given slice, in big endian
1970    /// format. Upon success, the total number of bytes written to `dst` is
1971    /// returned.
1972    ///
1973    /// The written bytes are guaranteed to be deserialized correctly and
1974    /// without errors in a semver compatible release of this crate by a
1975    /// `DFA`'s deserialization APIs (assuming all other criteria for the
1976    /// deserialization APIs has been satisfied):
1977    ///
1978    /// * [`DFA::from_bytes`]
1979    /// * [`DFA::from_bytes_unchecked`]
1980    ///
1981    /// Note that unlike the various `to_byte_*` routines, this does not write
1982    /// any padding. Callers are responsible for handling alignment correctly.
1983    ///
1984    /// # Errors
1985    ///
1986    /// This returns an error if the given destination slice is not big enough
1987    /// to contain the full serialized DFA. If an error occurs, then nothing
1988    /// is written to `dst`.
1989    ///
1990    /// # Example
1991    ///
1992    /// This example shows how to serialize and deserialize a DFA without
1993    /// dynamic memory allocation.
1994    ///
1995    /// ```
1996    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
1997    ///
1998    /// // Compile our original DFA.
1999    /// let original_dfa = DFA::new("foo[0-9]+")?;
2000    ///
2001    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2002    /// // need to use a special type to force the alignment of our [u8; N]
2003    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2004    /// // the DFA may fail because of an alignment mismatch.
2005    /// #[repr(C)]
2006    /// struct Aligned<B: ?Sized> {
2007    ///     _align: [u32; 0],
2008    ///     bytes: B,
2009    /// }
2010    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2011    /// // N.B. We use native endianness here to make the example work, but
2012    /// // using write_to_big_endian would work on a big endian target.
2013    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2014    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2015    ///
2016    /// let expected = Some(HalfMatch::must(0, 8));
2017    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2018    /// # Ok::<(), Box<dyn std::error::Error>>(())
2019    /// ```
2020    pub fn write_to_big_endian(
2021        &self,
2022        dst: &mut [u8],
2023    ) -> Result<usize, SerializeError> {
2024        self.as_ref().write_to::<wire::BE>(dst)
2025    }
2026
2027    /// Serialize this DFA as raw bytes to the given slice, in native endian
2028    /// format. Upon success, the total number of bytes written to `dst` is
2029    /// returned.
2030    ///
2031    /// The written bytes are guaranteed to be deserialized correctly and
2032    /// without errors in a semver compatible release of this crate by a
2033    /// `DFA`'s deserialization APIs (assuming all other criteria for the
2034    /// deserialization APIs has been satisfied):
2035    ///
2036    /// * [`DFA::from_bytes`]
2037    /// * [`DFA::from_bytes_unchecked`]
2038    ///
2039    /// Generally speaking, native endian format should only be used when
2040    /// you know that the target you're compiling the DFA for matches the
2041    /// endianness of the target on which you're compiling DFA. For example,
2042    /// if serialization and deserialization happen in the same process or on
2043    /// the same machine. Otherwise, when serializing a DFA for use in a
2044    /// portable environment, you'll almost certainly want to serialize _both_
2045    /// a little endian and a big endian version and then load the correct one
2046    /// based on the target's configuration.
2047    ///
2048    /// Note that unlike the various `to_byte_*` routines, this does not write
2049    /// any padding. Callers are responsible for handling alignment correctly.
2050    ///
2051    /// # Errors
2052    ///
2053    /// This returns an error if the given destination slice is not big enough
2054    /// to contain the full serialized DFA. If an error occurs, then nothing
2055    /// is written to `dst`.
2056    ///
2057    /// # Example
2058    ///
2059    /// This example shows how to serialize and deserialize a DFA without
2060    /// dynamic memory allocation.
2061    ///
2062    /// ```
2063    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2064    ///
2065    /// // Compile our original DFA.
2066    /// let original_dfa = DFA::new("foo[0-9]+")?;
2067    ///
2068    /// // Create a 4KB buffer on the stack to store our serialized DFA. We
2069    /// // need to use a special type to force the alignment of our [u8; N]
2070    /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
2071    /// // the DFA may fail because of an alignment mismatch.
2072    /// #[repr(C)]
2073    /// struct Aligned<B: ?Sized> {
2074    ///     _align: [u32; 0],
2075    ///     bytes: B,
2076    /// }
2077    /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
2078    /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
2079    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
2080    ///
2081    /// let expected = Some(HalfMatch::must(0, 8));
2082    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2083    /// # Ok::<(), Box<dyn std::error::Error>>(())
2084    /// ```
2085    pub fn write_to_native_endian(
2086        &self,
2087        dst: &mut [u8],
2088    ) -> Result<usize, SerializeError> {
2089        self.as_ref().write_to::<wire::NE>(dst)
2090    }
2091
2092    /// Return the total number of bytes required to serialize this DFA.
2093    ///
2094    /// This is useful for determining the size of the buffer required to pass
2095    /// to one of the serialization routines:
2096    ///
2097    /// * [`DFA::write_to_little_endian`]
2098    /// * [`DFA::write_to_big_endian`]
2099    /// * [`DFA::write_to_native_endian`]
2100    ///
2101    /// Passing a buffer smaller than the size returned by this method will
2102    /// result in a serialization error. Serialization routines are guaranteed
2103    /// to succeed when the buffer is big enough.
2104    ///
2105    /// # Example
2106    ///
2107    /// This example shows how to dynamically allocate enough room to serialize
2108    /// a DFA.
2109    ///
2110    /// ```
2111    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2112    ///
2113    /// let original_dfa = DFA::new("foo[0-9]+")?;
2114    ///
2115    /// let mut buf = vec![0; original_dfa.write_to_len()];
2116    /// // This is guaranteed to succeed, because the only serialization error
2117    /// // that can occur is when the provided buffer is too small. But
2118    /// // write_to_len guarantees a correct size.
2119    /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap();
2120    /// // But this is not guaranteed to succeed! In particular,
2121    /// // deserialization requires proper alignment for &[u32], but our buffer
2122    /// // was allocated as a &[u8] whose required alignment is smaller than
2123    /// // &[u32]. However, it's likely to work in practice because of how most
2124    /// // allocators work. So if you write code like this, make sure to either
2125    /// // handle the error correctly and/or run it under Miri since Miri will
2126    /// // likely provoke the error by returning Vec<u8> buffers with alignment
2127    /// // less than &[u32].
2128    /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) {
2129    ///     // As mentioned above, it is legal for an error to be returned
2130    ///     // here. It is quite difficult to get a Vec<u8> with a guaranteed
2131    ///     // alignment equivalent to Vec<u32>.
2132    ///     Err(_) => return Ok(()),
2133    ///     Ok((dfa, _)) => dfa,
2134    /// };
2135    ///
2136    /// let expected = Some(HalfMatch::must(0, 8));
2137    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2138    /// # Ok::<(), Box<dyn std::error::Error>>(())
2139    /// ```
2140    ///
2141    /// Note that this example isn't actually guaranteed to work! In
2142    /// particular, if `buf` is not aligned to a 4-byte boundary, then the
2143    /// `DFA::from_bytes` call will fail. If you need this to work, then you
2144    /// either need to deal with adding some initial padding yourself, or use
2145    /// one of the `to_bytes` methods, which will do it for you.
2146    pub fn write_to_len(&self) -> usize {
2147        wire::write_label_len(LABEL)
2148        + wire::write_endianness_check_len()
2149        + wire::write_version_len()
2150        + size_of::<u32>() // unused, intended for future flexibility
2151        + self.flags.write_to_len()
2152        + self.tt.write_to_len()
2153        + self.st.write_to_len()
2154        + self.ms.write_to_len()
2155        + self.special.write_to_len()
2156        + self.accels.write_to_len()
2157        + self.quitset.write_to_len()
2158    }
2159}
2160
2161impl<'a> DFA<&'a [u32]> {
2162    /// Safely deserialize a DFA with a specific state identifier
2163    /// representation. Upon success, this returns both the deserialized DFA
2164    /// and the number of bytes read from the given slice. Namely, the contents
2165    /// of the slice beyond the DFA are not read.
2166    ///
2167    /// Deserializing a DFA using this routine will never allocate heap memory.
2168    /// For safety purposes, the DFA's transition table will be verified such
2169    /// that every transition points to a valid state. If this verification is
2170    /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
2171    /// will always execute in constant time.
2172    ///
2173    /// The bytes given must be generated by one of the serialization APIs
2174    /// of a `DFA` using a semver compatible release of this crate. Those
2175    /// include:
2176    ///
2177    /// * [`DFA::to_bytes_little_endian`]
2178    /// * [`DFA::to_bytes_big_endian`]
2179    /// * [`DFA::to_bytes_native_endian`]
2180    /// * [`DFA::write_to_little_endian`]
2181    /// * [`DFA::write_to_big_endian`]
2182    /// * [`DFA::write_to_native_endian`]
2183    ///
2184    /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
2185    /// with handling alignment correctly. The `write_to` methods do not
2186    /// allocate and write to an existing slice (which may be on the stack).
2187    /// Since deserialization always uses the native endianness of the target
2188    /// platform, the serialization API you use should match the endianness of
2189    /// the target platform. (It's often a good idea to generate serialized
2190    /// DFAs for both forms of endianness and then load the correct one based
2191    /// on endianness.)
2192    ///
2193    /// # Errors
2194    ///
2195    /// Generally speaking, it's easier to state the conditions in which an
2196    /// error is _not_ returned. All of the following must be true:
2197    ///
2198    /// * The bytes given must be produced by one of the serialization APIs
2199    ///   on this DFA, as mentioned above.
2200    /// * The endianness of the target platform matches the endianness used to
2201    ///   serialized the provided DFA.
2202    /// * The slice given must have the same alignment as `u32`.
2203    ///
2204    /// If any of the above are not true, then an error will be returned.
2205    ///
2206    /// # Panics
2207    ///
2208    /// This routine will never panic for any input.
2209    ///
2210    /// # Example
2211    ///
2212    /// This example shows how to serialize a DFA to raw bytes, deserialize it
2213    /// and then use it for searching.
2214    ///
2215    /// ```
2216    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2217    ///
2218    /// let initial = DFA::new("foo[0-9]+")?;
2219    /// let (bytes, _) = initial.to_bytes_native_endian();
2220    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
2221    ///
2222    /// let expected = Some(HalfMatch::must(0, 8));
2223    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2224    /// # Ok::<(), Box<dyn std::error::Error>>(())
2225    /// ```
2226    ///
2227    /// # Example: dealing with alignment and padding
2228    ///
2229    /// In the above example, we used the `to_bytes_native_endian` method to
2230    /// serialize a DFA, but we ignored part of its return value corresponding
2231    /// to padding added to the beginning of the serialized DFA. This is OK
2232    /// because deserialization will skip this initial padding. What matters
2233    /// is that the address immediately following the padding has an alignment
2234    /// that matches `u32`. That is, the following is an equivalent but
2235    /// alternative way to write the above example:
2236    ///
2237    /// ```
2238    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2239    ///
2240    /// let initial = DFA::new("foo[0-9]+")?;
2241    /// // Serialization returns the number of leading padding bytes added to
2242    /// // the returned Vec<u8>.
2243    /// let (bytes, pad) = initial.to_bytes_native_endian();
2244    /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
2245    ///
2246    /// let expected = Some(HalfMatch::must(0, 8));
2247    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2248    /// # Ok::<(), Box<dyn std::error::Error>>(())
2249    /// ```
2250    ///
2251    /// This padding is necessary because Rust's standard library does
2252    /// not expose any safe and robust way of creating a `Vec<u8>` with a
2253    /// guaranteed alignment other than 1. Now, in practice, the underlying
2254    /// allocator is likely to provide a `Vec<u8>` that meets our alignment
2255    /// requirements, which means `pad` is zero in practice most of the time.
2256    ///
2257    /// The purpose of exposing the padding like this is flexibility for the
2258    /// caller. For example, if one wants to embed a serialized DFA into a
2259    /// compiled program, then it's important to guarantee that it starts at a
2260    /// `u32`-aligned address. The simplest way to do this is to discard the
2261    /// padding bytes and set it up so that the serialized DFA itself begins at
2262    /// a properly aligned address. We can show this in two parts. The first
2263    /// part is serializing the DFA to a file:
2264    ///
2265    /// ```no_run
2266    /// use regex_automata::dfa::dense::DFA;
2267    ///
2268    /// let dfa = DFA::new("foo[0-9]+")?;
2269    ///
2270    /// let (bytes, pad) = dfa.to_bytes_big_endian();
2271    /// // Write the contents of the DFA *without* the initial padding.
2272    /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
2273    ///
2274    /// // Do it again, but this time for little endian.
2275    /// let (bytes, pad) = dfa.to_bytes_little_endian();
2276    /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
2277    /// # Ok::<(), Box<dyn std::error::Error>>(())
2278    /// ```
2279    ///
2280    /// And now the second part is embedding the DFA into the compiled program
2281    /// and deserializing it at runtime on first use. We use conditional
2282    /// compilation to choose the correct endianness.
2283    ///
2284    /// ```no_run
2285    /// use regex_automata::{
2286    ///     dfa::{Automaton, dense::DFA},
2287    ///     util::{lazy::Lazy, wire::AlignAs},
2288    ///     HalfMatch, Input,
2289    /// };
2290    ///
2291    /// // This crate provides its own "lazy" type, kind of like
2292    /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
2293    /// // no-std environments and let's us write this using completely
2294    /// // safe code.
2295    /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| {
2296    ///     # const _: &str = stringify! {
2297    ///     // This assignment is made possible (implicitly) via the
2298    ///     // CoerceUnsized trait. This is what guarantees that our
2299    ///     // bytes are stored in memory on a 4 byte boundary. You
2300    ///     // *must* do this or something equivalent for correct
2301    ///     // deserialization.
2302    ///     static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2303    ///         _align: [],
2304    ///         #[cfg(target_endian = "big")]
2305    ///         bytes: *include_bytes!("foo.bigendian.dfa"),
2306    ///         #[cfg(target_endian = "little")]
2307    ///         bytes: *include_bytes!("foo.littleendian.dfa"),
2308    ///     };
2309    ///     # };
2310    ///     # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
2311    ///     #     _align: [],
2312    ///     #     bytes: [],
2313    ///     # };
2314    ///
2315    ///     let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
2316    ///         .expect("serialized DFA should be valid");
2317    ///     dfa
2318    /// });
2319    ///
2320    /// let expected = Ok(Some(HalfMatch::must(0, 8)));
2321    /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
2322    /// ```
2323    ///
2324    /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy)
2325    /// is [`lazy_static`](https://crates.io/crates/lazy_static) or
2326    /// [`once_cell`](https://crates.io/crates/once_cell), which provide
2327    /// stronger guarantees (like the initialization function only being
2328    /// executed once). And `once_cell` in particular provides a more
2329    /// expressive API. But a `Lazy` value from this crate is likely just fine
2330    /// in most circumstances.
2331    ///
2332    /// Note that regardless of which initialization method you use, you
2333    /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs)
2334    /// trick above to force correct alignment, but this is safe to do and
2335    /// `from_bytes` will return an error if you get it wrong.
2336    pub fn from_bytes(
2337        slice: &'a [u8],
2338    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2339        // SAFETY: This is safe because we validate the transition table, start
2340        // table, match states and accelerators below. If any validation fails,
2341        // then we return an error.
2342        let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
2343        dfa.tt.validate(&dfa)?;
2344        dfa.st.validate(&dfa)?;
2345        dfa.ms.validate(&dfa)?;
2346        dfa.accels.validate()?;
2347        // N.B. dfa.special doesn't have a way to do unchecked deserialization,
2348        // so it has already been validated.
2349        for state in dfa.states() {
2350            // If the state is an accel state, then it must have a non-empty
2351            // accelerator.
2352            if dfa.is_accel_state(state.id()) {
2353                let index = dfa.accelerator_index(state.id());
2354                if index >= dfa.accels.len() {
2355                    return Err(DeserializeError::generic(
2356                        "found DFA state with invalid accelerator index",
2357                    ));
2358                }
2359                let needles = dfa.accels.needles(index);
2360                if !(1 <= needles.len() && needles.len() <= 3) {
2361                    return Err(DeserializeError::generic(
2362                        "accelerator needles has invalid length",
2363                    ));
2364                }
2365            }
2366        }
2367        Ok((dfa, nread))
2368    }
2369
2370    /// Deserialize a DFA with a specific state identifier representation in
2371    /// constant time by omitting the verification of the validity of the
2372    /// transition table and other data inside the DFA.
2373    ///
2374    /// This is just like [`DFA::from_bytes`], except it can potentially return
2375    /// a DFA that exhibits undefined behavior if its transition table contains
2376    /// invalid state identifiers.
2377    ///
2378    /// This routine is useful if you need to deserialize a DFA cheaply
2379    /// and cannot afford the transition table validation performed by
2380    /// `from_bytes`.
2381    ///
2382    /// # Example
2383    ///
2384    /// ```
2385    /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
2386    ///
2387    /// let initial = DFA::new("foo[0-9]+")?;
2388    /// let (bytes, _) = initial.to_bytes_native_endian();
2389    /// // SAFETY: This is guaranteed to be safe since the bytes given come
2390    /// // directly from a compatible serialization routine.
2391    /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
2392    ///
2393    /// let expected = Some(HalfMatch::must(0, 8));
2394    /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
2395    /// # Ok::<(), Box<dyn std::error::Error>>(())
2396    /// ```
2397    pub unsafe fn from_bytes_unchecked(
2398        slice: &'a [u8],
2399    ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
2400        let mut nr = 0;
2401
2402        nr += wire::skip_initial_padding(slice);
2403        wire::check_alignment::<StateID>(&slice[nr..])?;
2404        nr += wire::read_label(&slice[nr..], LABEL)?;
2405        nr += wire::read_endianness_check(&slice[nr..])?;
2406        nr += wire::read_version(&slice[nr..], VERSION)?;
2407
2408        let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
2409        nr += size_of::<u32>();
2410
2411        let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
2412        nr += nread;
2413
2414        let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
2415        nr += nread;
2416
2417        let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
2418        nr += nread;
2419
2420        let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
2421        nr += nread;
2422
2423        let (special, nread) = Special::from_bytes(&slice[nr..])?;
2424        nr += nread;
2425        special.validate_state_len(tt.len(), tt.stride2)?;
2426
2427        let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
2428        nr += nread;
2429
2430        let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
2431        nr += nread;
2432
2433        // Prefilters don't support serialization, so they're always absent.
2434        let pre = None;
2435        Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr))
2436    }
2437
2438    /// The implementation of the public `write_to` serialization methods,
2439    /// which is generic over endianness.
2440    ///
2441    /// This is defined only for &[u32] to reduce binary size/compilation time.
2442    fn write_to<E: Endian>(
2443        &self,
2444        mut dst: &mut [u8],
2445    ) -> Result<usize, SerializeError> {
2446        let nwrite = self.write_to_len();
2447        if dst.len() < nwrite {
2448            return Err(SerializeError::buffer_too_small("dense DFA"));
2449        }
2450        dst = &mut dst[..nwrite];
2451
2452        let mut nw = 0;
2453        nw += wire::write_label(LABEL, &mut dst[nw..])?;
2454        nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
2455        nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
2456        nw += {
2457            // Currently unused, intended for future flexibility
2458            E::write_u32(0, &mut dst[nw..]);
2459            size_of::<u32>()
2460        };
2461        nw += self.flags.write_to::<E>(&mut dst[nw..])?;
2462        nw += self.tt.write_to::<E>(&mut dst[nw..])?;
2463        nw += self.st.write_to::<E>(&mut dst[nw..])?;
2464        nw += self.ms.write_to::<E>(&mut dst[nw..])?;
2465        nw += self.special.write_to::<E>(&mut dst[nw..])?;
2466        nw += self.accels.write_to::<E>(&mut dst[nw..])?;
2467        nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
2468        Ok(nw)
2469    }
2470}
2471
2472// The following methods implement mutable routines on the internal
2473// representation of a DFA. As such, we must fix the first type parameter to a
2474// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
2475// can get away with this because these methods are internal to the crate and
2476// are exclusively used during construction of the DFA.
2477#[cfg(feature = "dfa-build")]
2478impl OwnedDFA {
2479    /// Add a start state of this DFA.
2480    pub(crate) fn set_start_state(
2481        &mut self,
2482        anchored: Anchored,
2483        start: Start,
2484        id: StateID,
2485    ) {
2486        assert!(self.tt.is_valid(id), "invalid start state");
2487        self.st.set_start(anchored, start, id);
2488    }
2489
2490    /// Set the given transition to this DFA. Both the `from` and `to` states
2491    /// must already exist.
2492    pub(crate) fn set_transition(
2493        &mut self,
2494        from: StateID,
2495        byte: alphabet::Unit,
2496        to: StateID,
2497    ) {
2498        self.tt.set(from, byte, to);
2499    }
2500
2501    /// An empty state (a state where all transitions lead to a dead state)
2502    /// and return its identifier. The identifier returned is guaranteed to
2503    /// not point to any other existing state.
2504    ///
2505    /// If adding a state would exceed `StateID::LIMIT`, then this returns an
2506    /// error.
2507    pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
2508        self.tt.add_empty_state()
2509    }
2510
2511    /// Swap the two states given in the transition table.
2512    ///
2513    /// This routine does not do anything to check the correctness of this
2514    /// swap. Callers must ensure that other states pointing to id1 and id2 are
2515    /// updated appropriately.
2516    pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
2517        self.tt.swap(id1, id2);
2518    }
2519
2520    /// Remap all of the state identifiers in this DFA according to the map
2521    /// function given. This includes all transitions and all starting state
2522    /// identifiers.
2523    pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
2524        // We could loop over each state ID and call 'remap_state' here, but
2525        // this is more direct: just map every transition directly. This
2526        // technically might do a little extra work since the alphabet length
2527        // is likely less than the stride, but if that is indeed an issue we
2528        // should benchmark it and fix it.
2529        for sid in self.tt.table_mut().iter_mut() {
2530            *sid = map(*sid);
2531        }
2532        for sid in self.st.table_mut().iter_mut() {
2533            *sid = map(*sid);
2534        }
2535    }
2536
2537    /// Remap the transitions for the state given according to the function
2538    /// given. This applies the given map function to every transition in the
2539    /// given state and changes the transition in place to the result of the
2540    /// map function for that transition.
2541    pub(crate) fn remap_state(
2542        &mut self,
2543        id: StateID,
2544        map: impl Fn(StateID) -> StateID,
2545    ) {
2546        self.tt.remap(id, map);
2547    }
2548
2549    /// Truncate the states in this DFA to the given length.
2550    ///
2551    /// This routine does not do anything to check the correctness of this
2552    /// truncation. Callers must ensure that other states pointing to truncated
2553    /// states are updated appropriately.
2554    pub(crate) fn truncate_states(&mut self, len: usize) {
2555        self.tt.truncate(len);
2556    }
2557
2558    /// Minimize this DFA in place using Hopcroft's algorithm.
2559    pub(crate) fn minimize(&mut self) {
2560        Minimizer::new(self).run();
2561    }
2562
2563    /// Updates the match state pattern ID map to use the one provided.
2564    ///
2565    /// This is useful when it's convenient to manipulate matching states
2566    /// (and their corresponding pattern IDs) as a map. In particular, the
2567    /// representation used by a DFA for this map is not amenable to mutation,
2568    /// so if things need to be changed (like when shuffling states), it's
2569    /// often easier to work with the map form.
2570    pub(crate) fn set_pattern_map(
2571        &mut self,
2572        map: &BTreeMap<StateID, Vec<PatternID>>,
2573    ) -> Result<(), BuildError> {
2574        self.ms = self.ms.new_with_map(map)?;
2575        Ok(())
2576    }
2577
2578    /// Find states that have a small number of non-loop transitions and mark
2579    /// them as candidates for acceleration during search.
2580    pub(crate) fn accelerate(&mut self) {
2581        // dead and quit states can never be accelerated.
2582        if self.state_len() <= 2 {
2583            return;
2584        }
2585
2586        // Go through every state and record their accelerator, if possible.
2587        let mut accels = BTreeMap::new();
2588        // Count the number of accelerated match, start and non-match/start
2589        // states.
2590        let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
2591        for state in self.states() {
2592            if let Some(accel) = state.accelerate(self.byte_classes()) {
2593                debug!(
2594                    "accelerating full DFA state {}: {:?}",
2595                    state.id().as_usize(),
2596                    accel,
2597                );
2598                accels.insert(state.id(), accel);
2599                if self.is_match_state(state.id()) {
2600                    cmatch += 1;
2601                } else if self.is_start_state(state.id()) {
2602                    cstart += 1;
2603                } else {
2604                    assert!(!self.is_dead_state(state.id()));
2605                    assert!(!self.is_quit_state(state.id()));
2606                    cnormal += 1;
2607                }
2608            }
2609        }
2610        // If no states were able to be accelerated, then we're done.
2611        if accels.is_empty() {
2612            return;
2613        }
2614        let original_accels_len = accels.len();
2615
2616        // A remapper keeps track of state ID changes. Once we're done
2617        // shuffling, the remapper is used to rewrite all transitions in the
2618        // DFA based on the new positions of states.
2619        let mut remapper = Remapper::new(self);
2620
2621        // As we swap states, if they are match states, we need to swap their
2622        // pattern ID lists too (for multi-regexes). We do this by converting
2623        // the lists to an easily swappable map, and then convert back to
2624        // MatchStates once we're done.
2625        let mut new_matches = self.ms.to_map(self);
2626
2627        // There is at least one state that gets accelerated, so these are
2628        // guaranteed to get set to sensible values below.
2629        self.special.min_accel = StateID::MAX;
2630        self.special.max_accel = StateID::ZERO;
2631        let update_special_accel =
2632            |special: &mut Special, accel_id: StateID| {
2633                special.min_accel = cmp::min(special.min_accel, accel_id);
2634                special.max_accel = cmp::max(special.max_accel, accel_id);
2635            };
2636
2637        // Start by shuffling match states. Any match states that are
2638        // accelerated get moved to the end of the match state range.
2639        if cmatch > 0 && self.special.matches() {
2640            // N.B. special.{min,max}_match do not need updating, since the
2641            // range/number of match states does not change. Only the ordering
2642            // of match states may change.
2643            let mut next_id = self.special.max_match;
2644            let mut cur_id = next_id;
2645            while cur_id >= self.special.min_match {
2646                if let Some(accel) = accels.remove(&cur_id) {
2647                    accels.insert(next_id, accel);
2648                    update_special_accel(&mut self.special, next_id);
2649
2650                    // No need to do any actual swapping for equivalent IDs.
2651                    if cur_id != next_id {
2652                        remapper.swap(self, cur_id, next_id);
2653
2654                        // Swap pattern IDs for match states.
2655                        let cur_pids = new_matches.remove(&cur_id).unwrap();
2656                        let next_pids = new_matches.remove(&next_id).unwrap();
2657                        new_matches.insert(cur_id, next_pids);
2658                        new_matches.insert(next_id, cur_pids);
2659                    }
2660                    next_id = self.tt.prev_state_id(next_id);
2661                }
2662                cur_id = self.tt.prev_state_id(cur_id);
2663            }
2664        }
2665
2666        // This is where it gets tricky. Without acceleration, start states
2667        // normally come right after match states. But we want accelerated
2668        // states to be a single contiguous range (to make it very fast
2669        // to determine whether a state *is* accelerated), while also keeping
2670        // match and starting states as contiguous ranges for the same reason.
2671        // So what we do here is shuffle states such that it looks like this:
2672        //
2673        //     DQMMMMAAAAASSSSSSNNNNNNN
2674        //         |         |
2675        //         |---------|
2676        //      accelerated states
2677        //
2678        // Where:
2679        //   D - dead state
2680        //   Q - quit state
2681        //   M - match state (may be accelerated)
2682        //   A - normal state that is accelerated
2683        //   S - start state (may be accelerated)
2684        //   N - normal state that is NOT accelerated
2685        //
2686        // We implement this by shuffling states, which is done by a sequence
2687        // of pairwise swaps. We start by looking at all normal states to be
2688        // accelerated. When we find one, we swap it with the earliest starting
2689        // state, and then swap that with the earliest normal state. This
2690        // preserves the contiguous property.
2691        //
2692        // Once we're done looking for accelerated normal states, now we look
2693        // for accelerated starting states by moving them to the beginning
2694        // of the starting state range (just like we moved accelerated match
2695        // states to the end of the matching state range).
2696        //
2697        // For a more detailed/different perspective on this, see the docs
2698        // in dfa/special.rs.
2699        if cnormal > 0 {
2700            // our next available starting and normal states for swapping.
2701            let mut next_start_id = self.special.min_start;
2702            let mut cur_id = self.to_state_id(self.state_len() - 1);
2703            // This is guaranteed to exist since cnormal > 0.
2704            let mut next_norm_id =
2705                self.tt.next_state_id(self.special.max_start);
2706            while cur_id >= next_norm_id {
2707                if let Some(accel) = accels.remove(&cur_id) {
2708                    remapper.swap(self, next_start_id, cur_id);
2709                    remapper.swap(self, next_norm_id, cur_id);
2710                    // Keep our accelerator map updated with new IDs if the
2711                    // states we swapped were also accelerated.
2712                    if let Some(accel2) = accels.remove(&next_norm_id) {
2713                        accels.insert(cur_id, accel2);
2714                    }
2715                    if let Some(accel2) = accels.remove(&next_start_id) {
2716                        accels.insert(next_norm_id, accel2);
2717                    }
2718                    accels.insert(next_start_id, accel);
2719                    update_special_accel(&mut self.special, next_start_id);
2720                    // Our start range shifts one to the right now.
2721                    self.special.min_start =
2722                        self.tt.next_state_id(self.special.min_start);
2723                    self.special.max_start =
2724                        self.tt.next_state_id(self.special.max_start);
2725                    next_start_id = self.tt.next_state_id(next_start_id);
2726                    next_norm_id = self.tt.next_state_id(next_norm_id);
2727                }
2728                // This is pretty tricky, but if our 'next_norm_id' state also
2729                // happened to be accelerated, then the result is that it is
2730                // now in the position of cur_id, so we need to consider it
2731                // again. This loop is still guaranteed to terminate though,
2732                // because when accels contains cur_id, we're guaranteed to
2733                // increment next_norm_id even if cur_id remains unchanged.
2734                if !accels.contains_key(&cur_id) {
2735                    cur_id = self.tt.prev_state_id(cur_id);
2736                }
2737            }
2738        }
2739        // Just like we did for match states, but we want to move accelerated
2740        // start states to the beginning of the range instead of the end.
2741        if cstart > 0 {
2742            // N.B. special.{min,max}_start do not need updating, since the
2743            // range/number of start states does not change at this point. Only
2744            // the ordering of start states may change.
2745            let mut next_id = self.special.min_start;
2746            let mut cur_id = next_id;
2747            while cur_id <= self.special.max_start {
2748                if let Some(accel) = accels.remove(&cur_id) {
2749                    remapper.swap(self, cur_id, next_id);
2750                    accels.insert(next_id, accel);
2751                    update_special_accel(&mut self.special, next_id);
2752                    next_id = self.tt.next_state_id(next_id);
2753                }
2754                cur_id = self.tt.next_state_id(cur_id);
2755            }
2756        }
2757
2758        // Remap all transitions in our DFA and assert some things.
2759        remapper.remap(self);
2760        // This unwrap is OK because acceleration never changes the number of
2761        // match states or patterns in those match states. Since acceleration
2762        // runs after the pattern map has been set at least once, we know that
2763        // our match states cannot error.
2764        self.set_pattern_map(&new_matches).unwrap();
2765        self.special.set_max();
2766        self.special.validate().expect("special state ranges should validate");
2767        self.special
2768            .validate_state_len(self.state_len(), self.stride2())
2769            .expect(
2770                "special state ranges should be consistent with state length",
2771            );
2772        assert_eq!(
2773            self.special.accel_len(self.stride()),
2774            // We record the number of accelerated states initially detected
2775            // since the accels map is itself mutated in the process above.
2776            // If mutated incorrectly, its size may change, and thus can't be
2777            // trusted as a source of truth of how many accelerated states we
2778            // expected there to be.
2779            original_accels_len,
2780            "mismatch with expected number of accelerated states",
2781        );
2782
2783        // And finally record our accelerators. We kept our accels map updated
2784        // as we shuffled states above, so the accelerators should now
2785        // correspond to a contiguous range in the state ID space. (Which we
2786        // assert.)
2787        let mut prev: Option<StateID> = None;
2788        for (id, accel) in accels {
2789            assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
2790            prev = Some(id);
2791            self.accels.add(accel);
2792        }
2793    }
2794
2795    /// Shuffle the states in this DFA so that starting states, match
2796    /// states and accelerated states are all contiguous.
2797    ///
2798    /// See dfa/special.rs for more details.
2799    pub(crate) fn shuffle(
2800        &mut self,
2801        mut matches: BTreeMap<StateID, Vec<PatternID>>,
2802    ) -> Result<(), BuildError> {
2803        // The determinizer always adds a quit state and it is always second.
2804        self.special.quit_id = self.to_state_id(1);
2805        // If all we have are the dead and quit states, then we're done and
2806        // the DFA will never produce a match.
2807        if self.state_len() <= 2 {
2808            self.special.set_max();
2809            return Ok(());
2810        }
2811
2812        // Collect all our non-DEAD start states into a convenient set and
2813        // confirm there is no overlap with match states. In the classicl DFA
2814        // construction, start states can be match states. But because of
2815        // look-around, we delay all matches by a byte, which prevents start
2816        // states from being match states.
2817        let mut is_start: BTreeSet<StateID> = BTreeSet::new();
2818        for (start_id, _, _) in self.starts() {
2819            // If a starting configuration points to a DEAD state, then we
2820            // don't want to shuffle it. The DEAD state is always the first
2821            // state with ID=0. So we can just leave it be.
2822            if start_id == DEAD {
2823                continue;
2824            }
2825            assert!(
2826                !matches.contains_key(&start_id),
2827                "{:?} is both a start and a match state, which is not allowed",
2828                start_id,
2829            );
2830            is_start.insert(start_id);
2831        }
2832
2833        // We implement shuffling by a sequence of pairwise swaps of states.
2834        // Since we have a number of things referencing states via their
2835        // IDs and swapping them changes their IDs, we need to record every
2836        // swap we make so that we can remap IDs. The remapper handles this
2837        // book-keeping for us.
2838        let mut remapper = Remapper::new(self);
2839
2840        // Shuffle matching states.
2841        if matches.is_empty() {
2842            self.special.min_match = DEAD;
2843            self.special.max_match = DEAD;
2844        } else {
2845            // The determinizer guarantees that the first two states are the
2846            // dead and quit states, respectively. We want our match states to
2847            // come right after quit.
2848            let mut next_id = self.to_state_id(2);
2849            let mut new_matches = BTreeMap::new();
2850            self.special.min_match = next_id;
2851            for (id, pids) in matches {
2852                remapper.swap(self, next_id, id);
2853                new_matches.insert(next_id, pids);
2854                // If we swapped a start state, then update our set.
2855                if is_start.contains(&next_id) {
2856                    is_start.remove(&next_id);
2857                    is_start.insert(id);
2858                }
2859                next_id = self.tt.next_state_id(next_id);
2860            }
2861            matches = new_matches;
2862            self.special.max_match = cmp::max(
2863                self.special.min_match,
2864                self.tt.prev_state_id(next_id),
2865            );
2866        }
2867
2868        // Shuffle starting states.
2869        {
2870            let mut next_id = self.to_state_id(2);
2871            if self.special.matches() {
2872                next_id = self.tt.next_state_id(self.special.max_match);
2873            }
2874            self.special.min_start = next_id;
2875            for id in is_start {
2876                remapper.swap(self, next_id, id);
2877                next_id = self.tt.next_state_id(next_id);
2878            }
2879            self.special.max_start = cmp::max(
2880                self.special.min_start,
2881                self.tt.prev_state_id(next_id),
2882            );
2883        }
2884
2885        // Finally remap all transitions in our DFA.
2886        remapper.remap(self);
2887        self.set_pattern_map(&matches)?;
2888        self.special.set_max();
2889        self.special.validate().expect("special state ranges should validate");
2890        self.special
2891            .validate_state_len(self.state_len(), self.stride2())
2892            .expect(
2893                "special state ranges should be consistent with state length",
2894            );
2895        Ok(())
2896    }
2897
2898    /// Checks whether there are universal start states (both anchored and
2899    /// unanchored), and if so, sets the relevant fields to the start state
2900    /// IDs.
2901    ///
2902    /// Universal start states occur precisely when the all patterns in the
2903    /// DFA have no look-around assertions in their prefix.
2904    fn set_universal_starts(&mut self) {
2905        assert_eq!(6, Start::len(), "expected 6 start configurations");
2906
2907        let start_id = |dfa: &mut OwnedDFA,
2908                        anchored: Anchored,
2909                        start: Start| {
2910            // This OK because we only call 'start' under conditions
2911            // in which we know it will succeed.
2912            dfa.st.start(anchored, start).expect("valid Input configuration")
2913        };
2914        if self.start_kind().has_unanchored() {
2915            let anchor = Anchored::No;
2916            let sid = start_id(self, anchor, Start::NonWordByte);
2917            if sid == start_id(self, anchor, Start::WordByte)
2918                && sid == start_id(self, anchor, Start::Text)
2919                && sid == start_id(self, anchor, Start::LineLF)
2920                && sid == start_id(self, anchor, Start::LineCR)
2921                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2922            {
2923                self.st.universal_start_unanchored = Some(sid);
2924            }
2925        }
2926        if self.start_kind().has_anchored() {
2927            let anchor = Anchored::Yes;
2928            let sid = start_id(self, anchor, Start::NonWordByte);
2929            if sid == start_id(self, anchor, Start::WordByte)
2930                && sid == start_id(self, anchor, Start::Text)
2931                && sid == start_id(self, anchor, Start::LineLF)
2932                && sid == start_id(self, anchor, Start::LineCR)
2933                && sid == start_id(self, anchor, Start::CustomLineTerminator)
2934            {
2935                self.st.universal_start_anchored = Some(sid);
2936            }
2937        }
2938    }
2939}
2940
2941// A variety of generic internal methods for accessing DFA internals.
2942impl<T: AsRef<[u32]>> DFA<T> {
2943    /// Return the info about special states.
2944    pub(crate) fn special(&self) -> &Special {
2945        &self.special
2946    }
2947
2948    /// Return the info about special states as a mutable borrow.
2949    #[cfg(feature = "dfa-build")]
2950    pub(crate) fn special_mut(&mut self) -> &mut Special {
2951        &mut self.special
2952    }
2953
2954    /// Returns the quit set (may be empty) used by this DFA.
2955    pub(crate) fn quitset(&self) -> &ByteSet {
2956        &self.quitset
2957    }
2958
2959    /// Returns the flags for this DFA.
2960    pub(crate) fn flags(&self) -> &Flags {
2961        &self.flags
2962    }
2963
2964    /// Returns an iterator over all states in this DFA.
2965    ///
2966    /// This iterator yields a tuple for each state. The first element of the
2967    /// tuple corresponds to a state's identifier, and the second element
2968    /// corresponds to the state itself (comprised of its transitions).
2969    pub(crate) fn states(&self) -> StateIter<'_, T> {
2970        self.tt.states()
2971    }
2972
2973    /// Return the total number of states in this DFA. Every DFA has at least
2974    /// 1 state, even the empty DFA.
2975    pub(crate) fn state_len(&self) -> usize {
2976        self.tt.len()
2977    }
2978
2979    /// Return an iterator over all pattern IDs for the given match state.
2980    ///
2981    /// If the given state is not a match state, then this panics.
2982    #[cfg(feature = "dfa-build")]
2983    pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
2984        assert!(self.is_match_state(id));
2985        self.ms.pattern_id_slice(self.match_state_index(id))
2986    }
2987
2988    /// Return the total number of pattern IDs for the given match state.
2989    ///
2990    /// If the given state is not a match state, then this panics.
2991    pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
2992        assert!(self.is_match_state(id));
2993        self.ms.pattern_len(self.match_state_index(id))
2994    }
2995
2996    /// Returns the total number of patterns matched by this DFA.
2997    pub(crate) fn pattern_len(&self) -> usize {
2998        self.ms.pattern_len
2999    }
3000
3001    /// Returns a map from match state ID to a list of pattern IDs that match
3002    /// in that state.
3003    #[cfg(feature = "dfa-build")]
3004    pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
3005        self.ms.to_map(self)
3006    }
3007
3008    /// Returns the ID of the quit state for this DFA.
3009    #[cfg(feature = "dfa-build")]
3010    pub(crate) fn quit_id(&self) -> StateID {
3011        self.to_state_id(1)
3012    }
3013
3014    /// Convert the given state identifier to the state's index. The state's
3015    /// index corresponds to the position in which it appears in the transition
3016    /// table. When a DFA is NOT premultiplied, then a state's identifier is
3017    /// also its index. When a DFA is premultiplied, then a state's identifier
3018    /// is equal to `index * alphabet_len`. This routine reverses that.
3019    pub(crate) fn to_index(&self, id: StateID) -> usize {
3020        self.tt.to_index(id)
3021    }
3022
3023    /// Convert an index to a state (in the range 0..self.state_len()) to an
3024    /// actual state identifier.
3025    ///
3026    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3027    /// to some other information (such as a remapped state ID).
3028    #[cfg(feature = "dfa-build")]
3029    pub(crate) fn to_state_id(&self, index: usize) -> StateID {
3030        self.tt.to_state_id(index)
3031    }
3032
3033    /// Return the table of state IDs for this DFA's start states.
3034    pub(crate) fn starts(&self) -> StartStateIter<'_> {
3035        self.st.iter()
3036    }
3037
3038    /// Returns the index of the match state for the given ID. If the
3039    /// given ID does not correspond to a match state, then this may
3040    /// panic or produce an incorrect result.
3041    #[cfg_attr(feature = "perf-inline", inline(always))]
3042    fn match_state_index(&self, id: StateID) -> usize {
3043        debug_assert!(self.is_match_state(id));
3044        // This is one of the places where we rely on the fact that match
3045        // states are contiguous in the transition table. Namely, that the
3046        // first match state ID always corresponds to dfa.special.min_match.
3047        // From there, since we know the stride, we can compute the overall
3048        // index of any match state given the match state's ID.
3049        let min = self.special().min_match.as_usize();
3050        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3051        // so both the subtraction and the unchecked StateID construction is
3052        // OK.
3053        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3054    }
3055
3056    /// Returns the index of the accelerator state for the given ID. If the
3057    /// given ID does not correspond to an accelerator state, then this may
3058    /// panic or produce an incorrect result.
3059    fn accelerator_index(&self, id: StateID) -> usize {
3060        let min = self.special().min_accel.as_usize();
3061        // CORRECTNESS: We're allowed to produce an incorrect result or panic,
3062        // so both the subtraction and the unchecked StateID construction is
3063        // OK.
3064        self.to_index(StateID::new_unchecked(id.as_usize() - min))
3065    }
3066
3067    /// Return the accelerators for this DFA.
3068    fn accels(&self) -> Accels<&[u32]> {
3069        self.accels.as_ref()
3070    }
3071
3072    /// Return this DFA's transition table as a slice.
3073    fn trans(&self) -> &[StateID] {
3074        self.tt.table()
3075    }
3076}
3077
3078impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
3079    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3080        writeln!(f, "dense::DFA(")?;
3081        for state in self.states() {
3082            fmt_state_indicator(f, self, state.id())?;
3083            let id = if f.alternate() {
3084                state.id().as_usize()
3085            } else {
3086                self.to_index(state.id())
3087            };
3088            write!(f, "{:06?}: ", id)?;
3089            state.fmt(f)?;
3090            write!(f, "\n")?;
3091        }
3092        writeln!(f, "")?;
3093        for (i, (start_id, anchored, sty)) in self.starts().enumerate() {
3094            let id = if f.alternate() {
3095                start_id.as_usize()
3096            } else {
3097                self.to_index(start_id)
3098            };
3099            if i % self.st.stride == 0 {
3100                match anchored {
3101                    Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
3102                    Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
3103                    Anchored::Pattern(pid) => {
3104                        writeln!(f, "START_GROUP(pattern: {:?})", pid)?
3105                    }
3106                }
3107            }
3108            writeln!(f, "  {:?} => {:06?}", sty, id)?;
3109        }
3110        if self.pattern_len() > 1 {
3111            writeln!(f, "")?;
3112            for i in 0..self.ms.len() {
3113                let id = self.ms.match_state_id(self, i);
3114                let id = if f.alternate() {
3115                    id.as_usize()
3116                } else {
3117                    self.to_index(id)
3118                };
3119                write!(f, "MATCH({:06?}): ", id)?;
3120                for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
3121                {
3122                    if i > 0 {
3123                        write!(f, ", ")?;
3124                    }
3125                    write!(f, "{:?}", pid)?;
3126                }
3127                writeln!(f, "")?;
3128            }
3129        }
3130        writeln!(f, "state length: {:?}", self.state_len())?;
3131        writeln!(f, "pattern length: {:?}", self.pattern_len())?;
3132        writeln!(f, "flags: {:?}", self.flags)?;
3133        writeln!(f, ")")?;
3134        Ok(())
3135    }
3136}
3137
3138// SAFETY: We assert that our implementation of each method is correct.
3139unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
3140    #[cfg_attr(feature = "perf-inline", inline(always))]
3141    fn is_special_state(&self, id: StateID) -> bool {
3142        self.special.is_special_state(id)
3143    }
3144
3145    #[cfg_attr(feature = "perf-inline", inline(always))]
3146    fn is_dead_state(&self, id: StateID) -> bool {
3147        self.special.is_dead_state(id)
3148    }
3149
3150    #[cfg_attr(feature = "perf-inline", inline(always))]
3151    fn is_quit_state(&self, id: StateID) -> bool {
3152        self.special.is_quit_state(id)
3153    }
3154
3155    #[cfg_attr(feature = "perf-inline", inline(always))]
3156    fn is_match_state(&self, id: StateID) -> bool {
3157        self.special.is_match_state(id)
3158    }
3159
3160    #[cfg_attr(feature = "perf-inline", inline(always))]
3161    fn is_start_state(&self, id: StateID) -> bool {
3162        self.special.is_start_state(id)
3163    }
3164
3165    #[cfg_attr(feature = "perf-inline", inline(always))]
3166    fn is_accel_state(&self, id: StateID) -> bool {
3167        self.special.is_accel_state(id)
3168    }
3169
3170    #[cfg_attr(feature = "perf-inline", inline(always))]
3171    fn next_state(&self, current: StateID, input: u8) -> StateID {
3172        let input = self.byte_classes().get(input);
3173        let o = current.as_usize() + usize::from(input);
3174        self.trans()[o]
3175    }
3176
3177    #[cfg_attr(feature = "perf-inline", inline(always))]
3178    unsafe fn next_state_unchecked(
3179        &self,
3180        current: StateID,
3181        byte: u8,
3182    ) -> StateID {
3183        // We don't (or shouldn't) need an unchecked variant for the byte
3184        // class mapping, since bound checks should be omitted automatically
3185        // by virtue of its representation. If this ends up not being true as
3186        // confirmed by codegen, please file an issue. ---AG
3187        let class = self.byte_classes().get(byte);
3188        let o = current.as_usize() + usize::from(class);
3189        let next = *self.trans().get_unchecked(o);
3190        next
3191    }
3192
3193    #[cfg_attr(feature = "perf-inline", inline(always))]
3194    fn next_eoi_state(&self, current: StateID) -> StateID {
3195        let eoi = self.byte_classes().eoi().as_usize();
3196        let o = current.as_usize() + eoi;
3197        self.trans()[o]
3198    }
3199
3200    #[cfg_attr(feature = "perf-inline", inline(always))]
3201    fn pattern_len(&self) -> usize {
3202        self.ms.pattern_len
3203    }
3204
3205    #[cfg_attr(feature = "perf-inline", inline(always))]
3206    fn match_len(&self, id: StateID) -> usize {
3207        self.match_pattern_len(id)
3208    }
3209
3210    #[cfg_attr(feature = "perf-inline", inline(always))]
3211    fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
3212        // This is an optimization for the very common case of a DFA with a
3213        // single pattern. This conditional avoids a somewhat more costly path
3214        // that finds the pattern ID from the state machine, which requires
3215        // a bit of slicing/pointer-chasing. This optimization tends to only
3216        // matter when matches are frequent.
3217        if self.ms.pattern_len == 1 {
3218            return PatternID::ZERO;
3219        }
3220        let state_index = self.match_state_index(id);
3221        self.ms.pattern_id(state_index, match_index)
3222    }
3223
3224    #[cfg_attr(feature = "perf-inline", inline(always))]
3225    fn has_empty(&self) -> bool {
3226        self.flags.has_empty
3227    }
3228
3229    #[cfg_attr(feature = "perf-inline", inline(always))]
3230    fn is_utf8(&self) -> bool {
3231        self.flags.is_utf8
3232    }
3233
3234    #[cfg_attr(feature = "perf-inline", inline(always))]
3235    fn is_always_start_anchored(&self) -> bool {
3236        self.flags.is_always_start_anchored
3237    }
3238
3239    #[cfg_attr(feature = "perf-inline", inline(always))]
3240    fn start_state(
3241        &self,
3242        config: &start::Config,
3243    ) -> Result<StateID, StartError> {
3244        let anchored = config.get_anchored();
3245        let start = match config.get_look_behind() {
3246            None => Start::Text,
3247            Some(byte) => {
3248                if !self.quitset.is_empty() && self.quitset.contains(byte) {
3249                    return Err(StartError::quit(byte));
3250                }
3251                self.st.start_map.get(byte)
3252            }
3253        };
3254        self.st.start(anchored, start)
3255    }
3256
3257    #[cfg_attr(feature = "perf-inline", inline(always))]
3258    fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
3259        match mode {
3260            Anchored::No => self.st.universal_start_unanchored,
3261            Anchored::Yes => self.st.universal_start_anchored,
3262            Anchored::Pattern(_) => None,
3263        }
3264    }
3265
3266    #[cfg_attr(feature = "perf-inline", inline(always))]
3267    fn accelerator(&self, id: StateID) -> &[u8] {
3268        if !self.is_accel_state(id) {
3269            return &[];
3270        }
3271        self.accels.needles(self.accelerator_index(id))
3272    }
3273
3274    #[cfg_attr(feature = "perf-inline", inline(always))]
3275    fn get_prefilter(&self) -> Option<&Prefilter> {
3276        self.pre.as_ref()
3277    }
3278}
3279
3280/// The transition table portion of a dense DFA.
3281///
3282/// The transition table is the core part of the DFA in that it describes how
3283/// to move from one state to another based on the input sequence observed.
3284#[derive(Clone)]
3285pub(crate) struct TransitionTable<T> {
3286    /// A contiguous region of memory representing the transition table in
3287    /// row-major order. The representation is dense. That is, every state
3288    /// has precisely the same number of transitions. The maximum number of
3289    /// transitions per state is 257 (256 for each possible byte value, plus 1
3290    /// for the special EOI transition). If a DFA has been instructed to use
3291    /// byte classes (the default), then the number of transitions is usually
3292    /// substantially fewer.
3293    ///
3294    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3295    table: T,
3296    /// A set of equivalence classes, where a single equivalence class
3297    /// represents a set of bytes that never discriminate between a match
3298    /// and a non-match in the DFA. Each equivalence class corresponds to a
3299    /// single character in this DFA's alphabet, where the maximum number of
3300    /// characters is 257 (each possible value of a byte plus the special
3301    /// EOI transition). Consequently, the number of equivalence classes
3302    /// corresponds to the number of transitions for each DFA state. Note
3303    /// though that the *space* used by each DFA state in the transition table
3304    /// may be larger. The total space used by each DFA state is known as the
3305    /// stride.
3306    ///
3307    /// The only time the number of equivalence classes is fewer than 257 is if
3308    /// the DFA's kind uses byte classes (which is the default). Equivalence
3309    /// classes should generally only be disabled when debugging, so that
3310    /// the transitions themselves aren't obscured. Disabling them has no
3311    /// other benefit, since the equivalence class map is always used while
3312    /// searching. In the vast majority of cases, the number of equivalence
3313    /// classes is substantially smaller than 257, particularly when large
3314    /// Unicode classes aren't used.
3315    classes: ByteClasses,
3316    /// The stride of each DFA state, expressed as a power-of-two exponent.
3317    ///
3318    /// The stride of a DFA corresponds to the total amount of space used by
3319    /// each DFA state in the transition table. This may be bigger than the
3320    /// size of a DFA's alphabet, since the stride is always the smallest
3321    /// power of two greater than or equal to the alphabet size.
3322    ///
3323    /// While this wastes space, this avoids the need for integer division
3324    /// to convert between premultiplied state IDs and their corresponding
3325    /// indices. Instead, we can use simple bit-shifts.
3326    ///
3327    /// See the docs for the `stride2` method for more details.
3328    ///
3329    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
3330    /// while the maximum `stride2` value is `9` (corresponding to a stride of
3331    /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
3332    /// when accounting for the special EOI transition. However, an alphabet
3333    /// length of that size is exceptionally rare since the alphabet is shrunk
3334    /// into equivalence classes.
3335    stride2: usize,
3336}
3337
3338impl<'a> TransitionTable<&'a [u32]> {
3339    /// Deserialize a transition table starting at the beginning of `slice`.
3340    /// Upon success, return the total number of bytes read along with the
3341    /// transition table.
3342    ///
3343    /// If there was a problem deserializing any part of the transition table,
3344    /// then this returns an error. Notably, if the given slice does not have
3345    /// the same alignment as `StateID`, then this will return an error (among
3346    /// other possible errors).
3347    ///
3348    /// This is guaranteed to execute in constant time.
3349    ///
3350    /// # Safety
3351    ///
3352    /// This routine is not safe because it does not check the validity of the
3353    /// transition table itself. In particular, the transition table can be
3354    /// quite large, so checking its validity can be somewhat expensive. An
3355    /// invalid transition table is not safe because other code may rely on the
3356    /// transition table being correct (such as explicit bounds check elision).
3357    /// Therefore, an invalid transition table can lead to undefined behavior.
3358    ///
3359    /// Callers that use this function must either pass on the safety invariant
3360    /// or guarantee that the bytes given contain a valid transition table.
3361    /// This guarantee is upheld by the bytes written by `write_to`.
3362    unsafe fn from_bytes_unchecked(
3363        mut slice: &'a [u8],
3364    ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
3365        let slice_start = slice.as_ptr().as_usize();
3366
3367        let (state_len, nr) =
3368            wire::try_read_u32_as_usize(slice, "state length")?;
3369        slice = &slice[nr..];
3370
3371        let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?;
3372        slice = &slice[nr..];
3373
3374        let (classes, nr) = ByteClasses::from_bytes(slice)?;
3375        slice = &slice[nr..];
3376
3377        // The alphabet length (determined by the byte class map) cannot be
3378        // bigger than the stride (total space used by each DFA state).
3379        if stride2 > 9 {
3380            return Err(DeserializeError::generic(
3381                "dense DFA has invalid stride2 (too big)",
3382            ));
3383        }
3384        // It also cannot be zero, since even a DFA that never matches anything
3385        // has a non-zero number of states with at least two equivalence
3386        // classes: one for all 256 byte values and another for the EOI
3387        // sentinel.
3388        if stride2 < 1 {
3389            return Err(DeserializeError::generic(
3390                "dense DFA has invalid stride2 (too small)",
3391            ));
3392        }
3393        // This is OK since 1 <= stride2 <= 9.
3394        let stride =
3395            1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
3396        if classes.alphabet_len() > stride {
3397            return Err(DeserializeError::generic(
3398                "alphabet size cannot be bigger than transition table stride",
3399            ));
3400        }
3401
3402        let trans_len =
3403            wire::shl(state_len, stride2, "dense table transition length")?;
3404        let table_bytes_len = wire::mul(
3405            trans_len,
3406            StateID::SIZE,
3407            "dense table state byte length",
3408        )?;
3409        wire::check_slice_len(slice, table_bytes_len, "transition table")?;
3410        wire::check_alignment::<StateID>(slice)?;
3411        let table_bytes = &slice[..table_bytes_len];
3412        slice = &slice[table_bytes_len..];
3413        // SAFETY: Since StateID is always representable as a u32, all we need
3414        // to do is ensure that we have the proper length and alignment. We've
3415        // checked both above, so the cast below is safe.
3416        //
3417        // N.B. This is the only not-safe code in this function.
3418        let table = core::slice::from_raw_parts(
3419            table_bytes.as_ptr().cast::<u32>(),
3420            trans_len,
3421        );
3422        let tt = TransitionTable { table, classes, stride2 };
3423        Ok((tt, slice.as_ptr().as_usize() - slice_start))
3424    }
3425}
3426
3427#[cfg(feature = "dfa-build")]
3428impl TransitionTable<Vec<u32>> {
3429    /// Create a minimal transition table with just two states: a dead state
3430    /// and a quit state. The alphabet length and stride of the transition
3431    /// table is determined by the given set of equivalence classes.
3432    fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
3433        let mut tt = TransitionTable {
3434            table: vec![],
3435            classes,
3436            stride2: classes.stride2(),
3437        };
3438        // Two states, regardless of alphabet size, can always fit into u32.
3439        tt.add_empty_state().unwrap(); // dead state
3440        tt.add_empty_state().unwrap(); // quit state
3441        tt
3442    }
3443
3444    /// Set a transition in this table. Both the `from` and `to` states must
3445    /// already exist, otherwise this panics. `unit` should correspond to the
3446    /// transition out of `from` to set to `to`.
3447    fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
3448        assert!(self.is_valid(from), "invalid 'from' state");
3449        assert!(self.is_valid(to), "invalid 'to' state");
3450        self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
3451            to.as_u32();
3452    }
3453
3454    /// Add an empty state (a state where all transitions lead to a dead state)
3455    /// and return its identifier. The identifier returned is guaranteed to
3456    /// not point to any other existing state.
3457    ///
3458    /// If adding a state would exhaust the state identifier space, then this
3459    /// returns an error.
3460    fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
3461        // Normally, to get a fresh state identifier, we would just
3462        // take the index of the next state added to the transition
3463        // table. However, we actually perform an optimization here
3464        // that premultiplies state IDs by the stride, such that they
3465        // point immediately at the beginning of their transitions in
3466        // the transition table. This avoids an extra multiplication
3467        // instruction for state lookup at search time.
3468        //
3469        // Premultiplied identifiers means that instead of your matching
3470        // loop looking something like this:
3471        //
3472        //   state = dfa.start
3473        //   for byte in haystack:
3474        //       next = dfa.transitions[state * stride + byte]
3475        //       if dfa.is_match(next):
3476        //           return true
3477        //   return false
3478        //
3479        // it can instead look like this:
3480        //
3481        //   state = dfa.start
3482        //   for byte in haystack:
3483        //       next = dfa.transitions[state + byte]
3484        //       if dfa.is_match(next):
3485        //           return true
3486        //   return false
3487        //
3488        // In other words, we save a multiplication instruction in the
3489        // critical path. This turns out to be a decent performance win.
3490        // The cost of using premultiplied state ids is that they can
3491        // require a bigger state id representation. (And they also make
3492        // the code a bit more complex, especially during minimization and
3493        // when reshuffling states, as one needs to convert back and forth
3494        // between state IDs and state indices.)
3495        //
3496        // To do this, we simply take the index of the state into the
3497        // entire transition table, rather than the index of the state
3498        // itself. e.g., If the stride is 64, then the ID of the 3rd state
3499        // is 192, not 2.
3500        let next = self.table.len();
3501        let id =
3502            StateID::new(next).map_err(|_| BuildError::too_many_states())?;
3503        self.table.extend(iter::repeat(0).take(self.stride()));
3504        Ok(id)
3505    }
3506
3507    /// Swap the two states given in this transition table.
3508    ///
3509    /// This routine does not do anything to check the correctness of this
3510    /// swap. Callers must ensure that other states pointing to id1 and id2 are
3511    /// updated appropriately.
3512    ///
3513    /// Both id1 and id2 must point to valid states, otherwise this panics.
3514    fn swap(&mut self, id1: StateID, id2: StateID) {
3515        assert!(self.is_valid(id1), "invalid 'id1' state: {:?}", id1);
3516        assert!(self.is_valid(id2), "invalid 'id2' state: {:?}", id2);
3517        // We only need to swap the parts of the state that are used. So if the
3518        // stride is 64, but the alphabet length is only 33, then we save a lot
3519        // of work.
3520        for b in 0..self.classes.alphabet_len() {
3521            self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
3522        }
3523    }
3524
3525    /// Remap the transitions for the state given according to the function
3526    /// given. This applies the given map function to every transition in the
3527    /// given state and changes the transition in place to the result of the
3528    /// map function for that transition.
3529    fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) {
3530        for byte in 0..self.alphabet_len() {
3531            let i = id.as_usize() + byte;
3532            let next = self.table()[i];
3533            self.table_mut()[id.as_usize() + byte] = map(next);
3534        }
3535    }
3536
3537    /// Truncate the states in this transition table to the given length.
3538    ///
3539    /// This routine does not do anything to check the correctness of this
3540    /// truncation. Callers must ensure that other states pointing to truncated
3541    /// states are updated appropriately.
3542    fn truncate(&mut self, len: usize) {
3543        self.table.truncate(len << self.stride2);
3544    }
3545}
3546
3547impl<T: AsRef<[u32]>> TransitionTable<T> {
3548    /// Writes a serialized form of this transition table to the buffer given.
3549    /// If the buffer is too small, then an error is returned. To determine
3550    /// how big the buffer must be, use `write_to_len`.
3551    fn write_to<E: Endian>(
3552        &self,
3553        mut dst: &mut [u8],
3554    ) -> Result<usize, SerializeError> {
3555        let nwrite = self.write_to_len();
3556        if dst.len() < nwrite {
3557            return Err(SerializeError::buffer_too_small("transition table"));
3558        }
3559        dst = &mut dst[..nwrite];
3560
3561        // write state length
3562        // Unwrap is OK since number of states is guaranteed to fit in a u32.
3563        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
3564        dst = &mut dst[size_of::<u32>()..];
3565
3566        // write state stride (as power of 2)
3567        // Unwrap is OK since stride2 is guaranteed to be <= 9.
3568        E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
3569        dst = &mut dst[size_of::<u32>()..];
3570
3571        // write byte class map
3572        let n = self.classes.write_to(dst)?;
3573        dst = &mut dst[n..];
3574
3575        // write actual transitions
3576        for &sid in self.table() {
3577            let n = wire::write_state_id::<E>(sid, &mut dst);
3578            dst = &mut dst[n..];
3579        }
3580        Ok(nwrite)
3581    }
3582
3583    /// Returns the number of bytes the serialized form of this transition
3584    /// table will use.
3585    fn write_to_len(&self) -> usize {
3586        size_of::<u32>()   // state length
3587        + size_of::<u32>() // stride2
3588        + self.classes.write_to_len()
3589        + (self.table().len() * StateID::SIZE)
3590    }
3591
3592    /// Validates that every state ID in this transition table is valid.
3593    ///
3594    /// That is, every state ID can be used to correctly index a state in this
3595    /// table.
3596    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
3597        let sp = &dfa.special;
3598        for state in self.states() {
3599            // We check that the ID itself is well formed. That is, if it's
3600            // a special state then it must actually be a quit, dead, accel,
3601            // match or start state.
3602            if sp.is_special_state(state.id()) {
3603                let is_actually_special = sp.is_dead_state(state.id())
3604                    || sp.is_quit_state(state.id())
3605                    || sp.is_match_state(state.id())
3606                    || sp.is_start_state(state.id())
3607                    || sp.is_accel_state(state.id());
3608                if !is_actually_special {
3609                    // This is kind of a cryptic error message...
3610                    return Err(DeserializeError::generic(
3611                        "found dense state tagged as special but \
3612                         wasn't actually special",
3613                    ));
3614                }
3615                if sp.is_match_state(state.id())
3616                    && dfa.match_len(state.id()) == 0
3617                {
3618                    return Err(DeserializeError::generic(
3619                        "found match state with zero pattern IDs",
3620                    ));
3621                }
3622            }
3623            for (_, to) in state.transitions() {
3624                if !self.is_valid(to) {
3625                    return Err(DeserializeError::generic(
3626                        "found invalid state ID in transition table",
3627                    ));
3628                }
3629            }
3630        }
3631        Ok(())
3632    }
3633
3634    /// Converts this transition table to a borrowed value.
3635    fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
3636        TransitionTable {
3637            table: self.table.as_ref(),
3638            classes: self.classes.clone(),
3639            stride2: self.stride2,
3640        }
3641    }
3642
3643    /// Converts this transition table to an owned value.
3644    #[cfg(feature = "alloc")]
3645    fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> {
3646        TransitionTable {
3647            table: self.table.as_ref().to_vec(),
3648            classes: self.classes.clone(),
3649            stride2: self.stride2,
3650        }
3651    }
3652
3653    /// Return the state for the given ID. If the given ID is not valid, then
3654    /// this panics.
3655    fn state(&self, id: StateID) -> State<'_> {
3656        assert!(self.is_valid(id));
3657
3658        let i = id.as_usize();
3659        State {
3660            id,
3661            stride2: self.stride2,
3662            transitions: &self.table()[i..i + self.alphabet_len()],
3663        }
3664    }
3665
3666    /// Returns an iterator over all states in this transition table.
3667    ///
3668    /// This iterator yields a tuple for each state. The first element of the
3669    /// tuple corresponds to a state's identifier, and the second element
3670    /// corresponds to the state itself (comprised of its transitions).
3671    fn states(&self) -> StateIter<'_, T> {
3672        StateIter {
3673            tt: self,
3674            it: self.table().chunks(self.stride()).enumerate(),
3675        }
3676    }
3677
3678    /// Convert a state identifier to an index to a state (in the range
3679    /// 0..self.len()).
3680    ///
3681    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3682    /// to some other information (such as a remapped state ID).
3683    ///
3684    /// If the given ID is not valid, then this may panic or produce an
3685    /// incorrect index.
3686    fn to_index(&self, id: StateID) -> usize {
3687        id.as_usize() >> self.stride2
3688    }
3689
3690    /// Convert an index to a state (in the range 0..self.len()) to an actual
3691    /// state identifier.
3692    ///
3693    /// This is useful when using a `Vec<T>` as an efficient map keyed by state
3694    /// to some other information (such as a remapped state ID).
3695    ///
3696    /// If the given index is not in the specified range, then this may panic
3697    /// or produce an incorrect state ID.
3698    fn to_state_id(&self, index: usize) -> StateID {
3699        // CORRECTNESS: If the given index is not valid, then it is not
3700        // required for this to panic or return a valid state ID.
3701        StateID::new_unchecked(index << self.stride2)
3702    }
3703
3704    /// Returns the state ID for the state immediately following the one given.
3705    ///
3706    /// This does not check whether the state ID returned is invalid. In fact,
3707    /// if the state ID given is the last state in this DFA, then the state ID
3708    /// returned is guaranteed to be invalid.
3709    #[cfg(feature = "dfa-build")]
3710    fn next_state_id(&self, id: StateID) -> StateID {
3711        self.to_state_id(self.to_index(id).checked_add(1).unwrap())
3712    }
3713
3714    /// Returns the state ID for the state immediately preceding the one given.
3715    ///
3716    /// If the dead ID given (which is zero), then this panics.
3717    #[cfg(feature = "dfa-build")]
3718    fn prev_state_id(&self, id: StateID) -> StateID {
3719        self.to_state_id(self.to_index(id).checked_sub(1).unwrap())
3720    }
3721
3722    /// Returns the table as a slice of state IDs.
3723    fn table(&self) -> &[StateID] {
3724        wire::u32s_to_state_ids(self.table.as_ref())
3725    }
3726
3727    /// Returns the total number of states in this transition table.
3728    ///
3729    /// Note that a DFA always has at least two states: the dead and quit
3730    /// states. In particular, the dead state always has ID 0 and is
3731    /// correspondingly always the first state. The dead state is never a match
3732    /// state.
3733    fn len(&self) -> usize {
3734        self.table().len() >> self.stride2
3735    }
3736
3737    /// Returns the total stride for every state in this DFA. This corresponds
3738    /// to the total number of transitions used by each state in this DFA's
3739    /// transition table.
3740    fn stride(&self) -> usize {
3741        1 << self.stride2
3742    }
3743
3744    /// Returns the total number of elements in the alphabet for this
3745    /// transition table. This is always less than or equal to `self.stride()`.
3746    /// It is only equal when the alphabet length is a power of 2. Otherwise,
3747    /// it is always strictly less.
3748    fn alphabet_len(&self) -> usize {
3749        self.classes.alphabet_len()
3750    }
3751
3752    /// Returns true if and only if the given state ID is valid for this
3753    /// transition table. Validity in this context means that the given ID can
3754    /// be used as a valid offset with `self.stride()` to index this transition
3755    /// table.
3756    fn is_valid(&self, id: StateID) -> bool {
3757        let id = id.as_usize();
3758        id < self.table().len() && id % self.stride() == 0
3759    }
3760
3761    /// Return the memory usage, in bytes, of this transition table.
3762    ///
3763    /// This does not include the size of a `TransitionTable` value itself.
3764    fn memory_usage(&self) -> usize {
3765        self.table().len() * StateID::SIZE
3766    }
3767}
3768
3769#[cfg(feature = "dfa-build")]
3770impl<T: AsMut<[u32]>> TransitionTable<T> {
3771    /// Returns the table as a slice of state IDs.
3772    fn table_mut(&mut self) -> &mut [StateID] {
3773        wire::u32s_to_state_ids_mut(self.table.as_mut())
3774    }
3775}
3776
3777/// The set of all possible starting states in a DFA.
3778///
3779/// The set of starting states corresponds to the possible choices one can make
3780/// in terms of starting a DFA. That is, before following the first transition,
3781/// you first need to select the state that you start in.
3782///
3783/// Normally, a DFA converted from an NFA that has a single starting state
3784/// would itself just have one starting state. However, our support for look
3785/// around generally requires more starting states. The correct starting state
3786/// is chosen based on certain properties of the position at which we begin
3787/// our search.
3788///
3789/// Before listing those properties, we first must define two terms:
3790///
3791/// * `haystack` - The bytes to execute the search. The search always starts
3792///   at the beginning of `haystack` and ends before or at the end of
3793///   `haystack`.
3794/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
3795///   must be contained within `context` such that `context` is at least as big
3796///   as `haystack`.
3797///
3798/// This split is crucial for dealing with look-around. For example, consider
3799/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
3800/// regex should _not_ match the haystack since `bar` does not appear at the
3801/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
3802/// haystack because `bar` is not surrounded by word boundaries. But a search
3803/// that does not take context into account would not permit `\B` to match
3804/// since the beginning of any string matches a word boundary. Similarly, a
3805/// search that does not take context into account when searching `^bar$` in
3806/// the haystack `bar` would produce a match when it shouldn't.
3807///
3808/// Thus, it follows that the starting state is chosen based on the following
3809/// criteria, derived from the position at which the search starts in the
3810/// `context` (corresponding to the start of `haystack`):
3811///
3812/// 1. If the search starts at the beginning of `context`, then the `Text`
3813///    start state is used. (Since `^` corresponds to
3814///    `hir::Anchor::Start`.)
3815/// 2. If the search starts at a position immediately following a line
3816///    terminator, then the `Line` start state is used. (Since `(?m:^)`
3817///    corresponds to `hir::Anchor::StartLF`.)
3818/// 3. If the search starts at a position immediately following a byte
3819///    classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
3820///    start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
3821/// 4. Otherwise, if the search starts at a position immediately following
3822///    a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
3823///    then the `NonWordByte` start state is used. (Since `(?-u:\B)`
3824///    corresponds to a not-word-boundary.)
3825///
3826/// (N.B. Unicode word boundaries are not supported by the DFA because they
3827/// require multi-byte look-around and this is difficult to support in a DFA.)
3828///
3829/// To further complicate things, we also support constructing individual
3830/// anchored start states for each pattern in the DFA. (Which is required to
3831/// implement overlapping regexes correctly, but is also generally useful.)
3832/// Thus, when individual start states for each pattern are enabled, then the
3833/// total number of start states represented is `4 + (4 * #patterns)`, where
3834/// the 4 comes from each of the 4 possibilities above. The first 4 represents
3835/// the starting states for the entire DFA, which support searching for
3836/// multiple patterns simultaneously (possibly unanchored).
3837///
3838/// If individual start states are disabled, then this will only store 4
3839/// start states. Typically, individual start states are only enabled when
3840/// constructing the reverse DFA for regex matching. But they are also useful
3841/// for building DFAs that can search for a specific pattern or even to support
3842/// both anchored and unanchored searches with the same DFA.
3843///
3844/// Note though that while the start table always has either `4` or
3845/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
3846/// might be considerably smaller. That is, many of the IDs may be duplicative.
3847/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
3848/// reason to generate a unique starting state for handling word boundaries.
3849/// Similarly for start/end anchors.)
3850#[derive(Clone)]
3851pub(crate) struct StartTable<T> {
3852    /// The initial start state IDs.
3853    ///
3854    /// In practice, T is either `Vec<u32>` or `&[u32]`.
3855    ///
3856    /// The first `2 * stride` (currently always 8) entries always correspond
3857    /// to the starts states for the entire DFA, with the first 4 entries being
3858    /// for unanchored searches and the second 4 entries being for anchored
3859    /// searches. To keep things simple, we always use 8 entries even if the
3860    /// `StartKind` is not both.
3861    ///
3862    /// After that, there are `stride * patterns` state IDs, where `patterns`
3863    /// may be zero in the case of a DFA with no patterns or in the case where
3864    /// the DFA was built without enabling starting states for each pattern.
3865    table: T,
3866    /// The starting state configuration supported. When 'both', both
3867    /// unanchored and anchored searches work. When 'unanchored', anchored
3868    /// searches panic. When 'anchored', unanchored searches panic.
3869    kind: StartKind,
3870    /// The start state configuration for every possible byte.
3871    start_map: StartByteMap,
3872    /// The number of starting state IDs per pattern.
3873    stride: usize,
3874    /// The total number of patterns for which starting states are encoded.
3875    /// This is `None` for DFAs that were built without start states for each
3876    /// pattern. Thus, one cannot use this field to say how many patterns
3877    /// are in the DFA in all cases. It is specific to how many patterns are
3878    /// represented in this start table.
3879    pattern_len: Option<usize>,
3880    /// The universal starting state for unanchored searches. This is only
3881    /// present when the DFA supports unanchored searches and when all starting
3882    /// state IDs for an unanchored search are equivalent.
3883    universal_start_unanchored: Option<StateID>,
3884    /// The universal starting state for anchored searches. This is only
3885    /// present when the DFA supports anchored searches and when all starting
3886    /// state IDs for an anchored search are equivalent.
3887    universal_start_anchored: Option<StateID>,
3888}
3889
3890#[cfg(feature = "dfa-build")]
3891impl StartTable<Vec<u32>> {
3892    /// Create a valid set of start states all pointing to the dead state.
3893    ///
3894    /// When the corresponding DFA is constructed with start states for each
3895    /// pattern, then `patterns` should be the number of patterns. Otherwise,
3896    /// it should be zero.
3897    ///
3898    /// If the total table size could exceed the allocatable limit, then this
3899    /// returns an error. In practice, this is unlikely to be able to occur,
3900    /// since it's likely that allocation would have failed long before it got
3901    /// to this point.
3902    fn dead(
3903        kind: StartKind,
3904        lookm: &LookMatcher,
3905        pattern_len: Option<usize>,
3906    ) -> Result<StartTable<Vec<u32>>, BuildError> {
3907        if let Some(len) = pattern_len {
3908            assert!(len <= PatternID::LIMIT);
3909        }
3910        let stride = Start::len();
3911        // OK because 2*4 is never going to overflow anything.
3912        let starts_len = stride.checked_mul(2).unwrap();
3913        let pattern_starts_len =
3914            match stride.checked_mul(pattern_len.unwrap_or(0)) {
3915                Some(x) => x,
3916                None => return Err(BuildError::too_many_start_states()),
3917            };
3918        let table_len = match starts_len.checked_add(pattern_starts_len) {
3919            Some(x) => x,
3920            None => return Err(BuildError::too_many_start_states()),
3921        };
3922        if let Err(_) = isize::try_from(table_len) {
3923            return Err(BuildError::too_many_start_states());
3924        }
3925        let table = vec![DEAD.as_u32(); table_len];
3926        let start_map = StartByteMap::new(lookm);
3927        Ok(StartTable {
3928            table,
3929            kind,
3930            start_map,
3931            stride,
3932            pattern_len,
3933            universal_start_unanchored: None,
3934            universal_start_anchored: None,
3935        })
3936    }
3937}
3938
3939impl<'a> StartTable<&'a [u32]> {
3940    /// Deserialize a table of start state IDs starting at the beginning of
3941    /// `slice`. Upon success, return the total number of bytes read along with
3942    /// the table of starting state IDs.
3943    ///
3944    /// If there was a problem deserializing any part of the starting IDs,
3945    /// then this returns an error. Notably, if the given slice does not have
3946    /// the same alignment as `StateID`, then this will return an error (among
3947    /// other possible errors).
3948    ///
3949    /// This is guaranteed to execute in constant time.
3950    ///
3951    /// # Safety
3952    ///
3953    /// This routine is not safe because it does not check the validity of the
3954    /// starting state IDs themselves. In particular, the number of starting
3955    /// IDs can be of variable length, so it's possible that checking their
3956    /// validity cannot be done in constant time. An invalid starting state
3957    /// ID is not safe because other code may rely on the starting IDs being
3958    /// correct (such as explicit bounds check elision). Therefore, an invalid
3959    /// start ID can lead to undefined behavior.
3960    ///
3961    /// Callers that use this function must either pass on the safety invariant
3962    /// or guarantee that the bytes given contain valid starting state IDs.
3963    /// This guarantee is upheld by the bytes written by `write_to`.
3964    unsafe fn from_bytes_unchecked(
3965        mut slice: &'a [u8],
3966    ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
3967        let slice_start = slice.as_ptr().as_usize();
3968
3969        let (kind, nr) = StartKind::from_bytes(slice)?;
3970        slice = &slice[nr..];
3971
3972        let (start_map, nr) = StartByteMap::from_bytes(slice)?;
3973        slice = &slice[nr..];
3974
3975        let (stride, nr) =
3976            wire::try_read_u32_as_usize(slice, "start table stride")?;
3977        slice = &slice[nr..];
3978        if stride != Start::len() {
3979            return Err(DeserializeError::generic(
3980                "invalid starting table stride",
3981            ));
3982        }
3983
3984        let (maybe_pattern_len, nr) =
3985            wire::try_read_u32_as_usize(slice, "start table patterns")?;
3986        slice = &slice[nr..];
3987        let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
3988            None
3989        } else {
3990            Some(maybe_pattern_len)
3991        };
3992        if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
3993            return Err(DeserializeError::generic(
3994                "invalid number of patterns",
3995            ));
3996        }
3997
3998        let (universal_unanchored, nr) =
3999            wire::try_read_u32(slice, "universal unanchored start")?;
4000        slice = &slice[nr..];
4001        let universal_start_unanchored = if universal_unanchored == u32::MAX {
4002            None
4003        } else {
4004            Some(StateID::try_from(universal_unanchored).map_err(|e| {
4005                DeserializeError::state_id_error(
4006                    e,
4007                    "universal unanchored start",
4008                )
4009            })?)
4010        };
4011
4012        let (universal_anchored, nr) =
4013            wire::try_read_u32(slice, "universal anchored start")?;
4014        slice = &slice[nr..];
4015        let universal_start_anchored = if universal_anchored == u32::MAX {
4016            None
4017        } else {
4018            Some(StateID::try_from(universal_anchored).map_err(|e| {
4019                DeserializeError::state_id_error(e, "universal anchored start")
4020            })?)
4021        };
4022
4023        let pattern_table_size = wire::mul(
4024            stride,
4025            pattern_len.unwrap_or(0),
4026            "invalid pattern length",
4027        )?;
4028        // Our start states always start with a two stride of start states for
4029        // the entire automaton. The first stride is for unanchored starting
4030        // states and the second stride is for anchored starting states. What
4031        // follows it are an optional set of start states for each pattern.
4032        let start_state_len = wire::add(
4033            wire::mul(2, stride, "start state stride too big")?,
4034            pattern_table_size,
4035            "invalid 'any' pattern starts size",
4036        )?;
4037        let table_bytes_len = wire::mul(
4038            start_state_len,
4039            StateID::SIZE,
4040            "pattern table bytes length",
4041        )?;
4042        wire::check_slice_len(slice, table_bytes_len, "start ID table")?;
4043        wire::check_alignment::<StateID>(slice)?;
4044        let table_bytes = &slice[..table_bytes_len];
4045        slice = &slice[table_bytes_len..];
4046        // SAFETY: Since StateID is always representable as a u32, all we need
4047        // to do is ensure that we have the proper length and alignment. We've
4048        // checked both above, so the cast below is safe.
4049        //
4050        // N.B. This is the only not-safe code in this function.
4051        let table = core::slice::from_raw_parts(
4052            table_bytes.as_ptr().cast::<u32>(),
4053            start_state_len,
4054        );
4055        let st = StartTable {
4056            table,
4057            kind,
4058            start_map,
4059            stride,
4060            pattern_len,
4061            universal_start_unanchored,
4062            universal_start_anchored,
4063        };
4064        Ok((st, slice.as_ptr().as_usize() - slice_start))
4065    }
4066}
4067
4068impl<T: AsRef<[u32]>> StartTable<T> {
4069    /// Writes a serialized form of this start table to the buffer given. If
4070    /// the buffer is too small, then an error is returned. To determine how
4071    /// big the buffer must be, use `write_to_len`.
4072    fn write_to<E: Endian>(
4073        &self,
4074        mut dst: &mut [u8],
4075    ) -> Result<usize, SerializeError> {
4076        let nwrite = self.write_to_len();
4077        if dst.len() < nwrite {
4078            return Err(SerializeError::buffer_too_small(
4079                "starting table ids",
4080            ));
4081        }
4082        dst = &mut dst[..nwrite];
4083
4084        // write start kind
4085        let nw = self.kind.write_to::<E>(dst)?;
4086        dst = &mut dst[nw..];
4087        // write start byte map
4088        let nw = self.start_map.write_to(dst)?;
4089        dst = &mut dst[nw..];
4090        // write stride
4091        // Unwrap is OK since the stride is always 4 (currently).
4092        E::write_u32(u32::try_from(self.stride).unwrap(), dst);
4093        dst = &mut dst[size_of::<u32>()..];
4094        // write pattern length
4095        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4096        E::write_u32(
4097            u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
4098            dst,
4099        );
4100        dst = &mut dst[size_of::<u32>()..];
4101        // write universal start unanchored state id, u32::MAX if absent
4102        E::write_u32(
4103            self.universal_start_unanchored
4104                .map_or(u32::MAX, |sid| sid.as_u32()),
4105            dst,
4106        );
4107        dst = &mut dst[size_of::<u32>()..];
4108        // write universal start anchored state id, u32::MAX if absent
4109        E::write_u32(
4110            self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
4111            dst,
4112        );
4113        dst = &mut dst[size_of::<u32>()..];
4114        // write start IDs
4115        for &sid in self.table() {
4116            let n = wire::write_state_id::<E>(sid, &mut dst);
4117            dst = &mut dst[n..];
4118        }
4119        Ok(nwrite)
4120    }
4121
4122    /// Returns the number of bytes the serialized form of this start ID table
4123    /// will use.
4124    fn write_to_len(&self) -> usize {
4125        self.kind.write_to_len()
4126        + self.start_map.write_to_len()
4127        + size_of::<u32>() // stride
4128        + size_of::<u32>() // # patterns
4129        + size_of::<u32>() // universal unanchored start
4130        + size_of::<u32>() // universal anchored start
4131        + (self.table().len() * StateID::SIZE)
4132    }
4133
4134    /// Validates that every state ID in this start table is valid by checking
4135    /// it against the given transition table (which must be for the same DFA).
4136    ///
4137    /// That is, every state ID can be used to correctly index a state.
4138    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4139        let tt = &dfa.tt;
4140        if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) {
4141            return Err(DeserializeError::generic(
4142                "found invalid universal unanchored starting state ID",
4143            ));
4144        }
4145        if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) {
4146            return Err(DeserializeError::generic(
4147                "found invalid universal anchored starting state ID",
4148            ));
4149        }
4150        for &id in self.table() {
4151            if !tt.is_valid(id) {
4152                return Err(DeserializeError::generic(
4153                    "found invalid starting state ID",
4154                ));
4155            }
4156        }
4157        Ok(())
4158    }
4159
4160    /// Converts this start list to a borrowed value.
4161    fn as_ref(&self) -> StartTable<&'_ [u32]> {
4162        StartTable {
4163            table: self.table.as_ref(),
4164            kind: self.kind,
4165            start_map: self.start_map.clone(),
4166            stride: self.stride,
4167            pattern_len: self.pattern_len,
4168            universal_start_unanchored: self.universal_start_unanchored,
4169            universal_start_anchored: self.universal_start_anchored,
4170        }
4171    }
4172
4173    /// Converts this start list to an owned value.
4174    #[cfg(feature = "alloc")]
4175    fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> {
4176        StartTable {
4177            table: self.table.as_ref().to_vec(),
4178            kind: self.kind,
4179            start_map: self.start_map.clone(),
4180            stride: self.stride,
4181            pattern_len: self.pattern_len,
4182            universal_start_unanchored: self.universal_start_unanchored,
4183            universal_start_anchored: self.universal_start_anchored,
4184        }
4185    }
4186
4187    /// Return the start state for the given input and starting configuration.
4188    /// This returns an error if the input configuration is not supported by
4189    /// this DFA. For example, requesting an unanchored search when the DFA was
4190    /// not built with unanchored starting states. Or asking for an anchored
4191    /// pattern search with an invalid pattern ID or on a DFA that was not
4192    /// built with start states for each pattern.
4193    #[cfg_attr(feature = "perf-inline", inline(always))]
4194    fn start(
4195        &self,
4196        anchored: Anchored,
4197        start: Start,
4198    ) -> Result<StateID, StartError> {
4199        let start_index = start.as_usize();
4200        let index = match anchored {
4201            Anchored::No => {
4202                if !self.kind.has_unanchored() {
4203                    return Err(StartError::unsupported_anchored(anchored));
4204                }
4205                start_index
4206            }
4207            Anchored::Yes => {
4208                if !self.kind.has_anchored() {
4209                    return Err(StartError::unsupported_anchored(anchored));
4210                }
4211                self.stride + start_index
4212            }
4213            Anchored::Pattern(pid) => {
4214                let len = match self.pattern_len {
4215                    None => {
4216                        return Err(StartError::unsupported_anchored(anchored))
4217                    }
4218                    Some(len) => len,
4219                };
4220                if pid.as_usize() >= len {
4221                    return Ok(DEAD);
4222                }
4223                (2 * self.stride)
4224                    + (self.stride * pid.as_usize())
4225                    + start_index
4226            }
4227        };
4228        Ok(self.table()[index])
4229    }
4230
4231    /// Returns an iterator over all start state IDs in this table.
4232    ///
4233    /// Each item is a triple of: start state ID, the start state type and the
4234    /// pattern ID (if any).
4235    fn iter(&self) -> StartStateIter<'_> {
4236        StartStateIter { st: self.as_ref(), i: 0 }
4237    }
4238
4239    /// Returns the table as a slice of state IDs.
4240    fn table(&self) -> &[StateID] {
4241        wire::u32s_to_state_ids(self.table.as_ref())
4242    }
4243
4244    /// Return the memory usage, in bytes, of this start list.
4245    ///
4246    /// This does not include the size of a `StartList` value itself.
4247    fn memory_usage(&self) -> usize {
4248        self.table().len() * StateID::SIZE
4249    }
4250}
4251
4252#[cfg(feature = "dfa-build")]
4253impl<T: AsMut<[u32]>> StartTable<T> {
4254    /// Set the start state for the given index and pattern.
4255    ///
4256    /// If the pattern ID or state ID are not valid, then this will panic.
4257    fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
4258        let start_index = start.as_usize();
4259        let index = match anchored {
4260            Anchored::No => start_index,
4261            Anchored::Yes => self.stride + start_index,
4262            Anchored::Pattern(pid) => {
4263                let pid = pid.as_usize();
4264                let len = self
4265                    .pattern_len
4266                    .expect("start states for each pattern enabled");
4267                assert!(pid < len, "invalid pattern ID {:?}", pid);
4268                self.stride
4269                    .checked_mul(pid)
4270                    .unwrap()
4271                    .checked_add(self.stride.checked_mul(2).unwrap())
4272                    .unwrap()
4273                    .checked_add(start_index)
4274                    .unwrap()
4275            }
4276        };
4277        self.table_mut()[index] = id;
4278    }
4279
4280    /// Returns the table as a mutable slice of state IDs.
4281    fn table_mut(&mut self) -> &mut [StateID] {
4282        wire::u32s_to_state_ids_mut(self.table.as_mut())
4283    }
4284}
4285
4286/// An iterator over start state IDs.
4287///
4288/// This iterator yields a triple of start state ID, the anchored mode and the
4289/// start state type. If a pattern ID is relevant, then the anchored mode will
4290/// contain it. Start states with an anchored mode containing a pattern ID will
4291/// only occur when the DFA was compiled with start states for each pattern
4292/// (which is disabled by default).
4293pub(crate) struct StartStateIter<'a> {
4294    st: StartTable<&'a [u32]>,
4295    i: usize,
4296}
4297
4298impl<'a> Iterator for StartStateIter<'a> {
4299    type Item = (StateID, Anchored, Start);
4300
4301    fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
4302        let i = self.i;
4303        let table = self.st.table();
4304        if i >= table.len() {
4305            return None;
4306        }
4307        self.i += 1;
4308
4309        // This unwrap is okay since the stride of the starting state table
4310        // must always match the number of start state types.
4311        let start_type = Start::from_usize(i % self.st.stride).unwrap();
4312        let anchored = if i < self.st.stride {
4313            Anchored::No
4314        } else if i < (2 * self.st.stride) {
4315            Anchored::Yes
4316        } else {
4317            let pid = (i - (2 * self.st.stride)) / self.st.stride;
4318            Anchored::Pattern(PatternID::new(pid).unwrap())
4319        };
4320        Some((table[i], anchored, start_type))
4321    }
4322}
4323
4324/// This type represents that patterns that should be reported whenever a DFA
4325/// enters a match state. This structure exists to support DFAs that search for
4326/// matches for multiple regexes.
4327///
4328/// This structure relies on the fact that all match states in a DFA occur
4329/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
4330/// detailed breakdown of the representation.) Namely, when a match occurs, we
4331/// know its state ID. Since we know the start and end of the contiguous region
4332/// of match states, we can use that to compute the position at which the match
4333/// state occurs. That in turn is used as an offset into this structure.
4334#[derive(Clone, Debug)]
4335struct MatchStates<T> {
4336    /// Slices is a flattened sequence of pairs, where each pair points to a
4337    /// sub-slice of pattern_ids. The first element of the pair is an offset
4338    /// into pattern_ids and the second element of the pair is the number
4339    /// of 32-bit pattern IDs starting at that position. That is, each pair
4340    /// corresponds to a single DFA match state and its corresponding match
4341    /// IDs. The number of pairs always corresponds to the number of distinct
4342    /// DFA match states.
4343    ///
4344    /// In practice, T is either Vec<u32> or &[u32].
4345    slices: T,
4346    /// A flattened sequence of pattern IDs for each DFA match state. The only
4347    /// way to correctly read this sequence is indirectly via `slices`.
4348    ///
4349    /// In practice, T is either Vec<u32> or &[u32].
4350    pattern_ids: T,
4351    /// The total number of unique patterns represented by these match states.
4352    pattern_len: usize,
4353}
4354
4355impl<'a> MatchStates<&'a [u32]> {
4356    unsafe fn from_bytes_unchecked(
4357        mut slice: &'a [u8],
4358    ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
4359        let slice_start = slice.as_ptr().as_usize();
4360
4361        // Read the total number of match states.
4362        let (state_len, nr) =
4363            wire::try_read_u32_as_usize(slice, "match state length")?;
4364        slice = &slice[nr..];
4365
4366        // Read the slice start/length pairs.
4367        let pair_len = wire::mul(2, state_len, "match state offset pairs")?;
4368        let slices_bytes_len = wire::mul(
4369            pair_len,
4370            PatternID::SIZE,
4371            "match state slice offset byte length",
4372        )?;
4373        wire::check_slice_len(slice, slices_bytes_len, "match state slices")?;
4374        wire::check_alignment::<PatternID>(slice)?;
4375        let slices_bytes = &slice[..slices_bytes_len];
4376        slice = &slice[slices_bytes_len..];
4377        // SAFETY: Since PatternID is always representable as a u32, all we
4378        // need to do is ensure that we have the proper length and alignment.
4379        // We've checked both above, so the cast below is safe.
4380        //
4381        // N.B. This is one of the few not-safe snippets in this function,
4382        // so we mark it explicitly to call it out.
4383        let slices = core::slice::from_raw_parts(
4384            slices_bytes.as_ptr().cast::<u32>(),
4385            pair_len,
4386        );
4387
4388        // Read the total number of unique pattern IDs (which is always 1 more
4389        // than the maximum pattern ID in this automaton, since pattern IDs are
4390        // handed out contiguously starting at 0).
4391        let (pattern_len, nr) =
4392            wire::try_read_u32_as_usize(slice, "pattern length")?;
4393        slice = &slice[nr..];
4394
4395        // Now read the pattern ID length. We don't need to store this
4396        // explicitly, but we need it to know how many pattern IDs to read.
4397        let (idlen, nr) =
4398            wire::try_read_u32_as_usize(slice, "pattern ID length")?;
4399        slice = &slice[nr..];
4400
4401        // Read the actual pattern IDs.
4402        let pattern_ids_len =
4403            wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?;
4404        wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
4405        wire::check_alignment::<PatternID>(slice)?;
4406        let pattern_ids_bytes = &slice[..pattern_ids_len];
4407        slice = &slice[pattern_ids_len..];
4408        // SAFETY: Since PatternID is always representable as a u32, all we
4409        // need to do is ensure that we have the proper length and alignment.
4410        // We've checked both above, so the cast below is safe.
4411        //
4412        // N.B. This is one of the few not-safe snippets in this function,
4413        // so we mark it explicitly to call it out.
4414        let pattern_ids = core::slice::from_raw_parts(
4415            pattern_ids_bytes.as_ptr().cast::<u32>(),
4416            idlen,
4417        );
4418
4419        let ms = MatchStates { slices, pattern_ids, pattern_len };
4420        Ok((ms, slice.as_ptr().as_usize() - slice_start))
4421    }
4422}
4423
4424#[cfg(feature = "dfa-build")]
4425impl MatchStates<Vec<u32>> {
4426    fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> {
4427        assert!(pattern_len <= PatternID::LIMIT);
4428        MatchStates { slices: vec![], pattern_ids: vec![], pattern_len }
4429    }
4430
4431    fn new(
4432        matches: &BTreeMap<StateID, Vec<PatternID>>,
4433        pattern_len: usize,
4434    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4435        let mut m = MatchStates::empty(pattern_len);
4436        for (_, pids) in matches.iter() {
4437            let start = PatternID::new(m.pattern_ids.len())
4438                .map_err(|_| BuildError::too_many_match_pattern_ids())?;
4439            m.slices.push(start.as_u32());
4440            // This is always correct since the number of patterns in a single
4441            // match state can never exceed maximum number of allowable
4442            // patterns. Why? Because a pattern can only appear once in a
4443            // particular match state, by construction. (And since our pattern
4444            // ID limit is one less than u32::MAX, we're guaranteed that the
4445            // length fits in a u32.)
4446            m.slices.push(u32::try_from(pids.len()).unwrap());
4447            for &pid in pids {
4448                m.pattern_ids.push(pid.as_u32());
4449            }
4450        }
4451        m.pattern_len = pattern_len;
4452        Ok(m)
4453    }
4454
4455    fn new_with_map(
4456        &self,
4457        matches: &BTreeMap<StateID, Vec<PatternID>>,
4458    ) -> Result<MatchStates<Vec<u32>>, BuildError> {
4459        MatchStates::new(matches, self.pattern_len)
4460    }
4461}
4462
4463impl<T: AsRef<[u32]>> MatchStates<T> {
4464    /// Writes a serialized form of these match states to the buffer given. If
4465    /// the buffer is too small, then an error is returned. To determine how
4466    /// big the buffer must be, use `write_to_len`.
4467    fn write_to<E: Endian>(
4468        &self,
4469        mut dst: &mut [u8],
4470    ) -> Result<usize, SerializeError> {
4471        let nwrite = self.write_to_len();
4472        if dst.len() < nwrite {
4473            return Err(SerializeError::buffer_too_small("match states"));
4474        }
4475        dst = &mut dst[..nwrite];
4476
4477        // write state ID length
4478        // Unwrap is OK since number of states is guaranteed to fit in a u32.
4479        E::write_u32(u32::try_from(self.len()).unwrap(), dst);
4480        dst = &mut dst[size_of::<u32>()..];
4481
4482        // write slice offset pairs
4483        for &pid in self.slices() {
4484            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4485            dst = &mut dst[n..];
4486        }
4487
4488        // write unique pattern ID length
4489        // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
4490        E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
4491        dst = &mut dst[size_of::<u32>()..];
4492
4493        // write pattern ID length
4494        // Unwrap is OK since we check at construction (and deserialization)
4495        // that the number of patterns is representable as a u32.
4496        E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
4497        dst = &mut dst[size_of::<u32>()..];
4498
4499        // write pattern IDs
4500        for &pid in self.pattern_ids() {
4501            let n = wire::write_pattern_id::<E>(pid, &mut dst);
4502            dst = &mut dst[n..];
4503        }
4504
4505        Ok(nwrite)
4506    }
4507
4508    /// Returns the number of bytes the serialized form of these match states
4509    /// will use.
4510    fn write_to_len(&self) -> usize {
4511        size_of::<u32>()   // match state length
4512        + (self.slices().len() * PatternID::SIZE)
4513        + size_of::<u32>() // unique pattern ID length
4514        + size_of::<u32>() // pattern ID length
4515        + (self.pattern_ids().len() * PatternID::SIZE)
4516    }
4517
4518    /// Valides that the match state info is itself internally consistent and
4519    /// consistent with the recorded match state region in the given DFA.
4520    fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
4521        if self.len() != dfa.special.match_len(dfa.stride()) {
4522            return Err(DeserializeError::generic(
4523                "match state length mismatch",
4524            ));
4525        }
4526        for si in 0..self.len() {
4527            let start = self.slices()[si * 2].as_usize();
4528            let len = self.slices()[si * 2 + 1].as_usize();
4529            if start >= self.pattern_ids().len() {
4530                return Err(DeserializeError::generic(
4531                    "invalid pattern ID start offset",
4532                ));
4533            }
4534            if start + len > self.pattern_ids().len() {
4535                return Err(DeserializeError::generic(
4536                    "invalid pattern ID length",
4537                ));
4538            }
4539            for mi in 0..len {
4540                let pid = self.pattern_id(si, mi);
4541                if pid.as_usize() >= self.pattern_len {
4542                    return Err(DeserializeError::generic(
4543                        "invalid pattern ID",
4544                    ));
4545                }
4546            }
4547        }
4548        Ok(())
4549    }
4550
4551    /// Converts these match states back into their map form. This is useful
4552    /// when shuffling states, as the normal MatchStates representation is not
4553    /// amenable to easy state swapping. But with this map, to swap id1 and
4554    /// id2, all you need to do is:
4555    ///
4556    /// if let Some(pids) = map.remove(&id1) {
4557    ///     map.insert(id2, pids);
4558    /// }
4559    ///
4560    /// Once shuffling is done, use MatchStates::new to convert back.
4561    #[cfg(feature = "dfa-build")]
4562    fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
4563        let mut map = BTreeMap::new();
4564        for i in 0..self.len() {
4565            let mut pids = vec![];
4566            for j in 0..self.pattern_len(i) {
4567                pids.push(self.pattern_id(i, j));
4568            }
4569            map.insert(self.match_state_id(dfa, i), pids);
4570        }
4571        map
4572    }
4573
4574    /// Converts these match states to a borrowed value.
4575    fn as_ref(&self) -> MatchStates<&'_ [u32]> {
4576        MatchStates {
4577            slices: self.slices.as_ref(),
4578            pattern_ids: self.pattern_ids.as_ref(),
4579            pattern_len: self.pattern_len,
4580        }
4581    }
4582
4583    /// Converts these match states to an owned value.
4584    #[cfg(feature = "alloc")]
4585    fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> {
4586        MatchStates {
4587            slices: self.slices.as_ref().to_vec(),
4588            pattern_ids: self.pattern_ids.as_ref().to_vec(),
4589            pattern_len: self.pattern_len,
4590        }
4591    }
4592
4593    /// Returns the match state ID given the match state index. (Where the
4594    /// first match state corresponds to index 0.)
4595    ///
4596    /// This panics if there is no match state at the given index.
4597    fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
4598        assert!(dfa.special.matches(), "no match states to index");
4599        // This is one of the places where we rely on the fact that match
4600        // states are contiguous in the transition table. Namely, that the
4601        // first match state ID always corresponds to dfa.special.min_start.
4602        // From there, since we know the stride, we can compute the ID of any
4603        // match state given its index.
4604        let stride2 = u32::try_from(dfa.stride2()).unwrap();
4605        let offset = index.checked_shl(stride2).unwrap();
4606        let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
4607        let sid = StateID::new(id).unwrap();
4608        assert!(dfa.is_match_state(sid));
4609        sid
4610    }
4611
4612    /// Returns the pattern ID at the given match index for the given match
4613    /// state.
4614    ///
4615    /// The match state index is the state index minus the state index of the
4616    /// first match state in the DFA.
4617    ///
4618    /// The match index is the index of the pattern ID for the given state.
4619    /// The index must be less than `self.pattern_len(state_index)`.
4620    #[cfg_attr(feature = "perf-inline", inline(always))]
4621    fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
4622        self.pattern_id_slice(state_index)[match_index]
4623    }
4624
4625    /// Returns the number of patterns in the given match state.
4626    ///
4627    /// The match state index is the state index minus the state index of the
4628    /// first match state in the DFA.
4629    #[cfg_attr(feature = "perf-inline", inline(always))]
4630    fn pattern_len(&self, state_index: usize) -> usize {
4631        self.slices()[state_index * 2 + 1].as_usize()
4632    }
4633
4634    /// Returns all of the pattern IDs for the given match state index.
4635    ///
4636    /// The match state index is the state index minus the state index of the
4637    /// first match state in the DFA.
4638    #[cfg_attr(feature = "perf-inline", inline(always))]
4639    fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
4640        let start = self.slices()[state_index * 2].as_usize();
4641        let len = self.pattern_len(state_index);
4642        &self.pattern_ids()[start..start + len]
4643    }
4644
4645    /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
4646    #[cfg_attr(feature = "perf-inline", inline(always))]
4647    fn slices(&self) -> &[PatternID] {
4648        wire::u32s_to_pattern_ids(self.slices.as_ref())
4649    }
4650
4651    /// Returns the total number of match states.
4652    #[cfg_attr(feature = "perf-inline", inline(always))]
4653    fn len(&self) -> usize {
4654        assert_eq!(0, self.slices().len() % 2);
4655        self.slices().len() / 2
4656    }
4657
4658    /// Returns the pattern ID slice of u32 as a slice of PatternID.
4659    #[cfg_attr(feature = "perf-inline", inline(always))]
4660    fn pattern_ids(&self) -> &[PatternID] {
4661        wire::u32s_to_pattern_ids(self.pattern_ids.as_ref())
4662    }
4663
4664    /// Return the memory usage, in bytes, of these match pairs.
4665    fn memory_usage(&self) -> usize {
4666        (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
4667    }
4668}
4669
4670/// A common set of flags for both dense and sparse DFAs. This primarily
4671/// centralizes the serialization format of these flags at a bitset.
4672#[derive(Clone, Copy, Debug)]
4673pub(crate) struct Flags {
4674    /// Whether the DFA can match the empty string. When this is false, all
4675    /// matches returned by this DFA are guaranteed to have non-zero length.
4676    pub(crate) has_empty: bool,
4677    /// Whether the DFA should only produce matches with spans that correspond
4678    /// to valid UTF-8. This also includes omitting any zero-width matches that
4679    /// split the UTF-8 encoding of a codepoint.
4680    pub(crate) is_utf8: bool,
4681    /// Whether the DFA is always anchored or not, regardless of `Input`
4682    /// configuration. This is useful for avoiding a reverse scan even when
4683    /// executing unanchored searches.
4684    pub(crate) is_always_start_anchored: bool,
4685}
4686
4687impl Flags {
4688    /// Creates a set of flags for a DFA from an NFA.
4689    ///
4690    /// N.B. This constructor was defined at the time of writing because all
4691    /// of the flags are derived directly from the NFA. If this changes in the
4692    /// future, we might be more thoughtful about how the `Flags` value is
4693    /// itself built.
4694    #[cfg(feature = "dfa-build")]
4695    fn from_nfa(nfa: &thompson::NFA) -> Flags {
4696        Flags {
4697            has_empty: nfa.has_empty(),
4698            is_utf8: nfa.is_utf8(),
4699            is_always_start_anchored: nfa.is_always_start_anchored(),
4700        }
4701    }
4702
4703    /// Deserializes the flags from the given slice. On success, this also
4704    /// returns the number of bytes read from the slice.
4705    pub(crate) fn from_bytes(
4706        slice: &[u8],
4707    ) -> Result<(Flags, usize), DeserializeError> {
4708        let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?;
4709        let flags = Flags {
4710            has_empty: bits & (1 << 0) != 0,
4711            is_utf8: bits & (1 << 1) != 0,
4712            is_always_start_anchored: bits & (1 << 2) != 0,
4713        };
4714        Ok((flags, nread))
4715    }
4716
4717    /// Writes these flags to the given byte slice. If the buffer is too small,
4718    /// then an error is returned. To determine how big the buffer must be,
4719    /// use `write_to_len`.
4720    pub(crate) fn write_to<E: Endian>(
4721        &self,
4722        dst: &mut [u8],
4723    ) -> Result<usize, SerializeError> {
4724        fn bool_to_int(b: bool) -> u32 {
4725            if b {
4726                1
4727            } else {
4728                0
4729            }
4730        }
4731
4732        let nwrite = self.write_to_len();
4733        if dst.len() < nwrite {
4734            return Err(SerializeError::buffer_too_small("flag bitset"));
4735        }
4736        let bits = (bool_to_int(self.has_empty) << 0)
4737            | (bool_to_int(self.is_utf8) << 1)
4738            | (bool_to_int(self.is_always_start_anchored) << 2);
4739        E::write_u32(bits, dst);
4740        Ok(nwrite)
4741    }
4742
4743    /// Returns the number of bytes the serialized form of these flags
4744    /// will use.
4745    pub(crate) fn write_to_len(&self) -> usize {
4746        size_of::<u32>()
4747    }
4748}
4749
4750/// An iterator over all states in a DFA.
4751///
4752/// This iterator yields a tuple for each state. The first element of the
4753/// tuple corresponds to a state's identifier, and the second element
4754/// corresponds to the state itself (comprised of its transitions).
4755///
4756/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
4757/// the type of the transition table itself.
4758pub(crate) struct StateIter<'a, T> {
4759    tt: &'a TransitionTable<T>,
4760    it: iter::Enumerate<slice::Chunks<'a, StateID>>,
4761}
4762
4763impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
4764    type Item = State<'a>;
4765
4766    fn next(&mut self) -> Option<State<'a>> {
4767        self.it.next().map(|(index, _)| {
4768            let id = self.tt.to_state_id(index);
4769            self.tt.state(id)
4770        })
4771    }
4772}
4773
4774/// An immutable representation of a single DFA state.
4775///
4776/// `'a` correspondings to the lifetime of a DFA's transition table.
4777pub(crate) struct State<'a> {
4778    id: StateID,
4779    stride2: usize,
4780    transitions: &'a [StateID],
4781}
4782
4783impl<'a> State<'a> {
4784    /// Return an iterator over all transitions in this state. This yields
4785    /// a number of transitions equivalent to the alphabet length of the
4786    /// corresponding DFA.
4787    ///
4788    /// Each transition is represented by a tuple. The first element is
4789    /// the input byte for that transition and the second element is the
4790    /// transitions itself.
4791    pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
4792        StateTransitionIter {
4793            len: self.transitions.len(),
4794            it: self.transitions.iter().enumerate(),
4795        }
4796    }
4797
4798    /// Return an iterator over a sparse representation of the transitions in
4799    /// this state. Only non-dead transitions are returned.
4800    ///
4801    /// The "sparse" representation in this case corresponds to a sequence of
4802    /// triples. The first two elements of the triple comprise an inclusive
4803    /// byte range while the last element corresponds to the transition taken
4804    /// for all bytes in the range.
4805    ///
4806    /// This is somewhat more condensed than the classical sparse
4807    /// representation (where you have an element for every non-dead
4808    /// transition), but in practice, checking if a byte is in a range is very
4809    /// cheap and using ranges tends to conserve quite a bit more space.
4810    pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
4811        StateSparseTransitionIter { dense: self.transitions(), cur: None }
4812    }
4813
4814    /// Returns the identifier for this state.
4815    pub(crate) fn id(&self) -> StateID {
4816        self.id
4817    }
4818
4819    /// Analyzes this state to determine whether it can be accelerated. If so,
4820    /// it returns an accelerator that contains at least one byte.
4821    #[cfg(feature = "dfa-build")]
4822    fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
4823        // We just try to add bytes to our accelerator. Once adding fails
4824        // (because we've added too many bytes), then give up.
4825        let mut accel = Accel::new();
4826        for (class, id) in self.transitions() {
4827            if id == self.id() {
4828                continue;
4829            }
4830            for unit in classes.elements(class) {
4831                if let Some(byte) = unit.as_u8() {
4832                    if !accel.add(byte) {
4833                        return None;
4834                    }
4835                }
4836            }
4837        }
4838        if accel.is_empty() {
4839            None
4840        } else {
4841            Some(accel)
4842        }
4843    }
4844}
4845
4846impl<'a> fmt::Debug for State<'a> {
4847    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4848        for (i, (start, end, sid)) in self.sparse_transitions().enumerate() {
4849            let id = if f.alternate() {
4850                sid.as_usize()
4851            } else {
4852                sid.as_usize() >> self.stride2
4853            };
4854            if i > 0 {
4855                write!(f, ", ")?;
4856            }
4857            if start == end {
4858                write!(f, "{:?} => {:?}", start, id)?;
4859            } else {
4860                write!(f, "{:?}-{:?} => {:?}", start, end, id)?;
4861            }
4862        }
4863        Ok(())
4864    }
4865}
4866
4867/// An iterator over all transitions in a single DFA state. This yields
4868/// a number of transitions equivalent to the alphabet length of the
4869/// corresponding DFA.
4870///
4871/// Each transition is represented by a tuple. The first element is the input
4872/// byte for that transition and the second element is the transition itself.
4873#[derive(Debug)]
4874pub(crate) struct StateTransitionIter<'a> {
4875    len: usize,
4876    it: iter::Enumerate<slice::Iter<'a, StateID>>,
4877}
4878
4879impl<'a> Iterator for StateTransitionIter<'a> {
4880    type Item = (alphabet::Unit, StateID);
4881
4882    fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
4883        self.it.next().map(|(i, &id)| {
4884            let unit = if i + 1 == self.len {
4885                alphabet::Unit::eoi(i)
4886            } else {
4887                let b = u8::try_from(i)
4888                    .expect("raw byte alphabet is never exceeded");
4889                alphabet::Unit::u8(b)
4890            };
4891            (unit, id)
4892        })
4893    }
4894}
4895
4896/// An iterator over all non-DEAD transitions in a single DFA state using a
4897/// sparse representation.
4898///
4899/// Each transition is represented by a triple. The first two elements of the
4900/// triple comprise an inclusive byte range while the last element corresponds
4901/// to the transition taken for all bytes in the range.
4902///
4903/// As a convenience, this always returns `alphabet::Unit` values of the same
4904/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
4905/// byte) and (EOI, EOI) values are yielded.
4906#[derive(Debug)]
4907pub(crate) struct StateSparseTransitionIter<'a> {
4908    dense: StateTransitionIter<'a>,
4909    cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
4910}
4911
4912impl<'a> Iterator for StateSparseTransitionIter<'a> {
4913    type Item = (alphabet::Unit, alphabet::Unit, StateID);
4914
4915    fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
4916        while let Some((unit, next)) = self.dense.next() {
4917            let (prev_start, prev_end, prev_next) = match self.cur {
4918                Some(t) => t,
4919                None => {
4920                    self.cur = Some((unit, unit, next));
4921                    continue;
4922                }
4923            };
4924            if prev_next == next && !unit.is_eoi() {
4925                self.cur = Some((prev_start, unit, prev_next));
4926            } else {
4927                self.cur = Some((unit, unit, next));
4928                if prev_next != DEAD {
4929                    return Some((prev_start, prev_end, prev_next));
4930                }
4931            }
4932        }
4933        if let Some((start, end, next)) = self.cur.take() {
4934            if next != DEAD {
4935                return Some((start, end, next));
4936            }
4937        }
4938        None
4939    }
4940}
4941
4942/// An error that occurred during the construction of a DFA.
4943///
4944/// This error does not provide many introspection capabilities. There are
4945/// generally only two things you can do with it:
4946///
4947/// * Obtain a human readable message via its `std::fmt::Display` impl.
4948/// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError)
4949/// type from its `source` method via the `std::error::Error` trait. This error
4950/// only occurs when using convenience routines for building a DFA directly
4951/// from a pattern string.
4952///
4953/// When the `std` feature is enabled, this implements the `std::error::Error`
4954/// trait.
4955#[cfg(feature = "dfa-build")]
4956#[derive(Clone, Debug)]
4957pub struct BuildError {
4958    kind: BuildErrorKind,
4959}
4960
4961#[cfg(feature = "dfa-build")]
4962impl BuildError {
4963    /// Returns true if and only if this error corresponds to an error with DFA
4964    /// construction that occurred because of exceeding a size limit.
4965    ///
4966    /// While this can occur when size limits like [`Config::dfa_size_limit`]
4967    /// or [`Config::determinize_size_limit`] are exceeded, this can also occur
4968    /// when the number of states or patterns exceeds a hard-coded maximum.
4969    /// (Where these maximums are derived based on the values representable by
4970    /// [`StateID`] and [`PatternID`].)
4971    ///
4972    /// This predicate is useful in contexts where you want to distinguish
4973    /// between errors related to something provided by an end user (for
4974    /// example, an invalid regex pattern) and errors related to configured
4975    /// heuristics. For example, building a DFA might be an optimization that
4976    /// you want to skip if construction fails because of an exceeded size
4977    /// limit, but where you want to bubble up an error if it fails for some
4978    /// other reason.
4979    ///
4980    /// # Example
4981    ///
4982    /// ```
4983    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
4984    /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
4985    /// use regex_automata::{dfa::{dense, Automaton}, Input};
4986    ///
4987    /// let err = dense::Builder::new()
4988    ///     .configure(dense::Config::new()
4989    ///         .determinize_size_limit(Some(100_000))
4990    ///     )
4991    ///     .build(r"\w{20}")
4992    ///     .unwrap_err();
4993    /// // This error occurs because a size limit was exceeded.
4994    /// // But things are otherwise valid.
4995    /// assert!(err.is_size_limit_exceeded());
4996    ///
4997    /// let err = dense::Builder::new()
4998    ///     .build(r"\bxyz\b")
4999    ///     .unwrap_err();
5000    /// // This error occurs because a Unicode word boundary
5001    /// // was used without enabling heuristic support for it.
5002    /// // So... not related to size limits.
5003    /// assert!(!err.is_size_limit_exceeded());
5004    ///
5005    /// let err = dense::Builder::new()
5006    ///     .build(r"(xyz")
5007    ///     .unwrap_err();
5008    /// // This error occurs because the pattern is invalid.
5009    /// // So... not related to size limits.
5010    /// assert!(!err.is_size_limit_exceeded());
5011    ///
5012    /// # Ok::<(), Box<dyn std::error::Error>>(())
5013    /// ```
5014    #[inline]
5015    pub fn is_size_limit_exceeded(&self) -> bool {
5016        use self::BuildErrorKind::*;
5017
5018        match self.kind {
5019            NFA(_) | Unsupported(_) => false,
5020            TooManyStates
5021            | TooManyStartStates
5022            | TooManyMatchPatternIDs
5023            | DFAExceededSizeLimit { .. }
5024            | DeterminizeExceededSizeLimit { .. } => true,
5025        }
5026    }
5027}
5028
5029/// The kind of error that occurred during the construction of a DFA.
5030///
5031/// Note that this error is non-exhaustive. Adding new variants is not
5032/// considered a breaking change.
5033#[cfg(feature = "dfa-build")]
5034#[derive(Clone, Debug)]
5035enum BuildErrorKind {
5036    /// An error that occurred while constructing an NFA as a precursor step
5037    /// before a DFA is compiled.
5038    NFA(thompson::BuildError),
5039    /// An error that occurred because an unsupported regex feature was used.
5040    /// The message string describes which unsupported feature was used.
5041    ///
5042    /// The primary regex feature that is unsupported by DFAs is the Unicode
5043    /// word boundary look-around assertion (`\b`). This can be worked around
5044    /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling
5045    /// Unicode word boundaries when building a DFA.
5046    Unsupported(&'static str),
5047    /// An error that occurs if too many states are produced while building a
5048    /// DFA.
5049    TooManyStates,
5050    /// An error that occurs if too many start states are needed while building
5051    /// a DFA.
5052    ///
5053    /// This is a kind of oddball error that occurs when building a DFA with
5054    /// start states enabled for each pattern and enough patterns to cause
5055    /// the table of start states to overflow `usize`.
5056    TooManyStartStates,
5057    /// This is another oddball error that can occur if there are too many
5058    /// patterns spread out across too many match states.
5059    TooManyMatchPatternIDs,
5060    /// An error that occurs if the DFA got too big during determinization.
5061    DFAExceededSizeLimit { limit: usize },
5062    /// An error that occurs if auxiliary storage (not the DFA) used during
5063    /// determinization got too big.
5064    DeterminizeExceededSizeLimit { limit: usize },
5065}
5066
5067#[cfg(feature = "dfa-build")]
5068impl BuildError {
5069    /// Return the kind of this error.
5070    fn kind(&self) -> &BuildErrorKind {
5071        &self.kind
5072    }
5073
5074    pub(crate) fn nfa(err: thompson::BuildError) -> BuildError {
5075        BuildError { kind: BuildErrorKind::NFA(err) }
5076    }
5077
5078    pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError {
5079        let msg = "cannot build DFAs for regexes with Unicode word \
5080                   boundaries; switch to ASCII word boundaries, or \
5081                   heuristically enable Unicode word boundaries or use a \
5082                   different regex engine";
5083        BuildError { kind: BuildErrorKind::Unsupported(msg) }
5084    }
5085
5086    pub(crate) fn too_many_states() -> BuildError {
5087        BuildError { kind: BuildErrorKind::TooManyStates }
5088    }
5089
5090    pub(crate) fn too_many_start_states() -> BuildError {
5091        BuildError { kind: BuildErrorKind::TooManyStartStates }
5092    }
5093
5094    pub(crate) fn too_many_match_pattern_ids() -> BuildError {
5095        BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs }
5096    }
5097
5098    pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError {
5099        BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } }
5100    }
5101
5102    pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError {
5103        BuildError {
5104            kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit },
5105        }
5106    }
5107}
5108
5109#[cfg(all(feature = "std", feature = "dfa-build"))]
5110impl std::error::Error for BuildError {
5111    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
5112        match self.kind() {
5113            BuildErrorKind::NFA(ref err) => Some(err),
5114            _ => None,
5115        }
5116    }
5117}
5118
5119#[cfg(feature = "dfa-build")]
5120impl core::fmt::Display for BuildError {
5121    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
5122        match self.kind() {
5123            BuildErrorKind::NFA(_) => write!(f, "error building NFA"),
5124            BuildErrorKind::Unsupported(ref msg) => {
5125                write!(f, "unsupported regex feature for DFAs: {}", msg)
5126            }
5127            BuildErrorKind::TooManyStates => write!(
5128                f,
5129                "number of DFA states exceeds limit of {}",
5130                StateID::LIMIT,
5131            ),
5132            BuildErrorKind::TooManyStartStates => {
5133                let stride = Start::len();
5134                // The start table has `stride` entries for starting states for
5135                // the entire DFA, and then `stride` entries for each pattern
5136                // if start states for each pattern are enabled (which is the
5137                // only way this error can occur). Thus, the total number of
5138                // patterns that can fit in the table is `stride` less than
5139                // what we can allocate.
5140                let max = usize::try_from(core::isize::MAX).unwrap();
5141                let limit = (max - stride) / stride;
5142                write!(
5143                    f,
5144                    "compiling DFA with start states exceeds pattern \
5145                     pattern limit of {}",
5146                    limit,
5147                )
5148            }
5149            BuildErrorKind::TooManyMatchPatternIDs => write!(
5150                f,
5151                "compiling DFA with total patterns in all match states \
5152                 exceeds limit of {}",
5153                PatternID::LIMIT,
5154            ),
5155            BuildErrorKind::DFAExceededSizeLimit { limit } => write!(
5156                f,
5157                "DFA exceeded size limit of {:?} during determinization",
5158                limit,
5159            ),
5160            BuildErrorKind::DeterminizeExceededSizeLimit { limit } => {
5161                write!(f, "determinization exceeded size limit of {:?}", limit)
5162            }
5163        }
5164    }
5165}
5166
5167#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
5168mod tests {
5169    use crate::{Input, MatchError};
5170
5171    use super::*;
5172
5173    #[test]
5174    fn errors_with_unicode_word_boundary() {
5175        let pattern = r"\b";
5176        assert!(Builder::new().build(pattern).is_err());
5177    }
5178
5179    #[test]
5180    fn roundtrip_never_match() {
5181        let dfa = DFA::never_match().unwrap();
5182        let (buf, _) = dfa.to_bytes_native_endian();
5183        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5184
5185        assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap());
5186    }
5187
5188    #[test]
5189    fn roundtrip_always_match() {
5190        use crate::HalfMatch;
5191
5192        let dfa = DFA::always_match().unwrap();
5193        let (buf, _) = dfa.to_bytes_native_endian();
5194        let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
5195
5196        assert_eq!(
5197            Some(HalfMatch::must(0, 0)),
5198            dfa.try_search_fwd(&Input::new("foo12345")).unwrap()
5199        );
5200    }
5201
5202    // See the analogous test in src/hybrid/dfa.rs.
5203    #[test]
5204    fn heuristic_unicode_reverse() {
5205        let dfa = DFA::builder()
5206            .configure(DFA::config().unicode_word_boundary(true))
5207            .thompson(thompson::Config::new().reverse(true))
5208            .build(r"\b[0-9]+\b")
5209            .unwrap();
5210
5211        let input = Input::new("β123").range(2..);
5212        let expected = MatchError::quit(0xB2, 1);
5213        let got = dfa.try_search_rev(&input);
5214        assert_eq!(Err(expected), got);
5215
5216        let input = Input::new("123β").range(..3);
5217        let expected = MatchError::quit(0xCE, 3);
5218        let got = dfa.try_search_rev(&input);
5219        assert_eq!(Err(expected), got);
5220    }
5221}