regex_automata/dfa/
onepass.rs

1/*!
2A DFA that can return spans for matching capturing groups.
3
4This module is the home of a [one-pass DFA](DFA).
5
6This module also contains a [`Builder`] and a [`Config`] for building and
7configuring a one-pass DFA.
8*/
9
10// A note on naming and credit:
11//
12// As far as I know, Russ Cox came up with the practical vision and
13// implementation of a "one-pass regex engine." He mentions and describes it
14// briefly in the third article of his regexp article series:
15// https://swtch.com/~rsc/regexp/regexp3.html
16//
17// Cox's implementation is in RE2, and the implementation below is most
18// heavily inspired by RE2's. The key thing they have in common is that
19// their transitions are defined over an alphabet of bytes. In contrast,
20// Go's regex engine also has a one-pass engine, but its transitions are
21// more firmly rooted on Unicode codepoints. The ideas are the same, but the
22// implementations are different.
23//
24// RE2 tends to call this a "one-pass NFA." Here, we call it a "one-pass DFA."
25// They're both true in their own ways:
26//
27// * The "one-pass" criterion is generally a property of the NFA itself. In
28// particular, it is said that an NFA is one-pass if, after each byte of input
29// during a search, there is at most one "VM thread" remaining to take for the
30// next byte of input. That is, there is never any ambiguity as to the path to
31// take through the NFA during a search.
32//
33// * On the other hand, once a one-pass NFA has its representation converted
34// to something where a constant number of instructions is used for each byte
35// of input, the implementation looks a lot more like a DFA. It's technically
36// more powerful than a DFA since it has side effects (storing offsets inside
37// of slots activated by a transition), but it is far closer to a DFA than an
38// NFA simulation.
39//
40// Thus, in this crate, we call it a one-pass DFA.
41
42use alloc::{vec, vec::Vec};
43
44use crate::{
45    dfa::{remapper::Remapper, DEAD},
46    nfa::thompson::{self, NFA},
47    util::{
48        alphabet::ByteClasses,
49        captures::Captures,
50        escape::DebugByte,
51        int::{Usize, U32, U64, U8},
52        look::{Look, LookSet, UnicodeWordBoundaryError},
53        primitives::{NonMaxUsize, PatternID, StateID},
54        search::{Anchored, Input, Match, MatchError, MatchKind, Span},
55        sparse_set::SparseSet,
56    },
57};
58
59/// The configuration used for building a [one-pass DFA](DFA).
60///
61/// A one-pass DFA configuration is a simple data object that is typically used
62/// with [`Builder::configure`]. It can be cheaply cloned.
63///
64/// A default configuration can be created either with `Config::new`, or
65/// perhaps more conveniently, with [`DFA::config`].
66#[derive(Clone, Debug, Default)]
67pub struct Config {
68    match_kind: Option<MatchKind>,
69    starts_for_each_pattern: Option<bool>,
70    byte_classes: Option<bool>,
71    size_limit: Option<Option<usize>>,
72}
73
74impl Config {
75    /// Return a new default one-pass DFA configuration.
76    pub fn new() -> Config {
77        Config::default()
78    }
79
80    /// Set the desired match semantics.
81    ///
82    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
83    /// match semantics of Perl-like regex engines. That is, when multiple
84    /// patterns would match at the same leftmost position, the pattern that
85    /// appears first in the concrete syntax is chosen.
86    ///
87    /// Currently, the only other kind of match semantics supported is
88    /// [`MatchKind::All`]. This corresponds to "classical DFA" construction
89    /// where all possible matches are visited.
90    ///
91    /// When it comes to the one-pass DFA, it is rarer for preference order and
92    /// "longest match" to actually disagree. Since if they did disagree, then
93    /// the regex typically isn't one-pass. For example, searching `Samwise`
94    /// for `Sam|Samwise` will report `Sam` for leftmost-first matching and
95    /// `Samwise` for "longest match" or "all" matching. However, this regex is
96    /// not one-pass if taken literally. The equivalent regex, `Sam(?:|wise)`
97    /// is one-pass and `Sam|Samwise` may be optimized to it.
98    ///
99    /// The other main difference is that "all" match semantics don't support
100    /// non-greedy matches. "All" match semantics always try to match as much
101    /// as possible.
102    pub fn match_kind(mut self, kind: MatchKind) -> Config {
103        self.match_kind = Some(kind);
104        self
105    }
106
107    /// Whether to compile a separate start state for each pattern in the
108    /// one-pass DFA.
109    ///
110    /// When enabled, a separate **anchored** start state is added for each
111    /// pattern in the DFA. When this start state is used, then the DFA will
112    /// only search for matches for the pattern specified, even if there are
113    /// other patterns in the DFA.
114    ///
115    /// The main downside of this option is that it can potentially increase
116    /// the size of the DFA and/or increase the time it takes to build the DFA.
117    ///
118    /// You might want to enable this option when you want to both search for
119    /// anchored matches of any pattern or to search for anchored matches of
120    /// one particular pattern while using the same DFA. (Otherwise, you would
121    /// need to compile a new DFA for each pattern.)
122    ///
123    /// By default this is disabled.
124    ///
125    /// # Example
126    ///
127    /// This example shows how to build a multi-regex and then search for
128    /// matches for a any of the patterns or matches for a specific pattern.
129    ///
130    /// ```
131    /// use regex_automata::{
132    ///     dfa::onepass::DFA, Anchored, Input, Match, PatternID,
133    /// };
134    ///
135    /// let re = DFA::builder()
136    ///     .configure(DFA::config().starts_for_each_pattern(true))
137    ///     .build_many(&["[a-z]+", "[0-9]+"])?;
138    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
139    /// let haystack = "123abc";
140    /// let input = Input::new(haystack).anchored(Anchored::Yes);
141    ///
142    /// // A normal multi-pattern search will show pattern 1 matches.
143    /// re.try_search(&mut cache, &input, &mut caps)?;
144    /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
145    ///
146    /// // If we only want to report pattern 0 matches, then we'll get no
147    /// // match here.
148    /// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
149    /// re.try_search(&mut cache, &input, &mut caps)?;
150    /// assert_eq!(None, caps.get_match());
151    ///
152    /// # Ok::<(), Box<dyn std::error::Error>>(())
153    /// ```
154    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
155        self.starts_for_each_pattern = Some(yes);
156        self
157    }
158
159    /// Whether to attempt to shrink the size of the DFA's alphabet or not.
160    ///
161    /// This option is enabled by default and should never be disabled unless
162    /// one is debugging a one-pass DFA.
163    ///
164    /// When enabled, the DFA will use a map from all possible bytes to their
165    /// corresponding equivalence class. Each equivalence class represents a
166    /// set of bytes that does not discriminate between a match and a non-match
167    /// in the DFA. For example, the pattern `[ab]+` has at least two
168    /// equivalence classes: a set containing `a` and `b` and a set containing
169    /// every byte except for `a` and `b`. `a` and `b` are in the same
170    /// equivalence class because they never discriminate between a match and a
171    /// non-match.
172    ///
173    /// The advantage of this map is that the size of the transition table
174    /// can be reduced drastically from (approximately) `#states * 256 *
175    /// sizeof(StateID)` to `#states * k * sizeof(StateID)` where `k` is the
176    /// number of equivalence classes (rounded up to the nearest power of 2).
177    /// As a result, total space usage can decrease substantially. Moreover,
178    /// since a smaller alphabet is used, DFA compilation becomes faster as
179    /// well.
180    ///
181    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
182    /// does not yield any speed advantages. Namely, even when this is
183    /// disabled, a byte class map is still used while searching. The only
184    /// difference is that every byte will be forced into its own distinct
185    /// equivalence class. This is useful for debugging the actual generated
186    /// transitions because it lets one see the transitions defined on actual
187    /// bytes instead of the equivalence classes.
188    pub fn byte_classes(mut self, yes: bool) -> Config {
189        self.byte_classes = Some(yes);
190        self
191    }
192
193    /// Set a size limit on the total heap used by a one-pass DFA.
194    ///
195    /// This size limit is expressed in bytes and is applied during
196    /// construction of a one-pass DFA. If the DFA's heap usage exceeds
197    /// this configured limit, then construction is stopped and an error is
198    /// returned.
199    ///
200    /// The default is no limit.
201    ///
202    /// # Example
203    ///
204    /// This example shows a one-pass DFA that fails to build because of
205    /// a configured size limit. This particular example also serves as a
206    /// cautionary tale demonstrating just how big DFAs with large Unicode
207    /// character classes can get.
208    ///
209    /// ```
210    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
211    /// use regex_automata::{dfa::onepass::DFA, Match};
212    ///
213    /// // 6MB isn't enough!
214    /// DFA::builder()
215    ///     .configure(DFA::config().size_limit(Some(6_000_000)))
216    ///     .build(r"\w{20}")
217    ///     .unwrap_err();
218    ///
219    /// // ... but 7MB probably is!
220    /// // (Note that DFA sizes aren't necessarily stable between releases.)
221    /// let re = DFA::builder()
222    ///     .configure(DFA::config().size_limit(Some(7_000_000)))
223    ///     .build(r"\w{20}")?;
224    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
225    /// let haystack = "A".repeat(20);
226    /// re.captures(&mut cache, &haystack, &mut caps);
227    /// assert_eq!(Some(Match::must(0, 0..20)), caps.get_match());
228    ///
229    /// # Ok::<(), Box<dyn std::error::Error>>(())
230    /// ```
231    ///
232    /// While one needs a little more than 3MB to represent `\w{20}`, it
233    /// turns out that you only need a little more than 4KB to represent
234    /// `(?-u:\w{20})`. So only use Unicode if you need it!
235    pub fn size_limit(mut self, limit: Option<usize>) -> Config {
236        self.size_limit = Some(limit);
237        self
238    }
239
240    /// Returns the match semantics set in this configuration.
241    pub fn get_match_kind(&self) -> MatchKind {
242        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
243    }
244
245    /// Returns whether this configuration has enabled anchored starting states
246    /// for every pattern in the DFA.
247    pub fn get_starts_for_each_pattern(&self) -> bool {
248        self.starts_for_each_pattern.unwrap_or(false)
249    }
250
251    /// Returns whether this configuration has enabled byte classes or not.
252    /// This is typically a debugging oriented option, as disabling it confers
253    /// no speed benefit.
254    pub fn get_byte_classes(&self) -> bool {
255        self.byte_classes.unwrap_or(true)
256    }
257
258    /// Returns the DFA size limit of this configuration if one was set.
259    /// The size limit is total number of bytes on the heap that a DFA is
260    /// permitted to use. If the DFA exceeds this limit during construction,
261    /// then construction is stopped and an error is returned.
262    pub fn get_size_limit(&self) -> Option<usize> {
263        self.size_limit.unwrap_or(None)
264    }
265
266    /// Overwrite the default configuration such that the options in `o` are
267    /// always used. If an option in `o` is not set, then the corresponding
268    /// option in `self` is used. If it's not set in `self` either, then it
269    /// remains not set.
270    pub(crate) fn overwrite(&self, o: Config) -> Config {
271        Config {
272            match_kind: o.match_kind.or(self.match_kind),
273            starts_for_each_pattern: o
274                .starts_for_each_pattern
275                .or(self.starts_for_each_pattern),
276            byte_classes: o.byte_classes.or(self.byte_classes),
277            size_limit: o.size_limit.or(self.size_limit),
278        }
279    }
280}
281
282/// A builder for a [one-pass DFA](DFA).
283///
284/// This builder permits configuring options for the syntax of a pattern, the
285/// NFA construction and the DFA construction. This builder is different from a
286/// general purpose regex builder in that it permits fine grain configuration
287/// of the construction process. The trade off for this is complexity, and
288/// the possibility of setting a configuration that might not make sense. For
289/// example, there are two different UTF-8 modes:
290///
291/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
292/// whether the pattern itself can contain sub-expressions that match invalid
293/// UTF-8.
294/// * [`thompson::Config::utf8`] controls whether empty matches that split a
295/// Unicode codepoint are reported or not.
296///
297/// Generally speaking, callers will want to either enable all of these or
298/// disable all of these.
299///
300/// # Example
301///
302/// This example shows how to disable UTF-8 mode in the syntax and the NFA.
303/// This is generally what you want for matching on arbitrary bytes.
304///
305/// ```
306/// # if cfg!(miri) { return Ok(()); } // miri takes too long
307/// use regex_automata::{
308///     dfa::onepass::DFA,
309///     nfa::thompson,
310///     util::syntax,
311///     Match,
312/// };
313///
314/// let re = DFA::builder()
315///     .syntax(syntax::Config::new().utf8(false))
316///     .thompson(thompson::Config::new().utf8(false))
317///     .build(r"foo(?-u:[^b])ar.*")?;
318/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
319///
320/// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
321/// re.captures(&mut cache, haystack, &mut caps);
322/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
323/// // but the subsequent `.*` does not! Disabling UTF-8
324/// // on the syntax permits this.
325/// //
326/// // N.B. This example does not show the impact of
327/// // disabling UTF-8 mode on a one-pass DFA Config,
328/// //  since that only impacts regexes that can
329/// // produce matches of length 0.
330/// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
331///
332/// # Ok::<(), Box<dyn std::error::Error>>(())
333/// ```
334#[derive(Clone, Debug)]
335pub struct Builder {
336    config: Config,
337    #[cfg(feature = "syntax")]
338    thompson: thompson::Compiler,
339}
340
341impl Builder {
342    /// Create a new one-pass DFA builder with the default configuration.
343    pub fn new() -> Builder {
344        Builder {
345            config: Config::default(),
346            #[cfg(feature = "syntax")]
347            thompson: thompson::Compiler::new(),
348        }
349    }
350
351    /// Build a one-pass DFA from the given pattern.
352    ///
353    /// If there was a problem parsing or compiling the pattern, then an error
354    /// is returned.
355    #[cfg(feature = "syntax")]
356    pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
357        self.build_many(&[pattern])
358    }
359
360    /// Build a one-pass DFA from the given patterns.
361    ///
362    /// When matches are returned, the pattern ID corresponds to the index of
363    /// the pattern in the slice given.
364    #[cfg(feature = "syntax")]
365    pub fn build_many<P: AsRef<str>>(
366        &self,
367        patterns: &[P],
368    ) -> Result<DFA, BuildError> {
369        let nfa =
370            self.thompson.build_many(patterns).map_err(BuildError::nfa)?;
371        self.build_from_nfa(nfa)
372    }
373
374    /// Build a DFA from the given NFA.
375    ///
376    /// # Example
377    ///
378    /// This example shows how to build a DFA if you already have an NFA in
379    /// hand.
380    ///
381    /// ```
382    /// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Match};
383    ///
384    /// // This shows how to set non-default options for building an NFA.
385    /// let nfa = NFA::compiler()
386    ///     .configure(NFA::config().shrink(true))
387    ///     .build(r"[a-z0-9]+")?;
388    /// let re = DFA::builder().build_from_nfa(nfa)?;
389    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
390    /// re.captures(&mut cache, "foo123bar", &mut caps);
391    /// assert_eq!(Some(Match::must(0, 0..9)), caps.get_match());
392    ///
393    /// # Ok::<(), Box<dyn std::error::Error>>(())
394    /// ```
395    pub fn build_from_nfa(&self, nfa: NFA) -> Result<DFA, BuildError> {
396        // Why take ownership if we're just going to pass a reference to the
397        // NFA to our internal builder? Well, the first thing to note is that
398        // an NFA uses reference counting internally, so either choice is going
399        // to be cheap. So there isn't much cost either way.
400        //
401        // The real reason is that a one-pass DFA, semantically, shares
402        // ownership of an NFA. This is unlike other DFAs that don't share
403        // ownership of an NFA at all, primarily because they want to be
404        // self-contained in order to support cheap (de)serialization.
405        //
406        // But then why pass a '&nfa' below if we want to share ownership?
407        // Well, it turns out that using a '&NFA' in our internal builder
408        // separates its lifetime from the DFA we're building, and this turns
409        // out to make code a bit more composable. e.g., We can iterate over
410        // things inside the NFA while borrowing the builder as mutable because
411        // we know the NFA cannot be mutated. So TL;DR --- this weirdness is
412        // "because borrow checker."
413        InternalBuilder::new(self.config.clone(), &nfa).build()
414    }
415
416    /// Apply the given one-pass DFA configuration options to this builder.
417    pub fn configure(&mut self, config: Config) -> &mut Builder {
418        self.config = self.config.overwrite(config);
419        self
420    }
421
422    /// Set the syntax configuration for this builder using
423    /// [`syntax::Config`](crate::util::syntax::Config).
424    ///
425    /// This permits setting things like case insensitivity, Unicode and multi
426    /// line mode.
427    ///
428    /// These settings only apply when constructing a one-pass DFA directly
429    /// from a pattern.
430    #[cfg(feature = "syntax")]
431    pub fn syntax(
432        &mut self,
433        config: crate::util::syntax::Config,
434    ) -> &mut Builder {
435        self.thompson.syntax(config);
436        self
437    }
438
439    /// Set the Thompson NFA configuration for this builder using
440    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
441    ///
442    /// This permits setting things like whether additional time should be
443    /// spent shrinking the size of the NFA.
444    ///
445    /// These settings only apply when constructing a DFA directly from a
446    /// pattern.
447    #[cfg(feature = "syntax")]
448    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
449        self.thompson.configure(config);
450        self
451    }
452}
453
454/// An internal builder for encapsulating the state necessary to build a
455/// one-pass DFA. Typical use is just `InternalBuilder::new(..).build()`.
456///
457/// There is no separate pass for determining whether the NFA is one-pass or
458/// not. We just try to build the DFA. If during construction we discover that
459/// it is not one-pass, we bail out. This is likely to lead to some undesirable
460/// expense in some cases, so it might make sense to try an identify common
461/// patterns in the NFA that make it definitively not one-pass. That way, we
462/// can avoid ever trying to build a one-pass DFA in the first place. For
463/// example, '\w*\s' is not one-pass, and since '\w' is Unicode-aware by
464/// default, it's probably not a trivial cost to try and build a one-pass DFA
465/// for it and then fail.
466///
467/// Note that some (immutable) fields are duplicated here. For example, the
468/// 'nfa' and 'classes' fields are both in the 'DFA'. They are the same thing,
469/// but we duplicate them because it makes composition easier below. Otherwise,
470/// since the borrow checker can't see through method calls, the mutable borrow
471/// we use to mutate the DFA winds up preventing borrowing from any other part
472/// of the DFA, even though we aren't mutating those parts. We only do this
473/// because the duplication is cheap.
474#[derive(Debug)]
475struct InternalBuilder<'a> {
476    /// The DFA we're building.
477    dfa: DFA,
478    /// An unordered collection of NFA state IDs that we haven't yet tried to
479    /// build into a DFA state yet.
480    ///
481    /// This collection does not ultimately wind up including every NFA state
482    /// ID. Instead, each ID represents a "start" state for a sub-graph of the
483    /// NFA. The set of NFA states we then use to build a DFA state consists
484    /// of that "start" state and all states reachable from it via epsilon
485    /// transitions.
486    uncompiled_nfa_ids: Vec<StateID>,
487    /// A map from NFA state ID to DFA state ID. This is useful for easily
488    /// determining whether an NFA state has been used as a "starting" point
489    /// to build a DFA state yet. If it hasn't, then it is mapped to DEAD,
490    /// and since DEAD is specially added and never corresponds to any NFA
491    /// state, it follows that a mapping to DEAD implies the NFA state has
492    /// no corresponding DFA state yet.
493    nfa_to_dfa_id: Vec<StateID>,
494    /// A stack used to traverse the NFA states that make up a single DFA
495    /// state. Traversal occurs until the stack is empty, and we only push to
496    /// the stack when the state ID isn't in 'seen'. Actually, even more than
497    /// that, if we try to push something on to this stack that is already in
498    /// 'seen', then we bail out on construction completely, since it implies
499    /// that the NFA is not one-pass.
500    stack: Vec<(StateID, Epsilons)>,
501    /// The set of NFA states that we've visited via 'stack'.
502    seen: SparseSet,
503    /// Whether a match NFA state has been observed while constructing a
504    /// one-pass DFA state. Once a match state is seen, assuming we are using
505    /// leftmost-first match semantics, then we don't add any more transitions
506    /// to the DFA state we're building.
507    matched: bool,
508    /// The config passed to the builder.
509    ///
510    /// This is duplicated in dfa.config.
511    config: Config,
512    /// The NFA we're building a one-pass DFA from.
513    ///
514    /// This is duplicated in dfa.nfa.
515    nfa: &'a NFA,
516    /// The equivalence classes that make up the alphabet for this DFA>
517    ///
518    /// This is duplicated in dfa.classes.
519    classes: ByteClasses,
520}
521
522impl<'a> InternalBuilder<'a> {
523    /// Create a new builder with an initial empty DFA.
524    fn new(config: Config, nfa: &'a NFA) -> InternalBuilder<'a> {
525        let classes = if !config.get_byte_classes() {
526            // A one-pass DFA will always use the equivalence class map, but
527            // enabling this option is useful for debugging. Namely, this will
528            // cause all transitions to be defined over their actual bytes
529            // instead of an opaque equivalence class identifier. The former is
530            // much easier to grok as a human.
531            ByteClasses::singletons()
532        } else {
533            nfa.byte_classes().clone()
534        };
535        // Normally a DFA alphabet includes the EOI symbol, but we don't need
536        // that in the one-pass DFA since we handle look-around explicitly
537        // without encoding it into the DFA. Thus, we don't need to delay
538        // matches by 1 byte. However, we reuse the space that *would* be used
539        // by the EOI transition by putting match information there (like which
540        // pattern matches and which look-around assertions need to hold). So
541        // this means our real alphabet length is 1 fewer than what the byte
542        // classes report, since we don't use EOI.
543        let alphabet_len = classes.alphabet_len().checked_sub(1).unwrap();
544        let stride2 = classes.stride2();
545        let dfa = DFA {
546            config: config.clone(),
547            nfa: nfa.clone(),
548            table: vec![],
549            starts: vec![],
550            // Since one-pass DFAs have a smaller state ID max than
551            // StateID::MAX, it follows that StateID::MAX is a valid initial
552            // value for min_match_id since no state ID can ever be greater
553            // than it. In the case of a one-pass DFA with no match states, the
554            // min_match_id will keep this sentinel value.
555            min_match_id: StateID::MAX,
556            classes: classes.clone(),
557            alphabet_len,
558            stride2,
559            pateps_offset: alphabet_len,
560            // OK because PatternID::MAX*2 is guaranteed not to overflow.
561            explicit_slot_start: nfa.pattern_len().checked_mul(2).unwrap(),
562        };
563        InternalBuilder {
564            dfa,
565            uncompiled_nfa_ids: vec![],
566            nfa_to_dfa_id: vec![DEAD; nfa.states().len()],
567            stack: vec![],
568            seen: SparseSet::new(nfa.states().len()),
569            matched: false,
570            config,
571            nfa,
572            classes,
573        }
574    }
575
576    /// Build the DFA from the NFA given to this builder. If the NFA is not
577    /// one-pass, then return an error. An error may also be returned if a
578    /// particular limit is exceeded. (Some limits, like the total heap memory
579    /// used, are configurable. Others, like the total patterns or slots, are
580    /// hard-coded based on representational limitations.)
581    fn build(mut self) -> Result<DFA, BuildError> {
582        self.nfa.look_set_any().available().map_err(BuildError::word)?;
583        for look in self.nfa.look_set_any().iter() {
584            // This is a future incompatibility check where if we add any
585            // more look-around assertions, then the one-pass DFA either
586            // needs to reject them (what we do here) or it needs to have its
587            // Transition representation modified to be capable of storing the
588            // new assertions.
589            if look.as_repr() > Look::WordUnicodeNegate.as_repr() {
590                return Err(BuildError::unsupported_look(look));
591            }
592        }
593        if self.nfa.pattern_len().as_u64() > PatternEpsilons::PATTERN_ID_LIMIT
594        {
595            return Err(BuildError::too_many_patterns(
596                PatternEpsilons::PATTERN_ID_LIMIT,
597            ));
598        }
599        if self.nfa.group_info().explicit_slot_len() > Slots::LIMIT {
600            return Err(BuildError::not_one_pass(
601                "too many explicit capturing groups (max is 16)",
602            ));
603        }
604        assert_eq!(DEAD, self.add_empty_state()?);
605
606        // This is where the explicit slots start. We care about this because
607        // we only need to track explicit slots. The implicit slots---two for
608        // each pattern---are tracked as part of the search routine itself.
609        let explicit_slot_start = self.nfa.pattern_len() * 2;
610        self.add_start_state(None, self.nfa.start_anchored())?;
611        if self.config.get_starts_for_each_pattern() {
612            for pid in self.nfa.patterns() {
613                self.add_start_state(
614                    Some(pid),
615                    self.nfa.start_pattern(pid).unwrap(),
616                )?;
617            }
618        }
619        // NOTE: One wonders what the effects of treating 'uncompiled_nfa_ids'
620        // as a stack are. It is really an unordered *set* of NFA state IDs.
621        // If it, for example, in practice led to discovering whether a regex
622        // was or wasn't one-pass later than if we processed NFA state IDs in
623        // ascending order, then that would make this routine more costly in
624        // the somewhat common case of a regex that isn't one-pass.
625        while let Some(nfa_id) = self.uncompiled_nfa_ids.pop() {
626            let dfa_id = self.nfa_to_dfa_id[nfa_id];
627            // Once we see a match, we keep going, but don't add any new
628            // transitions. Normally we'd just stop, but we have to keep
629            // going in order to verify that our regex is actually one-pass.
630            self.matched = false;
631            // The NFA states we've already explored for this DFA state.
632            self.seen.clear();
633            // The NFA states to explore via epsilon transitions. If we ever
634            // try to push an NFA state that we've already seen, then the NFA
635            // is not one-pass because it implies there are multiple epsilon
636            // transition paths that lead to the same NFA state. In other
637            // words, there is ambiguity.
638            self.stack_push(nfa_id, Epsilons::empty())?;
639            while let Some((id, epsilons)) = self.stack.pop() {
640                match *self.nfa.state(id) {
641                    thompson::State::ByteRange { ref trans } => {
642                        self.compile_transition(dfa_id, trans, epsilons)?;
643                    }
644                    thompson::State::Sparse(ref sparse) => {
645                        for trans in sparse.transitions.iter() {
646                            self.compile_transition(dfa_id, trans, epsilons)?;
647                        }
648                    }
649                    thompson::State::Dense(ref dense) => {
650                        for trans in dense.iter() {
651                            self.compile_transition(dfa_id, &trans, epsilons)?;
652                        }
653                    }
654                    thompson::State::Look { look, next } => {
655                        let looks = epsilons.looks().insert(look);
656                        self.stack_push(next, epsilons.set_looks(looks))?;
657                    }
658                    thompson::State::Union { ref alternates } => {
659                        for &sid in alternates.iter().rev() {
660                            self.stack_push(sid, epsilons)?;
661                        }
662                    }
663                    thompson::State::BinaryUnion { alt1, alt2 } => {
664                        self.stack_push(alt2, epsilons)?;
665                        self.stack_push(alt1, epsilons)?;
666                    }
667                    thompson::State::Capture { next, slot, .. } => {
668                        let slot = slot.as_usize();
669                        let epsilons = if slot < explicit_slot_start {
670                            // If this is an implicit slot, we don't care
671                            // about it, since we handle implicit slots in
672                            // the search routine. We can get away with that
673                            // because there are 2 implicit slots for every
674                            // pattern.
675                            epsilons
676                        } else {
677                            // Offset our explicit slots so that they start
678                            // at index 0.
679                            let offset = slot - explicit_slot_start;
680                            epsilons.set_slots(epsilons.slots().insert(offset))
681                        };
682                        self.stack_push(next, epsilons)?;
683                    }
684                    thompson::State::Fail => {
685                        continue;
686                    }
687                    thompson::State::Match { pattern_id } => {
688                        // If we found two different paths to a match state
689                        // for the same DFA state, then we have ambiguity.
690                        // Thus, it's not one-pass.
691                        if self.matched {
692                            return Err(BuildError::not_one_pass(
693                                "multiple epsilon transitions to match state",
694                            ));
695                        }
696                        self.matched = true;
697                        // Shove the matching pattern ID and the 'epsilons'
698                        // into the current DFA state's pattern epsilons. The
699                        // 'epsilons' includes the slots we need to capture
700                        // before reporting the match and also the conditional
701                        // epsilon transitions we need to check before we can
702                        // report a match.
703                        self.dfa.set_pattern_epsilons(
704                            dfa_id,
705                            PatternEpsilons::empty()
706                                .set_pattern_id(pattern_id)
707                                .set_epsilons(epsilons),
708                        );
709                        // N.B. It is tempting to just bail out here when
710                        // compiling a leftmost-first DFA, since we will never
711                        // compile any more transitions in that case. But we
712                        // actually need to keep going in order to verify that
713                        // we actually have a one-pass regex. e.g., We might
714                        // see more Match states (e.g., for other patterns)
715                        // that imply that we don't have a one-pass regex.
716                        // So instead, we mark that we've found a match and
717                        // continue on. When we go to compile a new DFA state,
718                        // we just skip that part. But otherwise check that the
719                        // one-pass property is upheld.
720                    }
721                }
722            }
723        }
724        self.shuffle_states();
725        Ok(self.dfa)
726    }
727
728    /// Shuffle all match states to the end of the transition table and set
729    /// 'min_match_id' to the ID of the first such match state.
730    ///
731    /// The point of this is to make it extremely cheap to determine whether
732    /// a state is a match state or not. We need to check on this on every
733    /// transition during a search, so it being cheap is important. This
734    /// permits us to check it by simply comparing two state identifiers, as
735    /// opposed to looking for the pattern ID in the state's `PatternEpsilons`.
736    /// (Which requires a memory load and some light arithmetic.)
737    fn shuffle_states(&mut self) {
738        let mut remapper = Remapper::new(&self.dfa);
739        let mut next_dest = self.dfa.last_state_id();
740        for i in (0..self.dfa.state_len()).rev() {
741            let id = StateID::must(i);
742            let is_match =
743                self.dfa.pattern_epsilons(id).pattern_id().is_some();
744            if !is_match {
745                continue;
746            }
747            remapper.swap(&mut self.dfa, next_dest, id);
748            self.dfa.min_match_id = next_dest;
749            next_dest = self.dfa.prev_state_id(next_dest).expect(
750                "match states should be a proper subset of all states",
751            );
752        }
753        remapper.remap(&mut self.dfa);
754    }
755
756    /// Compile the given NFA transition into the DFA state given.
757    ///
758    /// 'Epsilons' corresponds to any conditional epsilon transitions that need
759    /// to be satisfied to follow this transition, and any slots that need to
760    /// be saved if the transition is followed.
761    ///
762    /// If this transition indicates that the NFA is not one-pass, then
763    /// this returns an error. (This occurs, for example, if the DFA state
764    /// already has a transition defined for the same input symbols as the
765    /// given transition, *and* the result of the old and new transitions is
766    /// different.)
767    fn compile_transition(
768        &mut self,
769        dfa_id: StateID,
770        trans: &thompson::Transition,
771        epsilons: Epsilons,
772    ) -> Result<(), BuildError> {
773        let next_dfa_id = self.add_dfa_state_for_nfa_state(trans.next)?;
774        for byte in self
775            .classes
776            .representatives(trans.start..=trans.end)
777            .filter_map(|r| r.as_u8())
778        {
779            let oldtrans = self.dfa.transition(dfa_id, byte);
780            let newtrans =
781                Transition::new(self.matched, next_dfa_id, epsilons);
782            // If the old transition points to the DEAD state, then we know
783            // 'byte' has not been mapped to any transition for this DFA state
784            // yet. So set it unconditionally. Otherwise, we require that the
785            // old and new transitions are equivalent. Otherwise, there is
786            // ambiguity and thus the regex is not one-pass.
787            if oldtrans.state_id() == DEAD {
788                self.dfa.set_transition(dfa_id, byte, newtrans);
789            } else if oldtrans != newtrans {
790                return Err(BuildError::not_one_pass(
791                    "conflicting transition",
792                ));
793            }
794        }
795        Ok(())
796    }
797
798    /// Add a start state to the DFA corresponding to the given NFA starting
799    /// state ID.
800    ///
801    /// If adding a state would blow any limits (configured or hard-coded),
802    /// then an error is returned.
803    ///
804    /// If the starting state is an anchored state for a particular pattern,
805    /// then callers must provide the pattern ID for that starting state.
806    /// Callers must also ensure that the first starting state added is the
807    /// start state for all patterns, and then each anchored starting state for
808    /// each pattern (if necessary) added in order. Otherwise, this panics.
809    fn add_start_state(
810        &mut self,
811        pid: Option<PatternID>,
812        nfa_id: StateID,
813    ) -> Result<StateID, BuildError> {
814        match pid {
815            // With no pid, this should be the start state for all patterns
816            // and thus be the first one.
817            None => assert!(self.dfa.starts.is_empty()),
818            // With a pid, we want it to be at self.dfa.starts[pid+1].
819            Some(pid) => assert!(self.dfa.starts.len() == pid.one_more()),
820        }
821        let dfa_id = self.add_dfa_state_for_nfa_state(nfa_id)?;
822        self.dfa.starts.push(dfa_id);
823        Ok(dfa_id)
824    }
825
826    /// Add a new DFA state corresponding to the given NFA state. If adding a
827    /// state would blow any limits (configured or hard-coded), then an error
828    /// is returned. If a DFA state already exists for the given NFA state,
829    /// then that DFA state's ID is returned and no new states are added.
830    ///
831    /// It is not expected that this routine is called for every NFA state.
832    /// Instead, an NFA state ID will usually correspond to the "start" state
833    /// for a sub-graph of the NFA, where all states in the sub-graph are
834    /// reachable via epsilon transitions (conditional or unconditional). That
835    /// sub-graph of NFA states is ultimately what produces a single DFA state.
836    fn add_dfa_state_for_nfa_state(
837        &mut self,
838        nfa_id: StateID,
839    ) -> Result<StateID, BuildError> {
840        // If we've already built a DFA state for the given NFA state, then
841        // just return that. We definitely do not want to have more than one
842        // DFA state in existence for the same NFA state, since all but one of
843        // them will likely become unreachable. And at least some of them are
844        // likely to wind up being incomplete.
845        let existing_dfa_id = self.nfa_to_dfa_id[nfa_id];
846        if existing_dfa_id != DEAD {
847            return Ok(existing_dfa_id);
848        }
849        // If we don't have any DFA state yet, add it and then add the given
850        // NFA state to the list of states to explore.
851        let dfa_id = self.add_empty_state()?;
852        self.nfa_to_dfa_id[nfa_id] = dfa_id;
853        self.uncompiled_nfa_ids.push(nfa_id);
854        Ok(dfa_id)
855    }
856
857    /// Unconditionally add a new empty DFA state. If adding it would exceed
858    /// any limits (configured or hard-coded), then an error is returned. The
859    /// ID of the new state is returned on success.
860    ///
861    /// The added state is *not* a match state.
862    fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
863        let state_limit = Transition::STATE_ID_LIMIT;
864        // Note that unlike dense and lazy DFAs, we specifically do NOT
865        // premultiply our state IDs here. The reason is that we want to pack
866        // our state IDs into 64-bit transitions with other info, so the fewer
867        // the bits we use for state IDs the better. If we premultiply, then
868        // our state ID space shrinks. We justify this by the assumption that
869        // a one-pass DFA is just already doing a fair bit more work than a
870        // normal DFA anyway, so an extra multiplication to compute a state
871        // transition doesn't seem like a huge deal.
872        let next_id = self.dfa.table.len() >> self.dfa.stride2();
873        let id = StateID::new(next_id)
874            .map_err(|_| BuildError::too_many_states(state_limit))?;
875        if id.as_u64() > Transition::STATE_ID_LIMIT {
876            return Err(BuildError::too_many_states(state_limit));
877        }
878        self.dfa
879            .table
880            .extend(core::iter::repeat(Transition(0)).take(self.dfa.stride()));
881        // The default empty value for 'PatternEpsilons' is sadly not all
882        // zeroes. Instead, a special sentinel is used to indicate that there
883        // is no pattern. So we need to explicitly set the pattern epsilons to
884        // the correct "empty" PatternEpsilons.
885        self.dfa.set_pattern_epsilons(id, PatternEpsilons::empty());
886        if let Some(size_limit) = self.config.get_size_limit() {
887            if self.dfa.memory_usage() > size_limit {
888                return Err(BuildError::exceeded_size_limit(size_limit));
889            }
890        }
891        Ok(id)
892    }
893
894    /// Push the given NFA state ID and its corresponding epsilons (slots and
895    /// conditional epsilon transitions) on to a stack for use in a depth first
896    /// traversal of a sub-graph of the NFA.
897    ///
898    /// If the given NFA state ID has already been pushed on to the stack, then
899    /// it indicates the regex is not one-pass and this correspondingly returns
900    /// an error.
901    fn stack_push(
902        &mut self,
903        nfa_id: StateID,
904        epsilons: Epsilons,
905    ) -> Result<(), BuildError> {
906        // If we already have seen a match and we are compiling a leftmost
907        // first DFA, then we shouldn't add any more states to look at. This is
908        // effectively how preference order and non-greediness is implemented.
909        // if !self.config.get_match_kind().continue_past_first_match()
910        // && self.matched
911        // {
912        // return Ok(());
913        // }
914        if !self.seen.insert(nfa_id) {
915            return Err(BuildError::not_one_pass(
916                "multiple epsilon transitions to same state",
917            ));
918        }
919        self.stack.push((nfa_id, epsilons));
920        Ok(())
921    }
922}
923
924/// A one-pass DFA for executing a subset of anchored regex searches while
925/// resolving capturing groups.
926///
927/// A one-pass DFA can be built from an NFA that is one-pass. An NFA is
928/// one-pass when there is never any ambiguity about how to continue a search.
929/// For example, `a*a` is not one-pass becuase during a search, it's not
930/// possible to know whether to continue matching the `a*` or to move on to
931/// the single `a`. However, `a*b` is one-pass, because for every byte in the
932/// input, it's always clear when to move on from `a*` to `b`.
933///
934/// # Only anchored searches are supported
935///
936/// In this crate, especially for DFAs, unanchored searches are implemented by
937/// treating the pattern as if it had a `(?s-u:.)*?` prefix. While the prefix
938/// is one-pass on its own, adding anything after it, e.g., `(?s-u:.)*?a` will
939/// make the overall pattern not one-pass. Why? Because the `(?s-u:.)` matches
940/// any byte, and there is therefore ambiguity as to when the prefix should
941/// stop matching and something else should start matching.
942///
943/// Therefore, one-pass DFAs do not support unanchored searches. In addition
944/// to many regexes simply not being one-pass, it implies that one-pass DFAs
945/// have limited utility. With that said, when a one-pass DFA can be used, it
946/// can potentially provide a dramatic speed up over alternatives like the
947/// [`BoundedBacktracker`](crate::nfa::thompson::backtrack::BoundedBacktracker)
948/// and the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). In particular,
949/// a one-pass DFA is the only DFA capable of reporting the spans of matching
950/// capturing groups.
951///
952/// To clarify, when we say that unanchored searches are not supported, what
953/// that actually means is:
954///
955/// * The high level routines, [`DFA::is_match`] and [`DFA::captures`], always
956/// do anchored searches.
957/// * Since iterators are most useful in the context of unanchored searches,
958/// there is no `DFA::captures_iter` method.
959/// * For lower level routines like [`DFA::try_search`], an error will be
960/// returned if the given [`Input`] is configured to do an unanchored search or
961/// search for an invalid pattern ID. (Note that an [`Input`] is configured to
962/// do an unanchored search by default, so just giving a `Input::new` is
963/// guaranteed to return an error.)
964///
965/// # Other limitations
966///
967/// In addition to the [configurable heap limit](Config::size_limit) and
968/// the requirement that a regex pattern be one-pass, there are some other
969/// limitations:
970///
971/// * There is an internal limit on the total number of explicit capturing
972/// groups that appear across all patterns. It is somewhat small and there is
973/// no way to configure it. If your pattern(s) exceed this limit, then building
974/// a one-pass DFA will fail.
975/// * If the number of patterns exceeds an internal unconfigurable limit, then
976/// building a one-pass DFA will fail. This limit is quite large and you're
977/// unlikely to hit it.
978/// * If the total number of states exceeds an internal unconfigurable limit,
979/// then building a one-pass DFA will fail. This limit is quite large and
980/// you're unlikely to hit it.
981///
982/// # Other examples of regexes that aren't one-pass
983///
984/// One particularly unfortunate example is that enabling Unicode can cause
985/// regexes that were one-pass to no longer be one-pass. Consider the regex
986/// `(?-u)\w*\s` for example. It is one-pass because there is exactly no
987/// overlap between the ASCII definitions of `\w` and `\s`. But `\w*\s`
988/// (i.e., with Unicode enabled) is *not* one-pass because `\w` and `\s` get
989/// translated to UTF-8 automatons. And while the *codepoints* in `\w` and `\s`
990/// do not overlap, the underlying UTF-8 encodings do. Indeed, because of the
991/// overlap between UTF-8 automata, the use of Unicode character classes will
992/// tend to vastly increase the likelihood of a regex not being one-pass.
993///
994/// # How does one know if a regex is one-pass or not?
995///
996/// At the time of writing, the only way to know is to try and build a one-pass
997/// DFA. The one-pass property is checked while constructing the DFA.
998///
999/// This does mean that you might potentially waste some CPU cycles and memory
1000/// by optimistically trying to build a one-pass DFA. But this is currently the
1001/// only way. In the future, building a one-pass DFA might be able to use some
1002/// heuristics to detect common violations of the one-pass property and bail
1003/// more quickly.
1004///
1005/// # Resource usage
1006///
1007/// Unlike a general DFA, a one-pass DFA has stricter bounds on its resource
1008/// usage. Namely, construction of a one-pass DFA has a time and space
1009/// complexity of `O(n)`, where `n ~ nfa.states().len()`. (A general DFA's time
1010/// and space complexity is `O(2^n)`.) This smaller time bound is achieved
1011/// because there is at most one DFA state created for each NFA state. If
1012/// additional DFA states would be required, then the pattern is not one-pass
1013/// and construction will fail.
1014///
1015/// Note though that currently, this DFA uses a fully dense representation.
1016/// This means that while its space complexity is no worse than an NFA, it may
1017/// in practice use more memory because of higher constant factors. The reason
1018/// for this trade off is two-fold. Firstly, a dense representation makes the
1019/// search faster. Secondly, the bigger an NFA, the more unlikely it is to be
1020/// one-pass. Therefore, most one-pass DFAs are usually pretty small.
1021///
1022/// # Example
1023///
1024/// This example shows that the one-pass DFA implements Unicode word boundaries
1025/// correctly while simultaneously reporting spans for capturing groups that
1026/// participate in a match. (This is the only DFA that implements full support
1027/// for Unicode word boundaries.)
1028///
1029/// ```
1030/// # if cfg!(miri) { return Ok(()); } // miri takes too long
1031/// use regex_automata::{dfa::onepass::DFA, Match, Span};
1032///
1033/// let re = DFA::new(r"\b(?P<first>\w+)[[:space:]]+(?P<last>\w+)\b")?;
1034/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1035///
1036/// re.captures(&mut cache, "Шерлок Холмс", &mut caps);
1037/// assert_eq!(Some(Match::must(0, 0..23)), caps.get_match());
1038/// assert_eq!(Some(Span::from(0..12)), caps.get_group_by_name("first"));
1039/// assert_eq!(Some(Span::from(13..23)), caps.get_group_by_name("last"));
1040/// # Ok::<(), Box<dyn std::error::Error>>(())
1041/// ```
1042///
1043/// # Example: iteration
1044///
1045/// Unlike other regex engines in this crate, this one does not provide
1046/// iterator search functions. This is because a one-pass DFA only supports
1047/// anchored searches, and so iterator functions are generally not applicable.
1048///
1049/// However, if you know that all of your matches are
1050/// directly adjacent, then an iterator can be used. The
1051/// [`util::iter::Searcher`](crate::util::iter::Searcher) type can be used for
1052/// this purpose:
1053///
1054/// ```
1055/// # if cfg!(miri) { return Ok(()); } // miri takes too long
1056/// use regex_automata::{
1057///     dfa::onepass::DFA,
1058///     util::iter::Searcher,
1059///     Anchored, Input, Span,
1060/// };
1061///
1062/// let re = DFA::new(r"\w(\d)\w")?;
1063/// let (mut cache, caps) = (re.create_cache(), re.create_captures());
1064/// let input = Input::new("a1zb2yc3x").anchored(Anchored::Yes);
1065///
1066/// let mut it = Searcher::new(input).into_captures_iter(caps, |input, caps| {
1067///     Ok(re.try_search(&mut cache, input, caps)?)
1068/// }).infallible();
1069/// let caps0 = it.next().unwrap();
1070/// assert_eq!(Some(Span::from(1..2)), caps0.get_group(1));
1071///
1072/// # Ok::<(), Box<dyn std::error::Error>>(())
1073/// ```
1074#[derive(Clone)]
1075pub struct DFA {
1076    /// The configuration provided by the caller.
1077    config: Config,
1078    /// The NFA used to build this DFA.
1079    ///
1080    /// NOTE: We probably don't need to store the NFA here, but we use enough
1081    /// bits from it that it's convenient to do so. And there really isn't much
1082    /// cost to doing so either, since an NFA is reference counted internally.
1083    nfa: NFA,
1084    /// The transition table. Given a state ID 's' and a byte of haystack 'b',
1085    /// the next state is `table[sid + classes[byte]]`.
1086    ///
1087    /// The stride of this table (i.e., the number of columns) is always
1088    /// a power of 2, even if the alphabet length is smaller. This makes
1089    /// converting between state IDs and state indices very cheap.
1090    ///
1091    /// Note that the stride always includes room for one extra "transition"
1092    /// that isn't actually a transition. It is a 'PatternEpsilons' that is
1093    /// used for match states only. Because of this, the maximum number of
1094    /// active columns in the transition table is 257, which means the maximum
1095    /// stride is 512 (the next power of 2 greater than or equal to 257).
1096    table: Vec<Transition>,
1097    /// The DFA state IDs of the starting states.
1098    ///
1099    /// `starts[0]` is always present and corresponds to the starting state
1100    /// when searching for matches of any pattern in the DFA.
1101    ///
1102    /// `starts[i]` where i>0 corresponds to the starting state for the pattern
1103    /// ID 'i-1'. These starting states are optional.
1104    starts: Vec<StateID>,
1105    /// Every state ID >= this value corresponds to a match state.
1106    ///
1107    /// This is what a search uses to detect whether a state is a match state
1108    /// or not. It requires only a simple comparison instead of bit-unpacking
1109    /// the PatternEpsilons from every state.
1110    min_match_id: StateID,
1111    /// The alphabet of this DFA, split into equivalence classes. Bytes in the
1112    /// same equivalence class can never discriminate between a match and a
1113    /// non-match.
1114    classes: ByteClasses,
1115    /// The number of elements in each state in the transition table. This may
1116    /// be less than the stride, since the stride is always a power of 2 and
1117    /// the alphabet length can be anything up to and including 256.
1118    alphabet_len: usize,
1119    /// The number of columns in the transition table, expressed as a power of
1120    /// 2.
1121    stride2: usize,
1122    /// The offset at which the PatternEpsilons for a match state is stored in
1123    /// the transition table.
1124    ///
1125    /// PERF: One wonders whether it would be better to put this in a separate
1126    /// allocation, since only match states have a non-empty PatternEpsilons
1127    /// and the number of match states tends be dwarfed by the number of
1128    /// non-match states. So this would save '8*len(non_match_states)' for each
1129    /// DFA. The question is whether moving this to a different allocation will
1130    /// lead to a perf hit during searches. You might think dealing with match
1131    /// states is rare, but some regexes spend a lot of time in match states
1132    /// gobbling up input. But... match state handling is already somewhat
1133    /// expensive, so maybe this wouldn't do much? Either way, it's worth
1134    /// experimenting.
1135    pateps_offset: usize,
1136    /// The first explicit slot index. This refers to the first slot appearing
1137    /// immediately after the last implicit slot. It is always 'patterns.len()
1138    /// * 2'.
1139    ///
1140    /// We record this because we only store the explicit slots in our DFA
1141    /// transition table that need to be saved. Implicit slots are handled
1142    /// automatically as part of the search.
1143    explicit_slot_start: usize,
1144}
1145
1146impl DFA {
1147    /// Parse the given regular expression using the default configuration and
1148    /// return the corresponding one-pass DFA.
1149    ///
1150    /// If you want a non-default configuration, then use the [`Builder`] to
1151    /// set your own configuration.
1152    ///
1153    /// # Example
1154    ///
1155    /// ```
1156    /// use regex_automata::{dfa::onepass::DFA, Match};
1157    ///
1158    /// let re = DFA::new("foo[0-9]+bar")?;
1159    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1160    ///
1161    /// re.captures(&mut cache, "foo12345barzzz", &mut caps);
1162    /// assert_eq!(Some(Match::must(0, 0..11)), caps.get_match());
1163    /// # Ok::<(), Box<dyn std::error::Error>>(())
1164    /// ```
1165    #[cfg(feature = "syntax")]
1166    #[inline]
1167    pub fn new(pattern: &str) -> Result<DFA, BuildError> {
1168        DFA::builder().build(pattern)
1169    }
1170
1171    /// Like `new`, but parses multiple patterns into a single "multi regex."
1172    /// This similarly uses the default regex configuration.
1173    ///
1174    /// # Example
1175    ///
1176    /// ```
1177    /// use regex_automata::{dfa::onepass::DFA, Match};
1178    ///
1179    /// let re = DFA::new_many(&["[a-z]+", "[0-9]+"])?;
1180    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1181    ///
1182    /// re.captures(&mut cache, "abc123", &mut caps);
1183    /// assert_eq!(Some(Match::must(0, 0..3)), caps.get_match());
1184    ///
1185    /// re.captures(&mut cache, "123abc", &mut caps);
1186    /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
1187    ///
1188    /// # Ok::<(), Box<dyn std::error::Error>>(())
1189    /// ```
1190    #[cfg(feature = "syntax")]
1191    #[inline]
1192    pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
1193        DFA::builder().build_many(patterns)
1194    }
1195
1196    /// Like `new`, but builds a one-pass DFA directly from an NFA. This is
1197    /// useful if you already have an NFA, or even if you hand-assembled the
1198    /// NFA.
1199    ///
1200    /// # Example
1201    ///
1202    /// This shows how to hand assemble a regular expression via its HIR,
1203    /// compile an NFA from it and build a one-pass DFA from the NFA.
1204    ///
1205    /// ```
1206    /// use regex_automata::{
1207    ///     dfa::onepass::DFA,
1208    ///     nfa::thompson::NFA,
1209    ///     Match,
1210    /// };
1211    /// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
1212    ///
1213    /// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
1214    ///     ClassBytesRange::new(b'0', b'9'),
1215    ///     ClassBytesRange::new(b'A', b'Z'),
1216    ///     ClassBytesRange::new(b'_', b'_'),
1217    ///     ClassBytesRange::new(b'a', b'z'),
1218    /// ])));
1219    ///
1220    /// let config = NFA::config().nfa_size_limit(Some(1_000));
1221    /// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
1222    ///
1223    /// let re = DFA::new_from_nfa(nfa)?;
1224    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1225    /// let expected = Some(Match::must(0, 0..1));
1226    /// re.captures(&mut cache, "A", &mut caps);
1227    /// assert_eq!(expected, caps.get_match());
1228    ///
1229    /// # Ok::<(), Box<dyn std::error::Error>>(())
1230    /// ```
1231    pub fn new_from_nfa(nfa: NFA) -> Result<DFA, BuildError> {
1232        DFA::builder().build_from_nfa(nfa)
1233    }
1234
1235    /// Create a new one-pass DFA that matches every input.
1236    ///
1237    /// # Example
1238    ///
1239    /// ```
1240    /// use regex_automata::{dfa::onepass::DFA, Match};
1241    ///
1242    /// let dfa = DFA::always_match()?;
1243    /// let mut cache = dfa.create_cache();
1244    /// let mut caps = dfa.create_captures();
1245    ///
1246    /// let expected = Match::must(0, 0..0);
1247    /// dfa.captures(&mut cache, "", &mut caps);
1248    /// assert_eq!(Some(expected), caps.get_match());
1249    /// dfa.captures(&mut cache, "foo", &mut caps);
1250    /// assert_eq!(Some(expected), caps.get_match());
1251    /// # Ok::<(), Box<dyn std::error::Error>>(())
1252    /// ```
1253    pub fn always_match() -> Result<DFA, BuildError> {
1254        let nfa = thompson::NFA::always_match();
1255        Builder::new().build_from_nfa(nfa)
1256    }
1257
1258    /// Create a new one-pass DFA that never matches any input.
1259    ///
1260    /// # Example
1261    ///
1262    /// ```
1263    /// use regex_automata::dfa::onepass::DFA;
1264    ///
1265    /// let dfa = DFA::never_match()?;
1266    /// let mut cache = dfa.create_cache();
1267    /// let mut caps = dfa.create_captures();
1268    ///
1269    /// dfa.captures(&mut cache, "", &mut caps);
1270    /// assert_eq!(None, caps.get_match());
1271    /// dfa.captures(&mut cache, "foo", &mut caps);
1272    /// assert_eq!(None, caps.get_match());
1273    /// # Ok::<(), Box<dyn std::error::Error>>(())
1274    /// ```
1275    pub fn never_match() -> Result<DFA, BuildError> {
1276        let nfa = thompson::NFA::never_match();
1277        Builder::new().build_from_nfa(nfa)
1278    }
1279
1280    /// Return a default configuration for a DFA.
1281    ///
1282    /// This is a convenience routine to avoid needing to import the `Config`
1283    /// type when customizing the construction of a DFA.
1284    ///
1285    /// # Example
1286    ///
1287    /// This example shows how to change the match semantics of this DFA from
1288    /// its default "leftmost first" to "all." When using "all," non-greediness
1289    /// doesn't apply and neither does preference order matching. Instead, the
1290    /// longest match possible is always returned. (Although, by construction,
1291    /// it's impossible for a one-pass DFA to have a different answer for
1292    /// "preference order" vs "longest match.")
1293    ///
1294    /// ```
1295    /// use regex_automata::{dfa::onepass::DFA, Match, MatchKind};
1296    ///
1297    /// let re = DFA::builder()
1298    ///     .configure(DFA::config().match_kind(MatchKind::All))
1299    ///     .build(r"(abc)+?")?;
1300    /// let mut cache = re.create_cache();
1301    /// let mut caps = re.create_captures();
1302    ///
1303    /// re.captures(&mut cache, "abcabc", &mut caps);
1304    /// // Normally, the non-greedy repetition would give us a 0..3 match.
1305    /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match());
1306    /// # Ok::<(), Box<dyn std::error::Error>>(())
1307    /// ```
1308    #[inline]
1309    pub fn config() -> Config {
1310        Config::new()
1311    }
1312
1313    /// Return a builder for configuring the construction of a DFA.
1314    ///
1315    /// This is a convenience routine to avoid needing to import the
1316    /// [`Builder`] type in common cases.
1317    ///
1318    /// # Example
1319    ///
1320    /// This example shows how to use the builder to disable UTF-8 mode.
1321    ///
1322    /// ```
1323    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1324    /// use regex_automata::{
1325    ///     dfa::onepass::DFA,
1326    ///     nfa::thompson,
1327    ///     util::syntax,
1328    ///     Match,
1329    /// };
1330    ///
1331    /// let re = DFA::builder()
1332    ///     .syntax(syntax::Config::new().utf8(false))
1333    ///     .thompson(thompson::Config::new().utf8(false))
1334    ///     .build(r"foo(?-u:[^b])ar.*")?;
1335    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1336    ///
1337    /// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
1338    /// let expected = Some(Match::must(0, 0..8));
1339    /// re.captures(&mut cache, haystack, &mut caps);
1340    /// assert_eq!(expected, caps.get_match());
1341    ///
1342    /// # Ok::<(), Box<dyn std::error::Error>>(())
1343    /// ```
1344    #[inline]
1345    pub fn builder() -> Builder {
1346        Builder::new()
1347    }
1348
1349    /// Create a new empty set of capturing groups that is guaranteed to be
1350    /// valid for the search APIs on this DFA.
1351    ///
1352    /// A `Captures` value created for a specific DFA cannot be used with any
1353    /// other DFA.
1354    ///
1355    /// This is a convenience function for [`Captures::all`]. See the
1356    /// [`Captures`] documentation for an explanation of its alternative
1357    /// constructors that permit the DFA to do less work during a search, and
1358    /// thus might make it faster.
1359    #[inline]
1360    pub fn create_captures(&self) -> Captures {
1361        Captures::all(self.nfa.group_info().clone())
1362    }
1363
1364    /// Create a new cache for this DFA.
1365    ///
1366    /// The cache returned should only be used for searches for this
1367    /// DFA. If you want to reuse the cache for another DFA, then you
1368    /// must call [`Cache::reset`] with that DFA (or, equivalently,
1369    /// [`DFA::reset_cache`]).
1370    #[inline]
1371    pub fn create_cache(&self) -> Cache {
1372        Cache::new(self)
1373    }
1374
1375    /// Reset the given cache such that it can be used for searching with the
1376    /// this DFA (and only this DFA).
1377    ///
1378    /// A cache reset permits reusing memory already allocated in this cache
1379    /// with a different DFA.
1380    ///
1381    /// # Example
1382    ///
1383    /// This shows how to re-purpose a cache for use with a different DFA.
1384    ///
1385    /// ```
1386    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1387    /// use regex_automata::{dfa::onepass::DFA, Match};
1388    ///
1389    /// let re1 = DFA::new(r"\w")?;
1390    /// let re2 = DFA::new(r"\W")?;
1391    /// let mut caps1 = re1.create_captures();
1392    /// let mut caps2 = re2.create_captures();
1393    ///
1394    /// let mut cache = re1.create_cache();
1395    /// assert_eq!(
1396    ///     Some(Match::must(0, 0..2)),
1397    ///     { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
1398    /// );
1399    ///
1400    /// // Using 'cache' with re2 is not allowed. It may result in panics or
1401    /// // incorrect results. In order to re-purpose the cache, we must reset
1402    /// // it with the one-pass DFA we'd like to use it with.
1403    /// //
1404    /// // Similarly, after this reset, using the cache with 're1' is also not
1405    /// // allowed.
1406    /// re2.reset_cache(&mut cache);
1407    /// assert_eq!(
1408    ///     Some(Match::must(0, 0..3)),
1409    ///     { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
1410    /// );
1411    ///
1412    /// # Ok::<(), Box<dyn std::error::Error>>(())
1413    /// ```
1414    #[inline]
1415    pub fn reset_cache(&self, cache: &mut Cache) {
1416        cache.reset(self);
1417    }
1418
1419    /// Return the config for this one-pass DFA.
1420    #[inline]
1421    pub fn get_config(&self) -> &Config {
1422        &self.config
1423    }
1424
1425    /// Returns a reference to the underlying NFA.
1426    #[inline]
1427    pub fn get_nfa(&self) -> &NFA {
1428        &self.nfa
1429    }
1430
1431    /// Returns the total number of patterns compiled into this DFA.
1432    ///
1433    /// In the case of a DFA that contains no patterns, this returns `0`.
1434    #[inline]
1435    pub fn pattern_len(&self) -> usize {
1436        self.get_nfa().pattern_len()
1437    }
1438
1439    /// Returns the total number of states in this one-pass DFA.
1440    ///
1441    /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
1442    /// a low level DFA API. Therefore, this routine has little use other than
1443    /// being informational.
1444    #[inline]
1445    pub fn state_len(&self) -> usize {
1446        self.table.len() >> self.stride2()
1447    }
1448
1449    /// Returns the total number of elements in the alphabet for this DFA.
1450    ///
1451    /// That is, this returns the total number of transitions that each
1452    /// state in this DFA must have. The maximum alphabet size is 256, which
1453    /// corresponds to each possible byte value.
1454    ///
1455    /// The alphabet size may be less than 256 though, and unless
1456    /// [`Config::byte_classes`] is disabled, it is typically must less than
1457    /// 256. Namely, bytes are grouped into equivalence classes such that no
1458    /// two bytes in the same class can distinguish a match from a non-match.
1459    /// For example, in the regex `^[a-z]+$`, the ASCII bytes `a-z` could
1460    /// all be in the same equivalence class. This leads to a massive space
1461    /// savings.
1462    ///
1463    /// Note though that the alphabet length does _not_ necessarily equal the
1464    /// total stride space taken up by a single DFA state in the transition
1465    /// table. Namely, for performance reasons, the stride is always the
1466    /// smallest power of two that is greater than or equal to the alphabet
1467    /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
1468    /// often more useful. The alphabet length is typically useful only for
1469    /// informational purposes.
1470    ///
1471    /// Note also that unlike dense or sparse DFAs, a one-pass DFA does
1472    /// not have a special end-of-input (EOI) transition. This is because
1473    /// a one-pass DFA handles look-around assertions explicitly (like the
1474    /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM)) and does not build
1475    /// them into the transitions of the DFA.
1476    #[inline]
1477    pub fn alphabet_len(&self) -> usize {
1478        self.alphabet_len
1479    }
1480
1481    /// Returns the total stride for every state in this DFA, expressed as the
1482    /// exponent of a power of 2. The stride is the amount of space each state
1483    /// takes up in the transition table, expressed as a number of transitions.
1484    /// (Unused transitions map to dead states.)
1485    ///
1486    /// The stride of a DFA is always equivalent to the smallest power of
1487    /// 2 that is greater than or equal to the DFA's alphabet length. This
1488    /// definition uses extra space, but possibly permits faster translation
1489    /// between state identifiers and their corresponding offsets in this DFA's
1490    /// transition table.
1491    ///
1492    /// For example, if the DFA's stride is 16 transitions, then its `stride2`
1493    /// is `4` since `2^4 = 16`.
1494    ///
1495    /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
1496    /// while the maximum `stride2` value is `9` (corresponding to a stride
1497    /// of `512`). The maximum in theory should be `8`, but because of some
1498    /// implementation quirks that may be relaxed in the future, it is one more
1499    /// than `8`. (Do note that a maximal stride is incredibly rare, as it
1500    /// would imply that there is almost no redundant in the regex pattern.)
1501    ///
1502    /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
1503    /// a low level DFA API. Therefore, this routine has little use other than
1504    /// being informational.
1505    #[inline]
1506    pub fn stride2(&self) -> usize {
1507        self.stride2
1508    }
1509
1510    /// Returns the total stride for every state in this DFA. This corresponds
1511    /// to the total number of transitions used by each state in this DFA's
1512    /// transition table.
1513    ///
1514    /// Please see [`DFA::stride2`] for more information. In particular, this
1515    /// returns the stride as the number of transitions, where as `stride2`
1516    /// returns it as the exponent of a power of 2.
1517    ///
1518    /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
1519    /// a low level DFA API. Therefore, this routine has little use other than
1520    /// being informational.
1521    #[inline]
1522    pub fn stride(&self) -> usize {
1523        1 << self.stride2()
1524    }
1525
1526    /// Returns the memory usage, in bytes, of this DFA.
1527    ///
1528    /// The memory usage is computed based on the number of bytes used to
1529    /// represent this DFA.
1530    ///
1531    /// This does **not** include the stack size used up by this DFA. To
1532    /// compute that, use `std::mem::size_of::<onepass::DFA>()`.
1533    #[inline]
1534    pub fn memory_usage(&self) -> usize {
1535        use core::mem::size_of;
1536
1537        self.table.len() * size_of::<Transition>()
1538            + self.starts.len() * size_of::<StateID>()
1539    }
1540}
1541
1542impl DFA {
1543    /// Executes an anchored leftmost forward search, and returns true if and
1544    /// only if this one-pass DFA matches the given haystack.
1545    ///
1546    /// This routine may short circuit if it knows that scanning future
1547    /// input will never lead to a different result. In particular, if the
1548    /// underlying DFA enters a match state, then this routine will return
1549    /// `true` immediately without inspecting any future input. (Consider how
1550    /// this might make a difference given the regex `a+` on the haystack
1551    /// `aaaaaaaaaaaaaaa`. This routine can stop after it sees the first `a`,
1552    /// but routines like `find` need to continue searching because `+` is
1553    /// greedy by default.)
1554    ///
1555    /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
1556    /// given configuration was [`Anchored::No`] (which is the default).
1557    ///
1558    /// # Panics
1559    ///
1560    /// This routine panics if the search could not complete. This can occur
1561    /// in the following circumstances:
1562    ///
1563    /// * When the provided `Input` configuration is not supported. For
1564    /// example, by providing an unsupported anchor mode. Concretely,
1565    /// this occurs when using [`Anchored::Pattern`] without enabling
1566    /// [`Config::starts_for_each_pattern`].
1567    ///
1568    /// When a search panics, callers cannot know whether a match exists or
1569    /// not.
1570    ///
1571    /// Use [`DFA::try_search`] if you want to handle these panics as error
1572    /// values instead.
1573    ///
1574    /// # Example
1575    ///
1576    /// This shows basic usage:
1577    ///
1578    /// ```
1579    /// use regex_automata::dfa::onepass::DFA;
1580    ///
1581    /// let re = DFA::new("foo[0-9]+bar")?;
1582    /// let mut cache = re.create_cache();
1583    ///
1584    /// assert!(re.is_match(&mut cache, "foo12345bar"));
1585    /// assert!(!re.is_match(&mut cache, "foobar"));
1586    /// # Ok::<(), Box<dyn std::error::Error>>(())
1587    /// ```
1588    ///
1589    /// # Example: consistency with search APIs
1590    ///
1591    /// `is_match` is guaranteed to return `true` whenever `captures` returns
1592    /// a match. This includes searches that are executed entirely within a
1593    /// codepoint:
1594    ///
1595    /// ```
1596    /// use regex_automata::{dfa::onepass::DFA, Input};
1597    ///
1598    /// let re = DFA::new("a*")?;
1599    /// let mut cache = re.create_cache();
1600    ///
1601    /// assert!(!re.is_match(&mut cache, Input::new("☃").span(1..2)));
1602    /// # Ok::<(), Box<dyn std::error::Error>>(())
1603    /// ```
1604    ///
1605    /// Notice that when UTF-8 mode is disabled, then the above reports a
1606    /// match because the restriction against zero-width matches that split a
1607    /// codepoint has been lifted:
1608    ///
1609    /// ```
1610    /// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Input};
1611    ///
1612    /// let re = DFA::builder()
1613    ///     .thompson(NFA::config().utf8(false))
1614    ///     .build("a*")?;
1615    /// let mut cache = re.create_cache();
1616    ///
1617    /// assert!(re.is_match(&mut cache, Input::new("☃").span(1..2)));
1618    /// # Ok::<(), Box<dyn std::error::Error>>(())
1619    /// ```
1620    #[inline]
1621    pub fn is_match<'h, I: Into<Input<'h>>>(
1622        &self,
1623        cache: &mut Cache,
1624        input: I,
1625    ) -> bool {
1626        let mut input = input.into().earliest(true);
1627        if matches!(input.get_anchored(), Anchored::No) {
1628            input.set_anchored(Anchored::Yes);
1629        }
1630        self.try_search_slots(cache, &input, &mut []).unwrap().is_some()
1631    }
1632
1633    /// Executes an anchored leftmost forward search, and returns a `Match` if
1634    /// and only if this one-pass DFA matches the given haystack.
1635    ///
1636    /// This routine only includes the overall match span. To get access to the
1637    /// individual spans of each capturing group, use [`DFA::captures`].
1638    ///
1639    /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
1640    /// given configuration was [`Anchored::No`] (which is the default).
1641    ///
1642    /// # Panics
1643    ///
1644    /// This routine panics if the search could not complete. This can occur
1645    /// in the following circumstances:
1646    ///
1647    /// * When the provided `Input` configuration is not supported. For
1648    /// example, by providing an unsupported anchor mode. Concretely,
1649    /// this occurs when using [`Anchored::Pattern`] without enabling
1650    /// [`Config::starts_for_each_pattern`].
1651    ///
1652    /// When a search panics, callers cannot know whether a match exists or
1653    /// not.
1654    ///
1655    /// Use [`DFA::try_search`] if you want to handle these panics as error
1656    /// values instead.
1657    ///
1658    /// # Example
1659    ///
1660    /// Leftmost first match semantics corresponds to the match with the
1661    /// smallest starting offset, but where the end offset is determined by
1662    /// preferring earlier branches in the original regular expression. For
1663    /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
1664    /// will match `Samwise` in `Samwise`.
1665    ///
1666    /// Generally speaking, the "leftmost first" match is how most backtracking
1667    /// regular expressions tend to work. This is in contrast to POSIX-style
1668    /// regular expressions that yield "leftmost longest" matches. Namely,
1669    /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
1670    /// leftmost longest semantics. (This crate does not currently support
1671    /// leftmost longest semantics.)
1672    ///
1673    /// ```
1674    /// use regex_automata::{dfa::onepass::DFA, Match};
1675    ///
1676    /// let re = DFA::new("foo[0-9]+")?;
1677    /// let mut cache = re.create_cache();
1678    /// let expected = Match::must(0, 0..8);
1679    /// assert_eq!(Some(expected), re.find(&mut cache, "foo12345"));
1680    ///
1681    /// // Even though a match is found after reading the first byte (`a`),
1682    /// // the leftmost first match semantics demand that we find the earliest
1683    /// // match that prefers earlier parts of the pattern over later parts.
1684    /// let re = DFA::new("abc|a")?;
1685    /// let mut cache = re.create_cache();
1686    /// let expected = Match::must(0, 0..3);
1687    /// assert_eq!(Some(expected), re.find(&mut cache, "abc"));
1688    ///
1689    /// # Ok::<(), Box<dyn std::error::Error>>(())
1690    /// ```
1691    #[inline]
1692    pub fn find<'h, I: Into<Input<'h>>>(
1693        &self,
1694        cache: &mut Cache,
1695        input: I,
1696    ) -> Option<Match> {
1697        let mut input = input.into();
1698        if matches!(input.get_anchored(), Anchored::No) {
1699            input.set_anchored(Anchored::Yes);
1700        }
1701        if self.get_nfa().pattern_len() == 1 {
1702            let mut slots = [None, None];
1703            let pid =
1704                self.try_search_slots(cache, &input, &mut slots).unwrap()?;
1705            let start = slots[0].unwrap().get();
1706            let end = slots[1].unwrap().get();
1707            return Some(Match::new(pid, Span { start, end }));
1708        }
1709        let ginfo = self.get_nfa().group_info();
1710        let slots_len = ginfo.implicit_slot_len();
1711        let mut slots = vec![None; slots_len];
1712        let pid = self.try_search_slots(cache, &input, &mut slots).unwrap()?;
1713        let start = slots[pid.as_usize() * 2].unwrap().get();
1714        let end = slots[pid.as_usize() * 2 + 1].unwrap().get();
1715        Some(Match::new(pid, Span { start, end }))
1716    }
1717
1718    /// Executes an anchored leftmost forward search and writes the spans
1719    /// of capturing groups that participated in a match into the provided
1720    /// [`Captures`] value. If no match was found, then [`Captures::is_match`]
1721    /// is guaranteed to return `false`.
1722    ///
1723    /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
1724    /// given configuration was [`Anchored::No`] (which is the default).
1725    ///
1726    /// # Panics
1727    ///
1728    /// This routine panics if the search could not complete. This can occur
1729    /// in the following circumstances:
1730    ///
1731    /// * When the provided `Input` configuration is not supported. For
1732    /// example, by providing an unsupported anchor mode. Concretely,
1733    /// this occurs when using [`Anchored::Pattern`] without enabling
1734    /// [`Config::starts_for_each_pattern`].
1735    ///
1736    /// When a search panics, callers cannot know whether a match exists or
1737    /// not.
1738    ///
1739    /// Use [`DFA::try_search`] if you want to handle these panics as error
1740    /// values instead.
1741    ///
1742    /// # Example
1743    ///
1744    /// This shows a simple example of a one-pass regex that extracts
1745    /// capturing group spans.
1746    ///
1747    /// ```
1748    /// use regex_automata::{dfa::onepass::DFA, Match, Span};
1749    ///
1750    /// let re = DFA::new(
1751    ///     // Notice that we use ASCII here. The corresponding Unicode regex
1752    ///     // is sadly not one-pass.
1753    ///     "(?P<first>[[:alpha:]]+)[[:space:]]+(?P<last>[[:alpha:]]+)",
1754    /// )?;
1755    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1756    ///
1757    /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
1758    /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match());
1759    /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1));
1760    /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last"));
1761    ///
1762    /// # Ok::<(), Box<dyn std::error::Error>>(())
1763    /// ```
1764    #[inline]
1765    pub fn captures<'h, I: Into<Input<'h>>>(
1766        &self,
1767        cache: &mut Cache,
1768        input: I,
1769        caps: &mut Captures,
1770    ) {
1771        let mut input = input.into();
1772        if matches!(input.get_anchored(), Anchored::No) {
1773            input.set_anchored(Anchored::Yes);
1774        }
1775        self.try_search(cache, &input, caps).unwrap();
1776    }
1777
1778    /// Executes an anchored leftmost forward search and writes the spans
1779    /// of capturing groups that participated in a match into the provided
1780    /// [`Captures`] value. If no match was found, then [`Captures::is_match`]
1781    /// is guaranteed to return `false`.
1782    ///
1783    /// The differences with [`DFA::captures`] are:
1784    ///
1785    /// 1. This returns an error instead of panicking if the search fails.
1786    /// 2. Accepts an `&Input` instead of a `Into<Input>`. This permits reusing
1787    /// the same input for multiple searches, which _may_ be important for
1788    /// latency.
1789    /// 3. This does not automatically change the [`Anchored`] mode from `No`
1790    /// to `Yes`. Instead, if [`Input::anchored`] is `Anchored::No`, then an
1791    /// error is returned.
1792    ///
1793    /// # Errors
1794    ///
1795    /// This routine errors if the search could not complete. This can occur
1796    /// in the following circumstances:
1797    ///
1798    /// * When the provided `Input` configuration is not supported. For
1799    /// example, by providing an unsupported anchor mode. Concretely,
1800    /// this occurs when using [`Anchored::Pattern`] without enabling
1801    /// [`Config::starts_for_each_pattern`].
1802    ///
1803    /// When a search returns an error, callers cannot know whether a match
1804    /// exists or not.
1805    ///
1806    /// # Example: specific pattern search
1807    ///
1808    /// This example shows how to build a multi-regex that permits searching
1809    /// for specific patterns. Note that this is somewhat less useful than
1810    /// in other regex engines, since a one-pass DFA by definition has no
1811    /// ambiguity about which pattern can match at a position. That is, if it
1812    /// were possible for two different patterns to match at the same starting
1813    /// position, then the multi-regex would not be one-pass and construction
1814    /// would have failed.
1815    ///
1816    /// Nevertheless, this can still be useful if you only care about matches
1817    /// for a specific pattern, and want the DFA to report "no match" even if
1818    /// some other pattern would have matched.
1819    ///
1820    /// Note that in order to make use of this functionality,
1821    /// [`Config::starts_for_each_pattern`] must be enabled. It is disabled
1822    /// by default since it may result in higher memory usage.
1823    ///
1824    /// ```
1825    /// use regex_automata::{
1826    ///     dfa::onepass::DFA, Anchored, Input, Match, PatternID,
1827    /// };
1828    ///
1829    /// let re = DFA::builder()
1830    ///     .configure(DFA::config().starts_for_each_pattern(true))
1831    ///     .build_many(&["[a-z]+", "[0-9]+"])?;
1832    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1833    /// let haystack = "123abc";
1834    /// let input = Input::new(haystack).anchored(Anchored::Yes);
1835    ///
1836    /// // A normal multi-pattern search will show pattern 1 matches.
1837    /// re.try_search(&mut cache, &input, &mut caps)?;
1838    /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
1839    ///
1840    /// // If we only want to report pattern 0 matches, then we'll get no
1841    /// // match here.
1842    /// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
1843    /// re.try_search(&mut cache, &input, &mut caps)?;
1844    /// assert_eq!(None, caps.get_match());
1845    ///
1846    /// # Ok::<(), Box<dyn std::error::Error>>(())
1847    /// ```
1848    ///
1849    /// # Example: specifying the bounds of a search
1850    ///
1851    /// This example shows how providing the bounds of a search can produce
1852    /// different results than simply sub-slicing the haystack.
1853    ///
1854    /// ```
1855    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1856    /// use regex_automata::{dfa::onepass::DFA, Anchored, Input, Match};
1857    ///
1858    /// // one-pass DFAs fully support Unicode word boundaries!
1859    /// // A sad joke is that a Unicode aware regex like \w+\s is not one-pass.
1860    /// // :-(
1861    /// let re = DFA::new(r"\b[0-9]{3}\b")?;
1862    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1863    /// let haystack = "foo123bar";
1864    ///
1865    /// // Since we sub-slice the haystack, the search doesn't know about
1866    /// // the larger context and assumes that `123` is surrounded by word
1867    /// // boundaries. And of course, the match position is reported relative
1868    /// // to the sub-slice as well, which means we get `0..3` instead of
1869    /// // `3..6`.
1870    /// let expected = Some(Match::must(0, 0..3));
1871    /// let input = Input::new(&haystack[3..6]).anchored(Anchored::Yes);
1872    /// re.try_search(&mut cache, &input, &mut caps)?;
1873    /// assert_eq!(expected, caps.get_match());
1874    ///
1875    /// // But if we provide the bounds of the search within the context of the
1876    /// // entire haystack, then the search can take the surrounding context
1877    /// // into account. (And if we did find a match, it would be reported
1878    /// // as a valid offset into `haystack` instead of its sub-slice.)
1879    /// let expected = None;
1880    /// let input = Input::new(haystack).range(3..6).anchored(Anchored::Yes);
1881    /// re.try_search(&mut cache, &input, &mut caps)?;
1882    /// assert_eq!(expected, caps.get_match());
1883    ///
1884    /// # Ok::<(), Box<dyn std::error::Error>>(())
1885    /// ```
1886    #[inline]
1887    pub fn try_search(
1888        &self,
1889        cache: &mut Cache,
1890        input: &Input<'_>,
1891        caps: &mut Captures,
1892    ) -> Result<(), MatchError> {
1893        let pid = self.try_search_slots(cache, input, caps.slots_mut())?;
1894        caps.set_pattern(pid);
1895        Ok(())
1896    }
1897
1898    /// Executes an anchored leftmost forward search and writes the spans
1899    /// of capturing groups that participated in a match into the provided
1900    /// `slots`, and returns the matching pattern ID. The contents of the
1901    /// slots for patterns other than the matching pattern are unspecified. If
1902    /// no match was found, then `None` is returned and the contents of all
1903    /// `slots` is unspecified.
1904    ///
1905    /// This is like [`DFA::try_search`], but it accepts a raw slots slice
1906    /// instead of a `Captures` value. This is useful in contexts where you
1907    /// don't want or need to allocate a `Captures`.
1908    ///
1909    /// It is legal to pass _any_ number of slots to this routine. If the regex
1910    /// engine would otherwise write a slot offset that doesn't fit in the
1911    /// provided slice, then it is simply skipped. In general though, there are
1912    /// usually three slice lengths you might want to use:
1913    ///
1914    /// * An empty slice, if you only care about which pattern matched.
1915    /// * A slice with
1916    /// [`pattern_len() * 2`](crate::dfa::onepass::DFA::pattern_len)
1917    /// slots, if you only care about the overall match spans for each matching
1918    /// pattern.
1919    /// * A slice with
1920    /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1921    /// permits recording match offsets for every capturing group in every
1922    /// pattern.
1923    ///
1924    /// # Errors
1925    ///
1926    /// This routine errors if the search could not complete. This can occur
1927    /// in the following circumstances:
1928    ///
1929    /// * When the provided `Input` configuration is not supported. For
1930    /// example, by providing an unsupported anchor mode. Concretely,
1931    /// this occurs when using [`Anchored::Pattern`] without enabling
1932    /// [`Config::starts_for_each_pattern`].
1933    ///
1934    /// When a search returns an error, callers cannot know whether a match
1935    /// exists or not.
1936    ///
1937    /// # Example
1938    ///
1939    /// This example shows how to find the overall match offsets in a
1940    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1941    /// can put our slots right on the stack.
1942    ///
1943    /// ```
1944    /// use regex_automata::{dfa::onepass::DFA, Anchored, Input, PatternID};
1945    ///
1946    /// let re = DFA::new_many(&[
1947    ///     r"[a-zA-Z]+",
1948    ///     r"[0-9]+",
1949    /// ])?;
1950    /// let mut cache = re.create_cache();
1951    /// let input = Input::new("123").anchored(Anchored::Yes);
1952    ///
1953    /// // We only care about the overall match offsets here, so we just
1954    /// // allocate two slots for each pattern. Each slot records the start
1955    /// // and end of the match.
1956    /// let mut slots = [None; 4];
1957    /// let pid = re.try_search_slots(&mut cache, &input, &mut slots)?;
1958    /// assert_eq!(Some(PatternID::must(1)), pid);
1959    ///
1960    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1961    /// // See 'GroupInfo' for more details on the mapping between groups and
1962    /// // slot indices.
1963    /// let slot_start = pid.unwrap().as_usize() * 2;
1964    /// let slot_end = slot_start + 1;
1965    /// assert_eq!(Some(0), slots[slot_start].map(|s| s.get()));
1966    /// assert_eq!(Some(3), slots[slot_end].map(|s| s.get()));
1967    ///
1968    /// # Ok::<(), Box<dyn std::error::Error>>(())
1969    /// ```
1970    #[inline]
1971    pub fn try_search_slots(
1972        &self,
1973        cache: &mut Cache,
1974        input: &Input<'_>,
1975        slots: &mut [Option<NonMaxUsize>],
1976    ) -> Result<Option<PatternID>, MatchError> {
1977        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
1978        if !utf8empty {
1979            return self.try_search_slots_imp(cache, input, slots);
1980        }
1981        // See PikeVM::try_search_slots for why we do this.
1982        let min = self.get_nfa().group_info().implicit_slot_len();
1983        if slots.len() >= min {
1984            return self.try_search_slots_imp(cache, input, slots);
1985        }
1986        if self.get_nfa().pattern_len() == 1 {
1987            let mut enough = [None, None];
1988            let got = self.try_search_slots_imp(cache, input, &mut enough)?;
1989            // This is OK because we know `enough_slots` is strictly bigger
1990            // than `slots`, otherwise this special case isn't reached.
1991            slots.copy_from_slice(&enough[..slots.len()]);
1992            return Ok(got);
1993        }
1994        let mut enough = vec![None; min];
1995        let got = self.try_search_slots_imp(cache, input, &mut enough)?;
1996        // This is OK because we know `enough_slots` is strictly bigger than
1997        // `slots`, otherwise this special case isn't reached.
1998        slots.copy_from_slice(&enough[..slots.len()]);
1999        Ok(got)
2000    }
2001
2002    #[inline(never)]
2003    fn try_search_slots_imp(
2004        &self,
2005        cache: &mut Cache,
2006        input: &Input<'_>,
2007        slots: &mut [Option<NonMaxUsize>],
2008    ) -> Result<Option<PatternID>, MatchError> {
2009        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
2010        match self.search_imp(cache, input, slots)? {
2011            None => return Ok(None),
2012            Some(pid) if !utf8empty => return Ok(Some(pid)),
2013            Some(pid) => {
2014                // These slot indices are always correct because we know our
2015                // 'pid' is valid and thus we know that the slot indices for it
2016                // are valid.
2017                let slot_start = pid.as_usize().wrapping_mul(2);
2018                let slot_end = slot_start.wrapping_add(1);
2019                // OK because we know we have a match and we know our caller
2020                // provided slots are big enough (which we make true above if
2021                // the caller didn't). Namely, we're only here when 'utf8empty'
2022                // is true, and when that's true, we require slots for every
2023                // pattern.
2024                let start = slots[slot_start].unwrap().get();
2025                let end = slots[slot_end].unwrap().get();
2026                // If our match splits a codepoint, then we cannot report is
2027                // as a match. And since one-pass DFAs only support anchored
2028                // searches, we don't try to skip ahead to find the next match.
2029                // We can just quit with nothing.
2030                if start == end && !input.is_char_boundary(start) {
2031                    return Ok(None);
2032                }
2033                Ok(Some(pid))
2034            }
2035        }
2036    }
2037}
2038
2039impl DFA {
2040    fn search_imp(
2041        &self,
2042        cache: &mut Cache,
2043        input: &Input<'_>,
2044        slots: &mut [Option<NonMaxUsize>],
2045    ) -> Result<Option<PatternID>, MatchError> {
2046        // PERF: Some ideas. I ran out of steam after my initial impl to try
2047        // many of these.
2048        //
2049        // 1) Try doing more state shuffling. Right now, all we do is push
2050        // match states to the end of the transition table so that we can do
2051        // 'if sid >= self.min_match_id' to know whether we're in a match
2052        // state or not. But what about doing something like dense DFAs and
2053        // pushing dead, match and states with captures/looks all toward the
2054        // beginning of the transition table. Then we could do 'if sid <=
2055        // self.max_special_id', in which case, we need to do some special
2056        // handling of some sort. Otherwise, we get the happy path, just
2057        // like in a DFA search. The main argument against this is that the
2058        // one-pass DFA is likely to be used most often with capturing groups
2059        // and if capturing groups are common, then this might wind up being a
2060        // pessimization.
2061        //
2062        // 2) Consider moving 'PatternEpsilons' out of the transition table.
2063        // It is only needed for match states and usually a small minority of
2064        // states are match states. Therefore, we're using an extra 'u64' for
2065        // most states.
2066        //
2067        // 3) I played around with the match state handling and it seems like
2068        // there is probably a lot left on the table for improvement. The
2069        // key tension is that the 'find_match' routine is a giant mess, but
2070        // splitting it out into a non-inlineable function is a non-starter
2071        // because the match state might consume input, so 'find_match' COULD
2072        // be called quite a lot, and a function call at that point would trash
2073        // perf. In theory, we could detect whether a match state consumes
2074        // input and then specialize our search routine based on that. In that
2075        // case, maybe an extra function call is OK, but even then, it might be
2076        // too much of a latency hit. Another idea is to just try and figure
2077        // out how to reduce the code size of 'find_match'. RE2 has a trick
2078        // here where the match handling isn't done if we know the next byte of
2079        // input yields a match too. Maybe we adopt that?
2080        //
2081        // This just might be a tricky DFA to optimize.
2082
2083        if input.is_done() {
2084            return Ok(None);
2085        }
2086        // We unfortunately have a bit of book-keeping to do to set things
2087        // up. We do have to setup our cache and clear all of our slots. In
2088        // particular, clearing the slots is necessary for the case where we
2089        // report a match, but one of the capturing groups didn't participate
2090        // in the match but had a span set from a previous search. That would
2091        // be bad. In theory, we could avoid all this slot clearing if we knew
2092        // that every slot was always activated for every match. Then we would
2093        // know they would always be overwritten when a match is found.
2094        let explicit_slots_len = core::cmp::min(
2095            Slots::LIMIT,
2096            slots.len().saturating_sub(self.explicit_slot_start),
2097        );
2098        cache.setup_search(explicit_slots_len);
2099        for slot in cache.explicit_slots() {
2100            *slot = None;
2101        }
2102        for slot in slots.iter_mut() {
2103            *slot = None;
2104        }
2105        // We set the starting slots for every pattern up front. This does
2106        // increase our latency somewhat, but it avoids having to do it every
2107        // time we see a match state (which could be many times in a single
2108        // search if the match state consumes input).
2109        for pid in self.nfa.patterns() {
2110            let i = pid.as_usize() * 2;
2111            if i >= slots.len() {
2112                break;
2113            }
2114            slots[i] = NonMaxUsize::new(input.start());
2115        }
2116        let mut pid = None;
2117        let mut next_sid = match input.get_anchored() {
2118            Anchored::Yes => self.start(),
2119            Anchored::Pattern(pid) => self.start_pattern(pid)?,
2120            Anchored::No => {
2121                // If the regex is itself always anchored, then we're fine,
2122                // even if the search is configured to be unanchored.
2123                if !self.nfa.is_always_start_anchored() {
2124                    return Err(MatchError::unsupported_anchored(
2125                        Anchored::No,
2126                    ));
2127                }
2128                self.start()
2129            }
2130        };
2131        let leftmost_first =
2132            matches!(self.config.get_match_kind(), MatchKind::LeftmostFirst);
2133        for at in input.start()..input.end() {
2134            let sid = next_sid;
2135            let trans = self.transition(sid, input.haystack()[at]);
2136            next_sid = trans.state_id();
2137            let epsilons = trans.epsilons();
2138            if sid >= self.min_match_id {
2139                if self.find_match(cache, input, at, sid, slots, &mut pid) {
2140                    if input.get_earliest()
2141                        || (leftmost_first && trans.match_wins())
2142                    {
2143                        return Ok(pid);
2144                    }
2145                }
2146            }
2147            if sid == DEAD
2148                || (!epsilons.looks().is_empty()
2149                    && !self.nfa.look_matcher().matches_set_inline(
2150                        epsilons.looks(),
2151                        input.haystack(),
2152                        at,
2153                    ))
2154            {
2155                return Ok(pid);
2156            }
2157            epsilons.slots().apply(at, cache.explicit_slots());
2158        }
2159        if next_sid >= self.min_match_id {
2160            self.find_match(
2161                cache,
2162                input,
2163                input.end(),
2164                next_sid,
2165                slots,
2166                &mut pid,
2167            );
2168        }
2169        Ok(pid)
2170    }
2171
2172    /// Assumes 'sid' is a match state and looks for whether a match can
2173    /// be reported. If so, appropriate offsets are written to 'slots' and
2174    /// 'matched_pid' is set to the matching pattern ID.
2175    ///
2176    /// Even when 'sid' is a match state, it's possible that a match won't
2177    /// be reported. For example, when the conditional epsilon transitions
2178    /// leading to the match state aren't satisfied at the given position in
2179    /// the haystack.
2180    #[cfg_attr(feature = "perf-inline", inline(always))]
2181    fn find_match(
2182        &self,
2183        cache: &mut Cache,
2184        input: &Input<'_>,
2185        at: usize,
2186        sid: StateID,
2187        slots: &mut [Option<NonMaxUsize>],
2188        matched_pid: &mut Option<PatternID>,
2189    ) -> bool {
2190        debug_assert!(sid >= self.min_match_id);
2191        let pateps = self.pattern_epsilons(sid);
2192        let epsilons = pateps.epsilons();
2193        if !epsilons.looks().is_empty()
2194            && !self.nfa.look_matcher().matches_set_inline(
2195                epsilons.looks(),
2196                input.haystack(),
2197                at,
2198            )
2199        {
2200            return false;
2201        }
2202        let pid = pateps.pattern_id_unchecked();
2203        // This calculation is always correct because we know our 'pid' is
2204        // valid and thus we know that the slot indices for it are valid.
2205        let slot_end = pid.as_usize().wrapping_mul(2).wrapping_add(1);
2206        // Set the implicit 'end' slot for the matching pattern. (The 'start'
2207        // slot was set at the beginning of the search.)
2208        if slot_end < slots.len() {
2209            slots[slot_end] = NonMaxUsize::new(at);
2210        }
2211        // If the caller provided enough room, copy the previously recorded
2212        // explicit slots from our scratch space to the caller provided slots.
2213        // We *also* need to set any explicit slots that are active as part of
2214        // the path to the match state.
2215        if self.explicit_slot_start < slots.len() {
2216            // NOTE: The 'cache.explicit_slots()' slice is setup at the
2217            // beginning of every search such that it is guaranteed to return a
2218            // slice of length equivalent to 'slots[explicit_slot_start..]'.
2219            slots[self.explicit_slot_start..]
2220                .copy_from_slice(cache.explicit_slots());
2221            epsilons.slots().apply(at, &mut slots[self.explicit_slot_start..]);
2222        }
2223        *matched_pid = Some(pid);
2224        true
2225    }
2226}
2227
2228impl DFA {
2229    /// Returns the anchored start state for matching any pattern in this DFA.
2230    fn start(&self) -> StateID {
2231        self.starts[0]
2232    }
2233
2234    /// Returns the anchored start state for matching the given pattern. If
2235    /// 'starts_for_each_pattern'
2236    /// was not enabled, then this returns an error. If the given pattern is
2237    /// not in this DFA, then `Ok(None)` is returned.
2238    fn start_pattern(&self, pid: PatternID) -> Result<StateID, MatchError> {
2239        if !self.config.get_starts_for_each_pattern() {
2240            return Err(MatchError::unsupported_anchored(Anchored::Pattern(
2241                pid,
2242            )));
2243        }
2244        // 'starts' always has non-zero length. The first entry is always the
2245        // anchored starting state for all patterns, and the following entries
2246        // are optional and correspond to the anchored starting states for
2247        // patterns at pid+1. Thus, starts.len()-1 corresponds to the total
2248        // number of patterns that one can explicitly search for. (And it may
2249        // be zero.)
2250        Ok(self.starts.get(pid.one_more()).copied().unwrap_or(DEAD))
2251    }
2252
2253    /// Returns the transition from the given state ID and byte of input. The
2254    /// transition includes the next state ID, the slots that should be saved
2255    /// and any conditional epsilon transitions that must be satisfied in order
2256    /// to take this transition.
2257    fn transition(&self, sid: StateID, byte: u8) -> Transition {
2258        let offset = sid.as_usize() << self.stride2();
2259        let class = self.classes.get(byte).as_usize();
2260        self.table[offset + class]
2261    }
2262
2263    /// Set the transition from the given state ID and byte of input to the
2264    /// transition given.
2265    fn set_transition(&mut self, sid: StateID, byte: u8, to: Transition) {
2266        let offset = sid.as_usize() << self.stride2();
2267        let class = self.classes.get(byte).as_usize();
2268        self.table[offset + class] = to;
2269    }
2270
2271    /// Return an iterator of "sparse" transitions for the given state ID.
2272    /// "sparse" in this context means that consecutive transitions that are
2273    /// equivalent are returned as one group, and transitions to the DEAD state
2274    /// are ignored.
2275    ///
2276    /// This winds up being useful for debug printing, since it's much terser
2277    /// to display runs of equivalent transitions than the transition for every
2278    /// possible byte value. Indeed, in practice, it's very common for runs
2279    /// of equivalent transitions to appear.
2280    fn sparse_transitions(&self, sid: StateID) -> SparseTransitionIter<'_> {
2281        let start = sid.as_usize() << self.stride2();
2282        let end = start + self.alphabet_len();
2283        SparseTransitionIter {
2284            it: self.table[start..end].iter().enumerate(),
2285            cur: None,
2286        }
2287    }
2288
2289    /// Return the pattern epsilons for the given state ID.
2290    ///
2291    /// If the given state ID does not correspond to a match state ID, then the
2292    /// pattern epsilons returned is empty.
2293    fn pattern_epsilons(&self, sid: StateID) -> PatternEpsilons {
2294        let offset = sid.as_usize() << self.stride2();
2295        PatternEpsilons(self.table[offset + self.pateps_offset].0)
2296    }
2297
2298    /// Set the pattern epsilons for the given state ID.
2299    fn set_pattern_epsilons(&mut self, sid: StateID, pateps: PatternEpsilons) {
2300        let offset = sid.as_usize() << self.stride2();
2301        self.table[offset + self.pateps_offset] = Transition(pateps.0);
2302    }
2303
2304    /// Returns the state ID prior to the one given. This returns None if the
2305    /// given ID is the first DFA state.
2306    fn prev_state_id(&self, id: StateID) -> Option<StateID> {
2307        if id == DEAD {
2308            None
2309        } else {
2310            // CORRECTNESS: Since 'id' is not the first state, subtracting 1
2311            // is always valid.
2312            Some(StateID::new_unchecked(id.as_usize().checked_sub(1).unwrap()))
2313        }
2314    }
2315
2316    /// Returns the state ID of the last state in this DFA's transition table.
2317    /// "last" in this context means the last state to appear in memory, i.e.,
2318    /// the one with the greatest ID.
2319    fn last_state_id(&self) -> StateID {
2320        // CORRECTNESS: A DFA table is always non-empty since it always at
2321        // least contains a DEAD state. Since every state has the same stride,
2322        // we can just compute what the "next" state ID would have been and
2323        // then subtract 1 from it.
2324        StateID::new_unchecked(
2325            (self.table.len() >> self.stride2()).checked_sub(1).unwrap(),
2326        )
2327    }
2328
2329    /// Move the transitions from 'id1' to 'id2' and vice versa.
2330    ///
2331    /// WARNING: This does not update the rest of the transition table to have
2332    /// transitions to 'id1' changed to 'id2' and vice versa. This merely moves
2333    /// the states in memory.
2334    pub(super) fn swap_states(&mut self, id1: StateID, id2: StateID) {
2335        let o1 = id1.as_usize() << self.stride2();
2336        let o2 = id2.as_usize() << self.stride2();
2337        for b in 0..self.stride() {
2338            self.table.swap(o1 + b, o2 + b);
2339        }
2340    }
2341
2342    /// Map all state IDs in this DFA (transition table + start states)
2343    /// according to the closure given.
2344    pub(super) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
2345        for i in 0..self.state_len() {
2346            let offset = i << self.stride2();
2347            for b in 0..self.alphabet_len() {
2348                let next = self.table[offset + b].state_id();
2349                self.table[offset + b].set_state_id(map(next));
2350            }
2351        }
2352        for i in 0..self.starts.len() {
2353            self.starts[i] = map(self.starts[i]);
2354        }
2355    }
2356}
2357
2358impl core::fmt::Debug for DFA {
2359    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2360        fn debug_state_transitions(
2361            f: &mut core::fmt::Formatter,
2362            dfa: &DFA,
2363            sid: StateID,
2364        ) -> core::fmt::Result {
2365            for (i, (start, end, trans)) in
2366                dfa.sparse_transitions(sid).enumerate()
2367            {
2368                let next = trans.state_id();
2369                if i > 0 {
2370                    write!(f, ", ")?;
2371                }
2372                if start == end {
2373                    write!(
2374                        f,
2375                        "{:?} => {:?}",
2376                        DebugByte(start),
2377                        next.as_usize(),
2378                    )?;
2379                } else {
2380                    write!(
2381                        f,
2382                        "{:?}-{:?} => {:?}",
2383                        DebugByte(start),
2384                        DebugByte(end),
2385                        next.as_usize(),
2386                    )?;
2387                }
2388                if trans.match_wins() {
2389                    write!(f, " (MW)")?;
2390                }
2391                if !trans.epsilons().is_empty() {
2392                    write!(f, " ({:?})", trans.epsilons())?;
2393                }
2394            }
2395            Ok(())
2396        }
2397
2398        writeln!(f, "onepass::DFA(")?;
2399        for index in 0..self.state_len() {
2400            let sid = StateID::must(index);
2401            let pateps = self.pattern_epsilons(sid);
2402            if sid == DEAD {
2403                write!(f, "D ")?;
2404            } else if pateps.pattern_id().is_some() {
2405                write!(f, "* ")?;
2406            } else {
2407                write!(f, "  ")?;
2408            }
2409            write!(f, "{:06?}", sid.as_usize())?;
2410            if !pateps.is_empty() {
2411                write!(f, " ({:?})", pateps)?;
2412            }
2413            write!(f, ": ")?;
2414            debug_state_transitions(f, self, sid)?;
2415            write!(f, "\n")?;
2416        }
2417        writeln!(f, "")?;
2418        for (i, &sid) in self.starts.iter().enumerate() {
2419            if i == 0 {
2420                writeln!(f, "START(ALL): {:?}", sid.as_usize())?;
2421            } else {
2422                writeln!(
2423                    f,
2424                    "START(pattern: {:?}): {:?}",
2425                    i - 1,
2426                    sid.as_usize(),
2427                )?;
2428            }
2429        }
2430        writeln!(f, "state length: {:?}", self.state_len())?;
2431        writeln!(f, "pattern length: {:?}", self.pattern_len())?;
2432        writeln!(f, ")")?;
2433        Ok(())
2434    }
2435}
2436
2437/// An iterator over groups of consecutive equivalent transitions in a single
2438/// state.
2439#[derive(Debug)]
2440struct SparseTransitionIter<'a> {
2441    it: core::iter::Enumerate<core::slice::Iter<'a, Transition>>,
2442    cur: Option<(u8, u8, Transition)>,
2443}
2444
2445impl<'a> Iterator for SparseTransitionIter<'a> {
2446    type Item = (u8, u8, Transition);
2447
2448    fn next(&mut self) -> Option<(u8, u8, Transition)> {
2449        while let Some((b, &trans)) = self.it.next() {
2450            // Fine because we'll never have more than u8::MAX transitions in
2451            // one state.
2452            let b = b.as_u8();
2453            let (prev_start, prev_end, prev_trans) = match self.cur {
2454                Some(t) => t,
2455                None => {
2456                    self.cur = Some((b, b, trans));
2457                    continue;
2458                }
2459            };
2460            if prev_trans == trans {
2461                self.cur = Some((prev_start, b, prev_trans));
2462            } else {
2463                self.cur = Some((b, b, trans));
2464                if prev_trans.state_id() != DEAD {
2465                    return Some((prev_start, prev_end, prev_trans));
2466                }
2467            }
2468        }
2469        if let Some((start, end, trans)) = self.cur.take() {
2470            if trans.state_id() != DEAD {
2471                return Some((start, end, trans));
2472            }
2473        }
2474        None
2475    }
2476}
2477
2478/// A cache represents mutable state that a one-pass [`DFA`] requires during a
2479/// search.
2480///
2481/// For a given one-pass DFA, its corresponding cache may be created either via
2482/// [`DFA::create_cache`], or via [`Cache::new`]. They are equivalent in every
2483/// way, except the former does not require explicitly importing `Cache`.
2484///
2485/// A particular `Cache` is coupled with the one-pass DFA from which it was
2486/// created. It may only be used with that one-pass DFA. A cache and its
2487/// allocations may be re-purposed via [`Cache::reset`], in which case, it can
2488/// only be used with the new one-pass DFA (and not the old one).
2489#[derive(Clone, Debug)]
2490pub struct Cache {
2491    /// Scratch space used to store slots during a search. Basically, we use
2492    /// the caller provided slots to store slots known when a match occurs.
2493    /// But after a match occurs, we might continue a search but ultimately
2494    /// fail to extend the match. When continuing the search, we need some
2495    /// place to store candidate capture offsets without overwriting the slot
2496    /// offsets recorded for the most recently seen match.
2497    explicit_slots: Vec<Option<NonMaxUsize>>,
2498    /// The number of slots in the caller-provided 'Captures' value for the
2499    /// current search. This is always at most 'explicit_slots.len()', but
2500    /// might be less than it, if the caller provided fewer slots to fill.
2501    explicit_slot_len: usize,
2502}
2503
2504impl Cache {
2505    /// Create a new [`onepass::DFA`](DFA) cache.
2506    ///
2507    /// A potentially more convenient routine to create a cache is
2508    /// [`DFA::create_cache`], as it does not require also importing the
2509    /// `Cache` type.
2510    ///
2511    /// If you want to reuse the returned `Cache` with some other one-pass DFA,
2512    /// then you must call [`Cache::reset`] with the desired one-pass DFA.
2513    pub fn new(re: &DFA) -> Cache {
2514        let mut cache = Cache { explicit_slots: vec![], explicit_slot_len: 0 };
2515        cache.reset(re);
2516        cache
2517    }
2518
2519    /// Reset this cache such that it can be used for searching with a
2520    /// different [`onepass::DFA`](DFA).
2521    ///
2522    /// A cache reset permits reusing memory already allocated in this cache
2523    /// with a different one-pass DFA.
2524    ///
2525    /// # Example
2526    ///
2527    /// This shows how to re-purpose a cache for use with a different one-pass
2528    /// DFA.
2529    ///
2530    /// ```
2531    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2532    /// use regex_automata::{dfa::onepass::DFA, Match};
2533    ///
2534    /// let re1 = DFA::new(r"\w")?;
2535    /// let re2 = DFA::new(r"\W")?;
2536    /// let mut caps1 = re1.create_captures();
2537    /// let mut caps2 = re2.create_captures();
2538    ///
2539    /// let mut cache = re1.create_cache();
2540    /// assert_eq!(
2541    ///     Some(Match::must(0, 0..2)),
2542    ///     { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
2543    /// );
2544    ///
2545    /// // Using 'cache' with re2 is not allowed. It may result in panics or
2546    /// // incorrect results. In order to re-purpose the cache, we must reset
2547    /// // it with the one-pass DFA we'd like to use it with.
2548    /// //
2549    /// // Similarly, after this reset, using the cache with 're1' is also not
2550    /// // allowed.
2551    /// re2.reset_cache(&mut cache);
2552    /// assert_eq!(
2553    ///     Some(Match::must(0, 0..3)),
2554    ///     { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
2555    /// );
2556    ///
2557    /// # Ok::<(), Box<dyn std::error::Error>>(())
2558    /// ```
2559    pub fn reset(&mut self, re: &DFA) {
2560        let explicit_slot_len = re.get_nfa().group_info().explicit_slot_len();
2561        self.explicit_slots.resize(explicit_slot_len, None);
2562        self.explicit_slot_len = explicit_slot_len;
2563    }
2564
2565    /// Returns the heap memory usage, in bytes, of this cache.
2566    ///
2567    /// This does **not** include the stack size used up by this cache. To
2568    /// compute that, use `std::mem::size_of::<Cache>()`.
2569    pub fn memory_usage(&self) -> usize {
2570        self.explicit_slots.len() * core::mem::size_of::<Option<NonMaxUsize>>()
2571    }
2572
2573    fn explicit_slots(&mut self) -> &mut [Option<NonMaxUsize>] {
2574        &mut self.explicit_slots[..self.explicit_slot_len]
2575    }
2576
2577    fn setup_search(&mut self, explicit_slot_len: usize) {
2578        self.explicit_slot_len = explicit_slot_len;
2579    }
2580}
2581
2582/// Represents a single transition in a one-pass DFA.
2583///
2584/// The high 21 bits corresponds to the state ID. The bit following corresponds
2585/// to the special "match wins" flag. The remaining low 42 bits corresponds to
2586/// the transition epsilons, which contains the slots that should be saved when
2587/// this transition is followed and the conditional epsilon transitions that
2588/// must be satisfied in order to follow this transition.
2589#[derive(Clone, Copy, Eq, PartialEq)]
2590struct Transition(u64);
2591
2592impl Transition {
2593    const STATE_ID_BITS: u64 = 21;
2594    const STATE_ID_SHIFT: u64 = 64 - Transition::STATE_ID_BITS;
2595    const STATE_ID_LIMIT: u64 = 1 << Transition::STATE_ID_BITS;
2596    const MATCH_WINS_SHIFT: u64 = 64 - (Transition::STATE_ID_BITS + 1);
2597    const INFO_MASK: u64 = 0x000003FF_FFFFFFFF;
2598
2599    /// Return a new transition to the given state ID with the given epsilons.
2600    fn new(match_wins: bool, sid: StateID, epsilons: Epsilons) -> Transition {
2601        let match_wins =
2602            if match_wins { 1 << Transition::MATCH_WINS_SHIFT } else { 0 };
2603        let sid = sid.as_u64() << Transition::STATE_ID_SHIFT;
2604        Transition(sid | match_wins | epsilons.0)
2605    }
2606
2607    /// Returns true if and only if this transition points to the DEAD state.
2608    fn is_dead(self) -> bool {
2609        self.state_id() == DEAD
2610    }
2611
2612    /// Return whether this transition has a "match wins" property.
2613    ///
2614    /// When a transition has this property, it means that if a match has been
2615    /// found and the search uses leftmost-first semantics, then that match
2616    /// should be returned immediately instead of continuing on.
2617    ///
2618    /// The "match wins" name comes from RE2, which uses a pretty much
2619    /// identical mechanism for implementing leftmost-first semantics.
2620    fn match_wins(&self) -> bool {
2621        (self.0 >> Transition::MATCH_WINS_SHIFT & 1) == 1
2622    }
2623
2624    /// Return the "next" state ID that this transition points to.
2625    fn state_id(&self) -> StateID {
2626        // OK because a Transition has a valid StateID in its upper bits by
2627        // construction. The cast to usize is also correct, even on 16-bit
2628        // targets because, again, we know the upper bits is a valid StateID,
2629        // which can never overflow usize on any supported target.
2630        StateID::new_unchecked(
2631            (self.0 >> Transition::STATE_ID_SHIFT).as_usize(),
2632        )
2633    }
2634
2635    /// Set the "next" state ID in this transition.
2636    fn set_state_id(&mut self, sid: StateID) {
2637        *self = Transition::new(self.match_wins(), sid, self.epsilons());
2638    }
2639
2640    /// Return the epsilons embedded in this transition.
2641    fn epsilons(&self) -> Epsilons {
2642        Epsilons(self.0 & Transition::INFO_MASK)
2643    }
2644}
2645
2646impl core::fmt::Debug for Transition {
2647    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2648        if self.is_dead() {
2649            return write!(f, "0");
2650        }
2651        write!(f, "{}", self.state_id().as_usize())?;
2652        if self.match_wins() {
2653            write!(f, "-MW")?;
2654        }
2655        if !self.epsilons().is_empty() {
2656            write!(f, "-{:?}", self.epsilons())?;
2657        }
2658        Ok(())
2659    }
2660}
2661
2662/// A representation of a match state's pattern ID along with the epsilons for
2663/// when a match occurs.
2664///
2665/// A match state in a one-pass DFA, unlike in a more general DFA, has exactly
2666/// one pattern ID. If it had more, then the original NFA would not have been
2667/// one-pass.
2668///
2669/// The "epsilons" part of this corresponds to what was found in the epsilon
2670/// transitions between the transition taken in the last byte of input and the
2671/// ultimate match state. This might include saving slots and/or conditional
2672/// epsilon transitions that must be satisfied before one can report the match.
2673///
2674/// Technically, every state has room for a 'PatternEpsilons', but it is only
2675/// ever non-empty for match states.
2676#[derive(Clone, Copy)]
2677struct PatternEpsilons(u64);
2678
2679impl PatternEpsilons {
2680    const PATTERN_ID_BITS: u64 = 22;
2681    const PATTERN_ID_SHIFT: u64 = 64 - PatternEpsilons::PATTERN_ID_BITS;
2682    // A sentinel value indicating that this is not a match state. We don't
2683    // use 0 since 0 is a valid pattern ID.
2684    const PATTERN_ID_NONE: u64 = 0x00000000_003FFFFF;
2685    const PATTERN_ID_LIMIT: u64 = PatternEpsilons::PATTERN_ID_NONE;
2686    const PATTERN_ID_MASK: u64 = 0xFFFFFC00_00000000;
2687    const EPSILONS_MASK: u64 = 0x000003FF_FFFFFFFF;
2688
2689    /// Return a new empty pattern epsilons that has no pattern ID and has no
2690    /// epsilons. This is suitable for non-match states.
2691    fn empty() -> PatternEpsilons {
2692        PatternEpsilons(
2693            PatternEpsilons::PATTERN_ID_NONE
2694                << PatternEpsilons::PATTERN_ID_SHIFT,
2695        )
2696    }
2697
2698    /// Whether this pattern epsilons is empty or not. It's empty when it has
2699    /// no pattern ID and an empty epsilons.
2700    fn is_empty(self) -> bool {
2701        self.pattern_id().is_none() && self.epsilons().is_empty()
2702    }
2703
2704    /// Return the pattern ID in this pattern epsilons if one exists.
2705    fn pattern_id(self) -> Option<PatternID> {
2706        let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
2707        if pid == PatternEpsilons::PATTERN_ID_LIMIT {
2708            None
2709        } else {
2710            Some(PatternID::new_unchecked(pid.as_usize()))
2711        }
2712    }
2713
2714    /// Returns the pattern ID without checking whether it's valid. If this is
2715    /// called and there is no pattern ID in this `PatternEpsilons`, then this
2716    /// will likely produce an incorrect result or possibly even a panic or
2717    /// an overflow. But safety will not be violated.
2718    ///
2719    /// This is useful when you know a particular state is a match state. If
2720    /// it's a match state, then it must have a pattern ID.
2721    fn pattern_id_unchecked(self) -> PatternID {
2722        let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
2723        PatternID::new_unchecked(pid.as_usize())
2724    }
2725
2726    /// Return a new pattern epsilons with the given pattern ID, but the same
2727    /// epsilons.
2728    fn set_pattern_id(self, pid: PatternID) -> PatternEpsilons {
2729        PatternEpsilons(
2730            (pid.as_u64() << PatternEpsilons::PATTERN_ID_SHIFT)
2731                | (self.0 & PatternEpsilons::EPSILONS_MASK),
2732        )
2733    }
2734
2735    /// Return the epsilons part of this pattern epsilons.
2736    fn epsilons(self) -> Epsilons {
2737        Epsilons(self.0 & PatternEpsilons::EPSILONS_MASK)
2738    }
2739
2740    /// Return a new pattern epsilons with the given epsilons, but the same
2741    /// pattern ID.
2742    fn set_epsilons(self, epsilons: Epsilons) -> PatternEpsilons {
2743        PatternEpsilons(
2744            (self.0 & PatternEpsilons::PATTERN_ID_MASK)
2745                | (u64::from(epsilons.0) & PatternEpsilons::EPSILONS_MASK),
2746        )
2747    }
2748}
2749
2750impl core::fmt::Debug for PatternEpsilons {
2751    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2752        if self.is_empty() {
2753            return write!(f, "N/A");
2754        }
2755        if let Some(pid) = self.pattern_id() {
2756            write!(f, "{}", pid.as_usize())?;
2757        }
2758        if !self.epsilons().is_empty() {
2759            if self.pattern_id().is_some() {
2760                write!(f, "/")?;
2761            }
2762            write!(f, "{:?}", self.epsilons())?;
2763        }
2764        Ok(())
2765    }
2766}
2767
2768/// Epsilons represents all of the NFA epsilons transitions that went into a
2769/// single transition in a single DFA state. In this case, it only represents
2770/// the epsilon transitions that have some kind of non-consuming side effect:
2771/// either the transition requires storing the current position of the search
2772/// into a slot, or the transition is conditional and requires the current
2773/// position in the input to satisfy an assertion before the transition may be
2774/// taken.
2775///
2776/// This folds the cumulative effect of a group of NFA states (all connected
2777/// by epsilon transitions) down into a single set of bits. While these bits
2778/// can represent all possible conditional epsilon transitions, it only permits
2779/// storing up to a somewhat small number of slots.
2780///
2781/// Epsilons is represented as a 42-bit integer. For example, it is packed into
2782/// the lower 42 bits of a `Transition`. (Where the high 22 bits contains a
2783/// `StateID` and a special "match wins" property.)
2784#[derive(Clone, Copy)]
2785struct Epsilons(u64);
2786
2787impl Epsilons {
2788    const SLOT_MASK: u64 = 0x000003FF_FFFFFC00;
2789    const SLOT_SHIFT: u64 = 10;
2790    const LOOK_MASK: u64 = 0x00000000_000003FF;
2791
2792    /// Create a new empty epsilons. It has no slots and no assertions that
2793    /// need to be satisfied.
2794    fn empty() -> Epsilons {
2795        Epsilons(0)
2796    }
2797
2798    /// Returns true if this epsilons contains no slots and no assertions.
2799    fn is_empty(self) -> bool {
2800        self.0 == 0
2801    }
2802
2803    /// Returns the slot epsilon transitions.
2804    fn slots(self) -> Slots {
2805        Slots((self.0 >> Epsilons::SLOT_SHIFT).low_u32())
2806    }
2807
2808    /// Set the slot epsilon transitions.
2809    fn set_slots(self, slots: Slots) -> Epsilons {
2810        Epsilons(
2811            (u64::from(slots.0) << Epsilons::SLOT_SHIFT)
2812                | (self.0 & Epsilons::LOOK_MASK),
2813        )
2814    }
2815
2816    /// Return the set of look-around assertions in these epsilon transitions.
2817    fn looks(self) -> LookSet {
2818        LookSet { bits: (self.0 & Epsilons::LOOK_MASK).low_u32() }
2819    }
2820
2821    /// Set the look-around assertions on these epsilon transitions.
2822    fn set_looks(self, look_set: LookSet) -> Epsilons {
2823        Epsilons(
2824            (self.0 & Epsilons::SLOT_MASK)
2825                | (u64::from(look_set.bits) & Epsilons::LOOK_MASK),
2826        )
2827    }
2828}
2829
2830impl core::fmt::Debug for Epsilons {
2831    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2832        let mut wrote = false;
2833        if !self.slots().is_empty() {
2834            write!(f, "{:?}", self.slots())?;
2835            wrote = true;
2836        }
2837        if !self.looks().is_empty() {
2838            if wrote {
2839                write!(f, "/")?;
2840            }
2841            write!(f, "{:?}", self.looks())?;
2842            wrote = true;
2843        }
2844        if !wrote {
2845            write!(f, "N/A")?;
2846        }
2847        Ok(())
2848    }
2849}
2850
2851/// The set of epsilon transitions indicating that the current position in a
2852/// search should be saved to a slot.
2853///
2854/// This *only* represents explicit slots. So for example, the pattern
2855/// `[a-z]+([0-9]+)([a-z]+)` has:
2856///
2857/// * 3 capturing groups, thus 6 slots.
2858/// * 1 implicit capturing group, thus 2 implicit slots.
2859/// * 2 explicit capturing groups, thus 4 explicit slots.
2860///
2861/// While implicit slots are represented by epsilon transitions in an NFA, we
2862/// do not explicitly represent them here. Instead, implicit slots are assumed
2863/// to be present and handled automatically in the search code. Therefore,
2864/// that means we only need to represent explicit slots in our epsilon
2865/// transitions.
2866///
2867/// Its representation is a bit set. The bit 'i' is set if and only if there
2868/// exists an explicit slot at index 'c', where 'c = (#patterns * 2) + i'. That
2869/// is, the bit 'i' corresponds to the first explicit slot and the first
2870/// explicit slot appears immediately following the last implicit slot. (If
2871/// this is confusing, see `GroupInfo` for more details on how slots works.)
2872///
2873/// A single `Slots` represents all the active slots in a sub-graph of an NFA,
2874/// where all the states are connected by epsilon transitions. In effect, when
2875/// traversing the one-pass DFA during a search, all slots set in a particular
2876/// transition must be captured by recording the current search position.
2877///
2878/// The API of `Slots` requires the caller to handle the explicit slot offset.
2879/// That is, a `Slots` doesn't know where the explicit slots start for a
2880/// particular NFA. Thus, if the callers see's the bit 'i' is set, then they
2881/// need to do the arithmetic above to find 'c', which is the real actual slot
2882/// index in the corresponding NFA.
2883#[derive(Clone, Copy)]
2884struct Slots(u32);
2885
2886impl Slots {
2887    const LIMIT: usize = 32;
2888
2889    /// Insert the slot at the given bit index.
2890    fn insert(self, slot: usize) -> Slots {
2891        debug_assert!(slot < Slots::LIMIT);
2892        Slots(self.0 | (1 << slot.as_u32()))
2893    }
2894
2895    /// Remove the slot at the given bit index.
2896    fn remove(self, slot: usize) -> Slots {
2897        debug_assert!(slot < Slots::LIMIT);
2898        Slots(self.0 & !(1 << slot.as_u32()))
2899    }
2900
2901    /// Returns true if and only if this set contains no slots.
2902    fn is_empty(self) -> bool {
2903        self.0 == 0
2904    }
2905
2906    /// Returns an iterator over all of the set bits in this set.
2907    fn iter(self) -> SlotsIter {
2908        SlotsIter { slots: self }
2909    }
2910
2911    /// For the position `at` in the current haystack, copy it to
2912    /// `caller_explicit_slots` for all slots that are in this set.
2913    ///
2914    /// Callers may pass a slice of any length. Slots in this set bigger than
2915    /// the length of the given explicit slots are simply skipped.
2916    ///
2917    /// The slice *must* correspond only to the explicit slots and the first
2918    /// element of the slice must always correspond to the first explicit slot
2919    /// in the corresponding NFA.
2920    fn apply(
2921        self,
2922        at: usize,
2923        caller_explicit_slots: &mut [Option<NonMaxUsize>],
2924    ) {
2925        if self.is_empty() {
2926            return;
2927        }
2928        let at = NonMaxUsize::new(at);
2929        for slot in self.iter() {
2930            if slot >= caller_explicit_slots.len() {
2931                break;
2932            }
2933            caller_explicit_slots[slot] = at;
2934        }
2935    }
2936}
2937
2938impl core::fmt::Debug for Slots {
2939    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2940        write!(f, "S")?;
2941        for slot in self.iter() {
2942            write!(f, "-{:?}", slot)?;
2943        }
2944        Ok(())
2945    }
2946}
2947
2948/// An iterator over all of the bits set in a slot set.
2949///
2950/// This returns the bit index that is set, so callers may need to offset it
2951/// to get the actual NFA slot index.
2952#[derive(Debug)]
2953struct SlotsIter {
2954    slots: Slots,
2955}
2956
2957impl Iterator for SlotsIter {
2958    type Item = usize;
2959
2960    fn next(&mut self) -> Option<usize> {
2961        // Number of zeroes here is always <= u8::MAX, and so fits in a usize.
2962        let slot = self.slots.0.trailing_zeros().as_usize();
2963        if slot >= Slots::LIMIT {
2964            return None;
2965        }
2966        self.slots = self.slots.remove(slot);
2967        Some(slot)
2968    }
2969}
2970
2971/// An error that occurred during the construction of a one-pass DFA.
2972///
2973/// This error does not provide many introspection capabilities. There are
2974/// generally only two things you can do with it:
2975///
2976/// * Obtain a human readable message via its `std::fmt::Display` impl.
2977/// * Access an underlying [`thompson::BuildError`] type from its `source`
2978/// method via the `std::error::Error` trait. This error only occurs when using
2979/// convenience routines for building a one-pass DFA directly from a pattern
2980/// string.
2981///
2982/// When the `std` feature is enabled, this implements the `std::error::Error`
2983/// trait.
2984#[derive(Clone, Debug)]
2985pub struct BuildError {
2986    kind: BuildErrorKind,
2987}
2988
2989/// The kind of error that occurred during the construction of a one-pass DFA.
2990#[derive(Clone, Debug)]
2991enum BuildErrorKind {
2992    NFA(crate::nfa::thompson::BuildError),
2993    Word(UnicodeWordBoundaryError),
2994    TooManyStates { limit: u64 },
2995    TooManyPatterns { limit: u64 },
2996    UnsupportedLook { look: Look },
2997    ExceededSizeLimit { limit: usize },
2998    NotOnePass { msg: &'static str },
2999}
3000
3001impl BuildError {
3002    fn nfa(err: crate::nfa::thompson::BuildError) -> BuildError {
3003        BuildError { kind: BuildErrorKind::NFA(err) }
3004    }
3005
3006    fn word(err: UnicodeWordBoundaryError) -> BuildError {
3007        BuildError { kind: BuildErrorKind::Word(err) }
3008    }
3009
3010    fn too_many_states(limit: u64) -> BuildError {
3011        BuildError { kind: BuildErrorKind::TooManyStates { limit } }
3012    }
3013
3014    fn too_many_patterns(limit: u64) -> BuildError {
3015        BuildError { kind: BuildErrorKind::TooManyPatterns { limit } }
3016    }
3017
3018    fn unsupported_look(look: Look) -> BuildError {
3019        BuildError { kind: BuildErrorKind::UnsupportedLook { look } }
3020    }
3021
3022    fn exceeded_size_limit(limit: usize) -> BuildError {
3023        BuildError { kind: BuildErrorKind::ExceededSizeLimit { limit } }
3024    }
3025
3026    fn not_one_pass(msg: &'static str) -> BuildError {
3027        BuildError { kind: BuildErrorKind::NotOnePass { msg } }
3028    }
3029}
3030
3031#[cfg(feature = "std")]
3032impl std::error::Error for BuildError {
3033    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
3034        use self::BuildErrorKind::*;
3035
3036        match self.kind {
3037            NFA(ref err) => Some(err),
3038            Word(ref err) => Some(err),
3039            _ => None,
3040        }
3041    }
3042}
3043
3044impl core::fmt::Display for BuildError {
3045    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
3046        use self::BuildErrorKind::*;
3047
3048        match self.kind {
3049            NFA(_) => write!(f, "error building NFA"),
3050            Word(_) => write!(f, "NFA contains Unicode word boundary"),
3051            TooManyStates { limit } => write!(
3052                f,
3053                "one-pass DFA exceeded a limit of {:?} for number of states",
3054                limit,
3055            ),
3056            TooManyPatterns { limit } => write!(
3057                f,
3058                "one-pass DFA exceeded a limit of {:?} for number of patterns",
3059                limit,
3060            ),
3061            UnsupportedLook { look } => write!(
3062                f,
3063                "one-pass DFA does not support the {:?} assertion",
3064                look,
3065            ),
3066            ExceededSizeLimit { limit } => write!(
3067                f,
3068                "one-pass DFA exceeded size limit of {:?} during building",
3069                limit,
3070            ),
3071            NotOnePass { msg } => write!(
3072                f,
3073                "one-pass DFA could not be built because \
3074                 pattern is not one-pass: {}",
3075                msg,
3076            ),
3077        }
3078    }
3079}
3080
3081#[cfg(all(test, feature = "syntax"))]
3082mod tests {
3083    use alloc::string::ToString;
3084
3085    use super::*;
3086
3087    #[test]
3088    fn fail_conflicting_transition() {
3089        let predicate = |err: &str| err.contains("conflicting transition");
3090
3091        let err = DFA::new(r"a*[ab]").unwrap_err().to_string();
3092        assert!(predicate(&err), "{}", err);
3093    }
3094
3095    #[test]
3096    fn fail_multiple_epsilon() {
3097        let predicate = |err: &str| {
3098            err.contains("multiple epsilon transitions to same state")
3099        };
3100
3101        let err = DFA::new(r"(^|$)a").unwrap_err().to_string();
3102        assert!(predicate(&err), "{}", err);
3103    }
3104
3105    #[test]
3106    fn fail_multiple_match() {
3107        let predicate = |err: &str| {
3108            err.contains("multiple epsilon transitions to match state")
3109        };
3110
3111        let err = DFA::new_many(&[r"^", r"$"]).unwrap_err().to_string();
3112        assert!(predicate(&err), "{}", err);
3113    }
3114
3115    // This test is meant to build a one-pass regex with the maximum number of
3116    // possible slots.
3117    //
3118    // NOTE: Remember that the slot limit only applies to explicit capturing
3119    // groups. Any number of implicit capturing groups is supported (up to the
3120    // maximum number of supported patterns), since implicit groups are handled
3121    // by the search loop itself.
3122    #[test]
3123    fn max_slots() {
3124        // One too many...
3125        let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)(q)";
3126        assert!(DFA::new(pat).is_err());
3127        // Just right.
3128        let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)";
3129        assert!(DFA::new(pat).is_ok());
3130    }
3131
3132    // This test ensures that the one-pass DFA works with all look-around
3133    // assertions that we expect it to work with.
3134    //
3135    // The utility of this test is that each one-pass transition has a small
3136    // amount of space to store look-around assertions. Currently, there is
3137    // logic in the one-pass constructor to ensure there aren't more than ten
3138    // possible assertions. And indeed, there are only ten possible assertions
3139    // (at time of writing), so this is okay. But conceivably, more assertions
3140    // could be added. So we check that things at least work with what we
3141    // expect them to work with.
3142    #[test]
3143    fn assertions() {
3144        // haystack anchors
3145        assert!(DFA::new(r"^").is_ok());
3146        assert!(DFA::new(r"$").is_ok());
3147
3148        // line anchors
3149        assert!(DFA::new(r"(?m)^").is_ok());
3150        assert!(DFA::new(r"(?m)$").is_ok());
3151        assert!(DFA::new(r"(?Rm)^").is_ok());
3152        assert!(DFA::new(r"(?Rm)$").is_ok());
3153
3154        // word boundaries
3155        if cfg!(feature = "unicode-word-boundary") {
3156            assert!(DFA::new(r"\b").is_ok());
3157            assert!(DFA::new(r"\B").is_ok());
3158        }
3159        assert!(DFA::new(r"(?-u)\b").is_ok());
3160        assert!(DFA::new(r"(?-u)\B").is_ok());
3161    }
3162
3163    #[cfg(not(miri))] // takes too long on miri
3164    #[test]
3165    fn is_one_pass() {
3166        use crate::util::syntax;
3167
3168        assert!(DFA::new(r"a*b").is_ok());
3169        if cfg!(feature = "unicode-perl") {
3170            assert!(DFA::new(r"\w").is_ok());
3171        }
3172        assert!(DFA::new(r"(?-u)\w*\s").is_ok());
3173        assert!(DFA::new(r"(?s:.)*?").is_ok());
3174        assert!(DFA::builder()
3175            .syntax(syntax::Config::new().utf8(false))
3176            .build(r"(?s-u:.)*?")
3177            .is_ok());
3178    }
3179
3180    #[test]
3181    fn is_not_one_pass() {
3182        assert!(DFA::new(r"a*a").is_err());
3183        assert!(DFA::new(r"(?s-u:.)*?").is_err());
3184        assert!(DFA::new(r"(?s:.)*?a").is_err());
3185    }
3186
3187    #[cfg(not(miri))]
3188    #[test]
3189    fn is_not_one_pass_bigger() {
3190        assert!(DFA::new(r"\w*\s").is_err());
3191    }
3192}