regex_automata/meta/
regex.rs

1use core::{
2    borrow::Borrow,
3    panic::{RefUnwindSafe, UnwindSafe},
4};
5
6use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8use regex_syntax::{
9    ast,
10    hir::{self, Hir},
11};
12
13use crate::{
14    meta::{
15        error::BuildError,
16        strategy::{self, Strategy},
17        wrappers,
18    },
19    nfa::thompson::WhichCaptures,
20    util::{
21        captures::{Captures, GroupInfo},
22        iter,
23        pool::{Pool, PoolGuard},
24        prefilter::Prefilter,
25        primitives::{NonMaxUsize, PatternID},
26        search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27    },
28};
29
30/// A type alias for our pool of meta::Cache that fixes the type parameters to
31/// what we use for the meta regex below.
32type CachePool = Pool<Cache, CachePoolFn>;
33
34/// Same as above, but for the guard returned by a pool.
35type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37/// The type of the closure we use to create new caches. We need to spell out
38/// all of the marker traits or else we risk leaking !MARKER impls.
39type CachePoolFn =
40    Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41
42/// A regex matcher that works by composing several other regex matchers
43/// automatically.
44///
45/// In effect, a meta regex papers over a lot of the quirks or performance
46/// problems in each of the regex engines in this crate. Its goal is to provide
47/// an infallible and simple API that "just does the right thing" in the common
48/// case.
49///
50/// A meta regex is the implementation of a `Regex` in the `regex` crate.
51/// Indeed, the `regex` crate API is essentially just a light wrapper over
52/// this type. This includes the `regex` crate's `RegexSet` API!
53///
54/// # Composition
55///
56/// This is called a "meta" matcher precisely because it uses other regex
57/// matchers to provide a convenient high level regex API. Here are some
58/// examples of how other regex matchers are composed:
59///
60/// * When calling [`Regex::captures`], instead of immediately
61/// running a slower but more capable regex engine like the
62/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63/// will usually first look for the bounds of a match with a higher throughput
64/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65/// is a slower engine like `PikeVM` used to find the matching span for each
66/// capture group.
67/// * While higher throughout engines like the lazy DFA cannot handle
68/// Unicode word boundaries in general, they can still be used on pure ASCII
69/// haystacks by pretending that Unicode word boundaries are just plain ASCII
70/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71/// will automatically switch to a (possibly slower) regex engine that supports
72/// Unicode word boundaries in general.
73/// * In some cases where a regex pattern is just a simple literal or a small
74/// set of literals, an actual regex engine won't be used at all. Instead,
75/// substring or multi-substring search algorithms will be employed.
76///
77/// There are many other forms of composition happening too, but the above
78/// should give a general idea. In particular, it may perhaps be surprising
79/// that *multiple* regex engines might get executed for a single search. That
80/// is, the decision of what regex engine to use is not _just_ based on the
81/// pattern, but also based on the dynamic execution of the search itself.
82///
83/// The primary reason for this composition is performance. The fundamental
84/// tension is that the faster engines tend to be less capable, and the more
85/// capable engines tend to be slower.
86///
87/// Note that the forms of composition that are allowed are determined by
88/// compile time crate features and configuration. For example, if the `hybrid`
89/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90/// meta regex engine will never use a lazy DFA.
91///
92/// # Synchronization and cloning
93///
94/// Most of the regex engines in this crate require some kind of mutable
95/// "scratch" space to read and write from while performing a search. Since
96/// a meta regex composes these regex engines, a meta regex also requires
97/// mutable scratch space. This scratch space is called a [`Cache`].
98///
99/// Most regex engines _also_ usually have a read-only component, typically
100/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101///
102/// In order to make the `Regex` API convenient, most of the routines hide
103/// the fact that a `Cache` is needed at all. To achieve this, a [memory
104/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105/// values in a thread safe way that also permits reuse. This in turn implies
106/// that every such search call requires some form of synchronization. Usually
107/// this synchronization is fast enough to not notice, but in some cases, it
108/// can be a bottleneck. This typically occurs when all of the following are
109/// true:
110///
111/// * The same `Regex` is shared across multiple threads simultaneously,
112/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113/// similar from the `once_cell` or `lazy_static` crates.
114/// * The primary unit of work in each thread is a regex search.
115/// * Searches are run on very short haystacks.
116///
117/// This particular case can lead to high contention on the pool used by a
118/// `Regex` internally, which can in turn increase latency to a noticeable
119/// effect. This cost can be mitigated in one of the following ways:
120///
121/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123/// But it does lead to each `Regex` having its own memory pool, which in
124/// turn eliminates the problem of contention. In general, this technique should
125/// not result in any additional memory usage when compared to sharing the same
126/// `Regex` across multiple threads simultaneously.
127/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128/// a `Cache` explicitly. In this case, it is up to you to determine how best
129/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130/// storage if your use case allows for it.
131///
132/// Overall, this is an issue that happens rarely in practice, but it can
133/// happen.
134///
135/// # Warning: spin-locks may be used in alloc-only mode
136///
137/// When this crate is built without the `std` feature and the high level APIs
138/// on a `Regex` are used, then a spin-lock will be used to synchronize access
139/// to an internal pool of `Cache` values. This may be undesirable because
140/// a spin-lock is [effectively impossible to implement correctly in user
141/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142/// result in a deadlock.
143///
144/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145///
146/// If one wants to avoid the use of spin-locks when the `std` feature is
147/// disabled, then you must use APIs that accept a `Cache` value explicitly.
148/// For example, [`Regex::search_with`].
149///
150/// # Example
151///
152/// ```
153/// use regex_automata::meta::Regex;
154///
155/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156/// assert!(re.is_match("2010-03-14"));
157///
158/// # Ok::<(), Box<dyn std::error::Error>>(())
159/// ```
160///
161/// # Example: anchored search
162///
163/// This example shows how to use [`Input::anchored`] to run an anchored
164/// search, even when the regex pattern itself isn't anchored. An anchored
165/// search guarantees that if a match is found, then the start offset of the
166/// match corresponds to the offset at which the search was started.
167///
168/// ```
169/// use regex_automata::{meta::Regex, Anchored, Input, Match};
170///
171/// let re = Regex::new(r"\bfoo\b")?;
172/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173/// // The offsets are in terms of the original haystack.
174/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175///
176/// // Notice that no match occurs here, because \b still takes the
177/// // surrounding context into account, even if it means looking back
178/// // before the start of your search.
179/// let hay = "xxfoo xx";
180/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181/// assert_eq!(None, re.find(input));
182/// // Indeed, you cannot achieve the above by simply slicing the
183/// // haystack itself, since the regex engine can't see the
184/// // surrounding context. This is why 'Input' permits setting
185/// // the bounds of a search!
186/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187/// // WRONG!
188/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189///
190/// # Ok::<(), Box<dyn std::error::Error>>(())
191/// ```
192///
193/// # Example: earliest search
194///
195/// This example shows how to use [`Input::earliest`] to run a search that
196/// might stop before finding the typical leftmost match.
197///
198/// ```
199/// use regex_automata::{meta::Regex, Anchored, Input, Match};
200///
201/// let re = Regex::new(r"[a-z]{3}|b")?;
202/// let input = Input::new("abc").earliest(true);
203/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204///
205/// // Note that "earliest" isn't really a match semantic unto itself.
206/// // Instead, it is merely an instruction to whatever regex engine
207/// // gets used internally to quit as soon as it can. For example,
208/// // this regex uses a different search technique, and winds up
209/// // producing a different (but valid) match!
210/// let re = Regex::new(r"abc|b")?;
211/// let input = Input::new("abc").earliest(true);
212/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213///
214/// # Ok::<(), Box<dyn std::error::Error>>(())
215/// ```
216///
217/// # Example: change the line terminator
218///
219/// This example shows how to enable multi-line mode by default and change
220/// the line terminator to the NUL byte:
221///
222/// ```
223/// use regex_automata::{meta::Regex, util::syntax, Match};
224///
225/// let re = Regex::builder()
226///     .syntax(syntax::Config::new().multi_line(true))
227///     .configure(Regex::config().line_terminator(b'\x00'))
228///     .build(r"^foo$")?;
229/// let hay = "\x00foo\x00";
230/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231///
232/// # Ok::<(), Box<dyn std::error::Error>>(())
233/// ```
234#[derive(Debug)]
235pub struct Regex {
236    /// The actual regex implementation.
237    imp: Arc<RegexI>,
238    /// A thread safe pool of caches.
239    ///
240    /// For the higher level search APIs, a `Cache` is automatically plucked
241    /// from this pool before running a search. The lower level `with` methods
242    /// permit the caller to provide their own cache, thereby bypassing
243    /// accesses to this pool.
244    ///
245    /// Note that we put this outside the `Arc` so that cloning a `Regex`
246    /// results in creating a fresh `CachePool`. This in turn permits callers
247    /// to clone regexes into separate threads where each such regex gets
248    /// the pool's "thread owner" optimization. Otherwise, if one shares the
249    /// `Regex` directly, then the pool will go through a slower mutex path for
250    /// all threads except for the "owner."
251    pool: CachePool,
252}
253
254/// The internal implementation of `Regex`, split out so that it can be wrapped
255/// in an `Arc`.
256#[derive(Debug)]
257struct RegexI {
258    /// The core matching engine.
259    ///
260    /// Why is this reference counted when RegexI is already wrapped in an Arc?
261    /// Well, we need to capture this in a closure to our `Pool` below in order
262    /// to create new `Cache` values when needed. So since it needs to be in
263    /// two places, we make it reference counted.
264    ///
265    /// We make `RegexI` itself reference counted too so that `Regex` itself
266    /// stays extremely small and very cheap to clone.
267    strat: Arc<dyn Strategy>,
268    /// Metadata about the regexes driving the strategy. The metadata is also
269    /// usually stored inside the strategy too, but we put it here as well
270    /// so that we can get quick access to it (without virtual calls) before
271    /// executing the regex engine. For example, we use this metadata to
272    /// detect a subset of cases where we know a match is impossible, and can
273    /// thus avoid calling into the strategy at all.
274    ///
275    /// Since `RegexInfo` is stored in multiple places, it is also reference
276    /// counted.
277    info: RegexInfo,
278}
279
280/// Convenience constructors for a `Regex` using the default configuration.
281impl Regex {
282    /// Builds a `Regex` from a single pattern string using the default
283    /// configuration.
284    ///
285    /// If there was a problem parsing the pattern or a problem turning it into
286    /// a regex matcher, then an error is returned.
287    ///
288    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289    /// with a [`Config`].
290    ///
291    /// # Example
292    ///
293    /// ```
294    /// use regex_automata::{meta::Regex, Match};
295    ///
296    /// let re = Regex::new(r"(?Rm)^foo$")?;
297    /// let hay = "\r\nfoo\r\n";
298    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299    ///
300    /// # Ok::<(), Box<dyn std::error::Error>>(())
301    /// ```
302    pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303        Regex::builder().build(pattern)
304    }
305
306    /// Builds a `Regex` from many pattern strings using the default
307    /// configuration.
308    ///
309    /// If there was a problem parsing any of the patterns or a problem turning
310    /// them into a regex matcher, then an error is returned.
311    ///
312    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313    /// with a [`Config`].
314    ///
315    /// # Example: simple lexer
316    ///
317    /// This simplistic example leverages the multi-pattern support to build a
318    /// simple little lexer. The pattern ID in the match tells you which regex
319    /// matched, which in turn might be used to map back to the "type" of the
320    /// token returned by the lexer.
321    ///
322    /// ```
323    /// use regex_automata::{meta::Regex, Match};
324    ///
325    /// let re = Regex::new_many(&[
326    ///     r"[[:space:]]",
327    ///     r"[A-Za-z0-9][A-Za-z0-9_]+",
328    ///     r"->",
329    ///     r".",
330    /// ])?;
331    /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333    /// assert_eq!(matches, vec![
334    ///     Match::must(1, 0..2),   // 'fn'
335    ///     Match::must(0, 2..3),   // ' '
336    ///     Match::must(1, 3..10),  // 'is_boss'
337    ///     Match::must(3, 10..11), // '('
338    ///     Match::must(1, 11..16), // 'bruce'
339    ///     Match::must(3, 16..17), // ':'
340    ///     Match::must(0, 17..18), // ' '
341    ///     Match::must(1, 18..21), // 'i32'
342    ///     Match::must(3, 21..22), // ','
343    ///     Match::must(0, 22..23), // ' '
344    ///     Match::must(1, 23..34), // 'springsteen'
345    ///     Match::must(3, 34..35), // ':'
346    ///     Match::must(0, 35..36), // ' '
347    ///     Match::must(1, 36..42), // 'String'
348    ///     Match::must(3, 42..43), // ')'
349    ///     Match::must(0, 43..44), // ' '
350    ///     Match::must(2, 44..46), // '->'
351    ///     Match::must(0, 46..47), // ' '
352    ///     Match::must(1, 47..51), // 'bool'
353    ///     Match::must(3, 51..52), // ';'
354    /// ]);
355    ///
356    /// # Ok::<(), Box<dyn std::error::Error>>(())
357    /// ```
358    ///
359    /// One can write a lexer like the above using a regex like
360    /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361    /// but then you need to ask whether capture group matched to determine
362    /// which branch in the regex matched, and thus, which token the match
363    /// corresponds to. In contrast, the above example includes the pattern ID
364    /// in the match. There's no need to use capture groups at all.
365    ///
366    /// # Example: finding the pattern that caused an error
367    ///
368    /// When a syntax error occurs, it is possible to ask which pattern
369    /// caused the syntax error.
370    ///
371    /// ```
372    /// use regex_automata::{meta::Regex, PatternID};
373    ///
374    /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376    /// ```
377    ///
378    /// # Example: zero patterns is valid
379    ///
380    /// Building a regex with zero patterns results in a regex that never
381    /// matches anything. Because this routine is generic, passing an empty
382    /// slice usually requires a turbo-fish (or something else to help type
383    /// inference).
384    ///
385    /// ```
386    /// use regex_automata::{meta::Regex, util::syntax, Match};
387    ///
388    /// let re = Regex::new_many::<&str>(&[])?;
389    /// assert_eq!(None, re.find(""));
390    ///
391    /// # Ok::<(), Box<dyn std::error::Error>>(())
392    /// ```
393    pub fn new_many<P: AsRef<str>>(
394        patterns: &[P],
395    ) -> Result<Regex, BuildError> {
396        Regex::builder().build_many(patterns)
397    }
398
399    /// Return a default configuration for a `Regex`.
400    ///
401    /// This is a convenience routine to avoid needing to import the [`Config`]
402    /// type when customizing the construction of a `Regex`.
403    ///
404    /// # Example: lower the NFA size limit
405    ///
406    /// In some cases, the default size limit might be too big. The size limit
407    /// can be lowered, which will prevent large regex patterns from compiling.
408    ///
409    /// ```
410    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411    /// use regex_automata::meta::Regex;
412    ///
413    /// let result = Regex::builder()
414    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415    ///     // Not even 20KB is enough to build a single large Unicode class!
416    ///     .build(r"\pL");
417    /// assert!(result.is_err());
418    ///
419    /// # Ok::<(), Box<dyn std::error::Error>>(())
420    /// ```
421    pub fn config() -> Config {
422        Config::new()
423    }
424
425    /// Return a builder for configuring the construction of a `Regex`.
426    ///
427    /// This is a convenience routine to avoid needing to import the
428    /// [`Builder`] type in common cases.
429    ///
430    /// # Example: change the line terminator
431    ///
432    /// This example shows how to enable multi-line mode by default and change
433    /// the line terminator to the NUL byte:
434    ///
435    /// ```
436    /// use regex_automata::{meta::Regex, util::syntax, Match};
437    ///
438    /// let re = Regex::builder()
439    ///     .syntax(syntax::Config::new().multi_line(true))
440    ///     .configure(Regex::config().line_terminator(b'\x00'))
441    ///     .build(r"^foo$")?;
442    /// let hay = "\x00foo\x00";
443    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444    ///
445    /// # Ok::<(), Box<dyn std::error::Error>>(())
446    /// ```
447    pub fn builder() -> Builder {
448        Builder::new()
449    }
450}
451
452/// High level convenience routines for using a regex to search a haystack.
453impl Regex {
454    /// Returns true if and only if this regex matches the given haystack.
455    ///
456    /// This routine may short circuit if it knows that scanning future input
457    /// will never lead to a different result. (Consider how this might make
458    /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459    /// This routine _may_ stop after it sees the first `a`, but routines like
460    /// `find` need to continue searching because `+` is greedy by default.)
461    ///
462    /// # Example
463    ///
464    /// ```
465    /// use regex_automata::meta::Regex;
466    ///
467    /// let re = Regex::new("foo[0-9]+bar")?;
468    ///
469    /// assert!(re.is_match("foo12345bar"));
470    /// assert!(!re.is_match("foobar"));
471    ///
472    /// # Ok::<(), Box<dyn std::error::Error>>(())
473    /// ```
474    ///
475    /// # Example: consistency with search APIs
476    ///
477    /// `is_match` is guaranteed to return `true` whenever `find` returns a
478    /// match. This includes searches that are executed entirely within a
479    /// codepoint:
480    ///
481    /// ```
482    /// use regex_automata::{meta::Regex, Input};
483    ///
484    /// let re = Regex::new("a*")?;
485    ///
486    /// // This doesn't match because the default configuration bans empty
487    /// // matches from splitting a codepoint.
488    /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489    /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490    ///
491    /// # Ok::<(), Box<dyn std::error::Error>>(())
492    /// ```
493    ///
494    /// Notice that when UTF-8 mode is disabled, then the above reports a
495    /// match because the restriction against zero-width matches that split a
496    /// codepoint has been lifted:
497    ///
498    /// ```
499    /// use regex_automata::{meta::Regex, Input, Match};
500    ///
501    /// let re = Regex::builder()
502    ///     .configure(Regex::config().utf8_empty(false))
503    ///     .build("a*")?;
504    ///
505    /// assert!(re.is_match(Input::new("☃").span(1..2)));
506    /// assert_eq!(
507    ///     Some(Match::must(0, 1..1)),
508    ///     re.find(Input::new("☃").span(1..2)),
509    /// );
510    ///
511    /// # Ok::<(), Box<dyn std::error::Error>>(())
512    /// ```
513    ///
514    /// A similar idea applies when using line anchors with CRLF mode enabled,
515    /// which prevents them from matching between a `\r` and a `\n`.
516    ///
517    /// ```
518    /// use regex_automata::{meta::Regex, Input, Match};
519    ///
520    /// let re = Regex::new(r"(?Rm:$)")?;
521    /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522    /// // A regular line anchor, which only considers \n as a
523    /// // line terminator, will match.
524    /// let re = Regex::new(r"(?m:$)")?;
525    /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526    ///
527    /// # Ok::<(), Box<dyn std::error::Error>>(())
528    /// ```
529    #[inline]
530    pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531        let input = input.into().earliest(true);
532        if self.imp.info.is_impossible(&input) {
533            return false;
534        }
535        let mut guard = self.pool.get();
536        let result = self.imp.strat.is_match(&mut guard, &input);
537        // See 'Regex::search' for why we put the guard back explicitly.
538        PoolGuard::put(guard);
539        result
540    }
541
542    /// Executes a leftmost search and returns the first match that is found,
543    /// if one exists.
544    ///
545    /// # Example
546    ///
547    /// ```
548    /// use regex_automata::{meta::Regex, Match};
549    ///
550    /// let re = Regex::new("foo[0-9]+")?;
551    /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552    ///
553    /// # Ok::<(), Box<dyn std::error::Error>>(())
554    /// ```
555    #[inline]
556    pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557        self.search(&input.into())
558    }
559
560    /// Executes a leftmost forward search and writes the spans of capturing
561    /// groups that participated in a match into the provided [`Captures`]
562    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563    /// to return `false`.
564    ///
565    /// # Example
566    ///
567    /// ```
568    /// use regex_automata::{meta::Regex, Span};
569    ///
570    /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571    /// let mut caps = re.create_captures();
572    ///
573    /// re.captures("2010-03-14", &mut caps);
574    /// assert!(caps.is_match());
575    /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576    /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577    /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578    ///
579    /// # Ok::<(), Box<dyn std::error::Error>>(())
580    /// ```
581    #[inline]
582    pub fn captures<'h, I: Into<Input<'h>>>(
583        &self,
584        input: I,
585        caps: &mut Captures,
586    ) {
587        self.search_captures(&input.into(), caps)
588    }
589
590    /// Returns an iterator over all non-overlapping leftmost matches in
591    /// the given haystack. If no match exists, then the iterator yields no
592    /// elements.
593    ///
594    /// # Example
595    ///
596    /// ```
597    /// use regex_automata::{meta::Regex, Match};
598    ///
599    /// let re = Regex::new("foo[0-9]+")?;
600    /// let haystack = "foo1 foo12 foo123";
601    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602    /// assert_eq!(matches, vec![
603    ///     Match::must(0, 0..4),
604    ///     Match::must(0, 5..10),
605    ///     Match::must(0, 11..17),
606    /// ]);
607    /// # Ok::<(), Box<dyn std::error::Error>>(())
608    /// ```
609    #[inline]
610    pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611        &'r self,
612        input: I,
613    ) -> FindMatches<'r, 'h> {
614        let cache = self.pool.get();
615        let it = iter::Searcher::new(input.into());
616        FindMatches { re: self, cache, it }
617    }
618
619    /// Returns an iterator over all non-overlapping `Captures` values. If no
620    /// match exists, then the iterator yields no elements.
621    ///
622    /// This yields the same matches as [`Regex::find_iter`], but it includes
623    /// the spans of all capturing groups that participate in each match.
624    ///
625    /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626    /// how to correctly iterate over all matches in a haystack while avoiding
627    /// the creation of a new `Captures` value for every match. (Which you are
628    /// forced to do with an `Iterator`.)
629    ///
630    /// # Example
631    ///
632    /// ```
633    /// use regex_automata::{meta::Regex, Span};
634    ///
635    /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636    ///
637    /// let haystack = "foo1 foo12 foo123";
638    /// let matches: Vec<Span> = re
639    ///     .captures_iter(haystack)
640    ///     // The unwrap is OK since 'numbers' matches if the pattern matches.
641    ///     .map(|caps| caps.get_group_by_name("numbers").unwrap())
642    ///     .collect();
643    /// assert_eq!(matches, vec![
644    ///     Span::from(3..4),
645    ///     Span::from(8..10),
646    ///     Span::from(14..17),
647    /// ]);
648    /// # Ok::<(), Box<dyn std::error::Error>>(())
649    /// ```
650    #[inline]
651    pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652        &'r self,
653        input: I,
654    ) -> CapturesMatches<'r, 'h> {
655        let cache = self.pool.get();
656        let caps = self.create_captures();
657        let it = iter::Searcher::new(input.into());
658        CapturesMatches { re: self, cache, caps, it }
659    }
660
661    /// Returns an iterator of spans of the haystack given, delimited by a
662    /// match of the regex. Namely, each element of the iterator corresponds to
663    /// a part of the haystack that *isn't* matched by the regular expression.
664    ///
665    /// # Example
666    ///
667    /// To split a string delimited by arbitrary amounts of spaces or tabs:
668    ///
669    /// ```
670    /// use regex_automata::meta::Regex;
671    ///
672    /// let re = Regex::new(r"[ \t]+")?;
673    /// let hay = "a b \t  c\td    e";
674    /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676    ///
677    /// # Ok::<(), Box<dyn std::error::Error>>(())
678    /// ```
679    ///
680    /// # Example: more cases
681    ///
682    /// Basic usage:
683    ///
684    /// ```
685    /// use regex_automata::meta::Regex;
686    ///
687    /// let re = Regex::new(r" ")?;
688    /// let hay = "Mary had a little lamb";
689    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691    ///
692    /// let re = Regex::new(r"X")?;
693    /// let hay = "";
694    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695    /// assert_eq!(got, vec![""]);
696    ///
697    /// let re = Regex::new(r"X")?;
698    /// let hay = "lionXXtigerXleopard";
699    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701    ///
702    /// let re = Regex::new(r"::")?;
703    /// let hay = "lion::tiger::leopard";
704    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706    ///
707    /// # Ok::<(), Box<dyn std::error::Error>>(())
708    /// ```
709    ///
710    /// If a haystack contains multiple contiguous matches, you will end up
711    /// with empty spans yielded by the iterator:
712    ///
713    /// ```
714    /// use regex_automata::meta::Regex;
715    ///
716    /// let re = Regex::new(r"X")?;
717    /// let hay = "XXXXaXXbXc";
718    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720    ///
721    /// let re = Regex::new(r"/")?;
722    /// let hay = "(///)";
723    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724    /// assert_eq!(got, vec!["(", "", "", ")"]);
725    ///
726    /// # Ok::<(), Box<dyn std::error::Error>>(())
727    /// ```
728    ///
729    /// Separators at the start or end of a haystack are neighbored by empty
730    /// spans.
731    ///
732    /// ```
733    /// use regex_automata::meta::Regex;
734    ///
735    /// let re = Regex::new(r"0")?;
736    /// let hay = "010";
737    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738    /// assert_eq!(got, vec!["", "1", ""]);
739    ///
740    /// # Ok::<(), Box<dyn std::error::Error>>(())
741    /// ```
742    ///
743    /// When the empty string is used as a regex, it splits at every valid
744    /// UTF-8 boundary by default (which includes the beginning and end of the
745    /// haystack):
746    ///
747    /// ```
748    /// use regex_automata::meta::Regex;
749    ///
750    /// let re = Regex::new(r"")?;
751    /// let hay = "rust";
752    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754    ///
755    /// // Splitting by an empty string is UTF-8 aware by default!
756    /// let re = Regex::new(r"")?;
757    /// let hay = "☃";
758    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759    /// assert_eq!(got, vec!["", "☃", ""]);
760    ///
761    /// # Ok::<(), Box<dyn std::error::Error>>(())
762    /// ```
763    ///
764    /// But note that UTF-8 mode for empty strings can be disabled, which will
765    /// then result in a match at every byte offset in the haystack,
766    /// including between every UTF-8 code unit.
767    ///
768    /// ```
769    /// use regex_automata::meta::Regex;
770    ///
771    /// let re = Regex::builder()
772    ///     .configure(Regex::config().utf8_empty(false))
773    ///     .build(r"")?;
774    /// let hay = "☃".as_bytes();
775    /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776    /// assert_eq!(got, vec![
777    ///     // Writing byte string slices is just brutal. The problem is that
778    ///     // b"foo" has type &[u8; 3] instead of &[u8].
779    ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780    /// ]);
781    ///
782    /// # Ok::<(), Box<dyn std::error::Error>>(())
783    /// ```
784    ///
785    /// Contiguous separators (commonly shows up with whitespace), can lead to
786    /// possibly surprising behavior. For example, this code is correct:
787    ///
788    /// ```
789    /// use regex_automata::meta::Regex;
790    ///
791    /// let re = Regex::new(r" ")?;
792    /// let hay = "    a  b c";
793    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795    ///
796    /// # Ok::<(), Box<dyn std::error::Error>>(())
797    /// ```
798    ///
799    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800    /// to match contiguous space characters:
801    ///
802    /// ```
803    /// use regex_automata::meta::Regex;
804    ///
805    /// let re = Regex::new(r" +")?;
806    /// let hay = "    a  b c";
807    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808    /// // N.B. This does still include a leading empty span because ' +'
809    /// // matches at the beginning of the haystack.
810    /// assert_eq!(got, vec!["", "a", "b", "c"]);
811    ///
812    /// # Ok::<(), Box<dyn std::error::Error>>(())
813    /// ```
814    #[inline]
815    pub fn split<'r, 'h, I: Into<Input<'h>>>(
816        &'r self,
817        input: I,
818    ) -> Split<'r, 'h> {
819        Split { finder: self.find_iter(input), last: 0 }
820    }
821
822    /// Returns an iterator of at most `limit` spans of the haystack given,
823    /// delimited by a match of the regex. (A `limit` of `0` will return no
824    /// spans.) Namely, each element of the iterator corresponds to a part
825    /// of the haystack that *isn't* matched by the regular expression. The
826    /// remainder of the haystack that is not split will be the last element in
827    /// the iterator.
828    ///
829    /// # Example
830    ///
831    /// Get the first two words in some haystack:
832    ///
833    /// ```
834    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835    /// use regex_automata::meta::Regex;
836    ///
837    /// let re = Regex::new(r"\W+").unwrap();
838    /// let hay = "Hey! How are you?";
839    /// let fields: Vec<&str> =
840    ///     re.splitn(hay, 3).map(|span| &hay[span]).collect();
841    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842    ///
843    /// # Ok::<(), Box<dyn std::error::Error>>(())
844    /// ```
845    ///
846    /// # Examples: more cases
847    ///
848    /// ```
849    /// use regex_automata::meta::Regex;
850    ///
851    /// let re = Regex::new(r" ")?;
852    /// let hay = "Mary had a little lamb";
853    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855    ///
856    /// let re = Regex::new(r"X")?;
857    /// let hay = "";
858    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859    /// assert_eq!(got, vec![""]);
860    ///
861    /// let re = Regex::new(r"X")?;
862    /// let hay = "lionXXtigerXleopard";
863    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865    ///
866    /// let re = Regex::new(r"::")?;
867    /// let hay = "lion::tiger::leopard";
868    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870    ///
871    /// let re = Regex::new(r"X")?;
872    /// let hay = "abcXdef";
873    /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874    /// assert_eq!(got, vec!["abcXdef"]);
875    ///
876    /// let re = Regex::new(r"X")?;
877    /// let hay = "abcdef";
878    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879    /// assert_eq!(got, vec!["abcdef"]);
880    ///
881    /// let re = Regex::new(r"X")?;
882    /// let hay = "abcXdef";
883    /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884    /// assert!(got.is_empty());
885    ///
886    /// # Ok::<(), Box<dyn std::error::Error>>(())
887    /// ```
888    pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889        &'r self,
890        input: I,
891        limit: usize,
892    ) -> SplitN<'r, 'h> {
893        SplitN { splits: self.split(input), limit }
894    }
895}
896
897/// Lower level search routines that give more control.
898impl Regex {
899    /// Returns the start and end offset of the leftmost match. If no match
900    /// exists, then `None` is returned.
901    ///
902    /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903    /// instead of an `Into<Input>`.
904    ///
905    /// # Example
906    ///
907    /// ```
908    /// use regex_automata::{meta::Regex, Input, Match};
909    ///
910    /// let re = Regex::new(r"Samwise|Sam")?;
911    /// let input = Input::new(
912    ///     "one of the chief characters, Samwise the Brave",
913    /// );
914    /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915    ///
916    /// # Ok::<(), Box<dyn std::error::Error>>(())
917    /// ```
918    #[inline]
919    pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920        if self.imp.info.is_impossible(input) {
921            return None;
922        }
923        let mut guard = self.pool.get();
924        let result = self.imp.strat.search(&mut guard, input);
925        // We do this dance with the guard and explicitly put it back in the
926        // pool because it seems to result in better codegen. If we let the
927        // guard's Drop impl put it back in the pool, then functions like
928        // ptr::drop_in_place get called and they *don't* get inlined. This
929        // isn't usually a big deal, but in latency sensitive benchmarks the
930        // extra function call can matter.
931        //
932        // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
933        // the effects here.
934        //
935        // Note that this doesn't eliminate the latency effects of using the
936        // pool. There is still some (minor) cost for the "thread owner" of the
937        // pool. (i.e., The thread that first calls a regex search routine.)
938        // However, for other threads using the regex, the pool access can be
939        // quite expensive as it goes through a mutex. Callers can avoid this
940        // by either cloning the Regex (which creates a distinct copy of the
941        // pool), or callers can use the lower level APIs that accept a 'Cache'
942        // directly and do their own handling.
943        PoolGuard::put(guard);
944        result
945    }
946
947    /// Returns the end offset of the leftmost match. If no match exists, then
948    /// `None` is returned.
949    ///
950    /// This is distinct from [`Regex::search`] in that it only returns the end
951    /// of a match and not the start of the match. Depending on a variety of
952    /// implementation details, this _may_ permit the regex engine to do less
953    /// overall work. For example, if a DFA is being used to execute a search,
954    /// then the start of a match usually requires running a separate DFA in
955    /// reverse to the find the start of a match. If one only needs the end of
956    /// a match, then the separate reverse scan to find the start of a match
957    /// can be skipped. (Note that the reverse scan is avoided even when using
958    /// `Regex::search` when possible, for example, in the case of an anchored
959    /// search.)
960    ///
961    /// # Example
962    ///
963    /// ```
964    /// use regex_automata::{meta::Regex, Input, HalfMatch};
965    ///
966    /// let re = Regex::new(r"Samwise|Sam")?;
967    /// let input = Input::new(
968    ///     "one of the chief characters, Samwise the Brave",
969    /// );
970    /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
971    ///
972    /// # Ok::<(), Box<dyn std::error::Error>>(())
973    /// ```
974    #[inline]
975    pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
976        if self.imp.info.is_impossible(input) {
977            return None;
978        }
979        let mut guard = self.pool.get();
980        let result = self.imp.strat.search_half(&mut guard, input);
981        // See 'Regex::search' for why we put the guard back explicitly.
982        PoolGuard::put(guard);
983        result
984    }
985
986    /// Executes a leftmost forward search and writes the spans of capturing
987    /// groups that participated in a match into the provided [`Captures`]
988    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
989    /// to return `false`.
990    ///
991    /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
992    /// instead of an `Into<Input>`.
993    ///
994    /// # Example: specific pattern search
995    ///
996    /// This example shows how to build a multi-pattern `Regex` that permits
997    /// searching for specific patterns.
998    ///
999    /// ```
1000    /// use regex_automata::{
1001    ///     meta::Regex,
1002    ///     Anchored, Match, PatternID, Input,
1003    /// };
1004    ///
1005    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1006    /// let mut caps = re.create_captures();
1007    /// let haystack = "foo123";
1008    ///
1009    /// // Since we are using the default leftmost-first match and both
1010    /// // patterns match at the same starting position, only the first pattern
1011    /// // will be returned in this case when doing a search for any of the
1012    /// // patterns.
1013    /// let expected = Some(Match::must(0, 0..6));
1014    /// re.search_captures(&Input::new(haystack), &mut caps);
1015    /// assert_eq!(expected, caps.get_match());
1016    ///
1017    /// // But if we want to check whether some other pattern matches, then we
1018    /// // can provide its pattern ID.
1019    /// let expected = Some(Match::must(1, 0..6));
1020    /// let input = Input::new(haystack)
1021    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1022    /// re.search_captures(&input, &mut caps);
1023    /// assert_eq!(expected, caps.get_match());
1024    ///
1025    /// # Ok::<(), Box<dyn std::error::Error>>(())
1026    /// ```
1027    ///
1028    /// # Example: specifying the bounds of a search
1029    ///
1030    /// This example shows how providing the bounds of a search can produce
1031    /// different results than simply sub-slicing the haystack.
1032    ///
1033    /// ```
1034    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1035    /// use regex_automata::{meta::Regex, Match, Input};
1036    ///
1037    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1038    /// let mut caps = re.create_captures();
1039    /// let haystack = "foo123bar";
1040    ///
1041    /// // Since we sub-slice the haystack, the search doesn't know about
1042    /// // the larger context and assumes that `123` is surrounded by word
1043    /// // boundaries. And of course, the match position is reported relative
1044    /// // to the sub-slice as well, which means we get `0..3` instead of
1045    /// // `3..6`.
1046    /// let expected = Some(Match::must(0, 0..3));
1047    /// let input = Input::new(&haystack[3..6]);
1048    /// re.search_captures(&input, &mut caps);
1049    /// assert_eq!(expected, caps.get_match());
1050    ///
1051    /// // But if we provide the bounds of the search within the context of the
1052    /// // entire haystack, then the search can take the surrounding context
1053    /// // into account. (And if we did find a match, it would be reported
1054    /// // as a valid offset into `haystack` instead of its sub-slice.)
1055    /// let expected = None;
1056    /// let input = Input::new(haystack).range(3..6);
1057    /// re.search_captures(&input, &mut caps);
1058    /// assert_eq!(expected, caps.get_match());
1059    ///
1060    /// # Ok::<(), Box<dyn std::error::Error>>(())
1061    /// ```
1062    #[inline]
1063    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064        caps.set_pattern(None);
1065        let pid = self.search_slots(input, caps.slots_mut());
1066        caps.set_pattern(pid);
1067    }
1068
1069    /// Executes a leftmost forward search and writes the spans of capturing
1070    /// groups that participated in a match into the provided `slots`, and
1071    /// returns the matching pattern ID. The contents of the slots for patterns
1072    /// other than the matching pattern are unspecified. If no match was found,
1073    /// then `None` is returned and the contents of `slots` is unspecified.
1074    ///
1075    /// This is like [`Regex::search`], but it accepts a raw slots slice
1076    /// instead of a `Captures` value. This is useful in contexts where you
1077    /// don't want or need to allocate a `Captures`.
1078    ///
1079    /// It is legal to pass _any_ number of slots to this routine. If the regex
1080    /// engine would otherwise write a slot offset that doesn't fit in the
1081    /// provided slice, then it is simply skipped. In general though, there are
1082    /// usually three slice lengths you might want to use:
1083    ///
1084    /// * An empty slice, if you only care about which pattern matched.
1085    /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1086    /// only care about the overall match spans for each matching pattern.
1087    /// * A slice with
1088    /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1089    /// permits recording match offsets for every capturing group in every
1090    /// pattern.
1091    ///
1092    /// # Example
1093    ///
1094    /// This example shows how to find the overall match offsets in a
1095    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1096    /// can put our slots right on the stack.
1097    ///
1098    /// ```
1099    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1100    /// use regex_automata::{meta::Regex, PatternID, Input};
1101    ///
1102    /// let re = Regex::new_many(&[
1103    ///     r"\pL+",
1104    ///     r"\d+",
1105    /// ])?;
1106    /// let input = Input::new("!@#123");
1107    ///
1108    /// // We only care about the overall match offsets here, so we just
1109    /// // allocate two slots for each pattern. Each slot records the start
1110    /// // and end of the match.
1111    /// let mut slots = [None; 4];
1112    /// let pid = re.search_slots(&input, &mut slots);
1113    /// assert_eq!(Some(PatternID::must(1)), pid);
1114    ///
1115    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1116    /// // See 'GroupInfo' for more details on the mapping between groups and
1117    /// // slot indices.
1118    /// let slot_start = pid.unwrap().as_usize() * 2;
1119    /// let slot_end = slot_start + 1;
1120    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1121    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1122    ///
1123    /// # Ok::<(), Box<dyn std::error::Error>>(())
1124    /// ```
1125    #[inline]
1126    pub fn search_slots(
1127        &self,
1128        input: &Input<'_>,
1129        slots: &mut [Option<NonMaxUsize>],
1130    ) -> Option<PatternID> {
1131        if self.imp.info.is_impossible(input) {
1132            return None;
1133        }
1134        let mut guard = self.pool.get();
1135        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136        // See 'Regex::search' for why we put the guard back explicitly.
1137        PoolGuard::put(guard);
1138        result
1139    }
1140
1141    /// Writes the set of patterns that match anywhere in the given search
1142    /// configuration to `patset`. If multiple patterns match at the same
1143    /// position and this `Regex` was configured with [`MatchKind::All`]
1144    /// semantics, then all matching patterns are written to the given set.
1145    ///
1146    /// Unless all of the patterns in this `Regex` are anchored, then generally
1147    /// speaking, this will scan the entire haystack.
1148    ///
1149    /// This search routine *does not* clear the pattern set. This gives some
1150    /// flexibility to the caller (e.g., running multiple searches with the
1151    /// same pattern set), but does make the API bug-prone if you're reusing
1152    /// the same pattern set for multiple searches but intended them to be
1153    /// independent.
1154    ///
1155    /// If a pattern ID matched but the given `PatternSet` does not have
1156    /// sufficient capacity to store it, then it is not inserted and silently
1157    /// dropped.
1158    ///
1159    /// # Example
1160    ///
1161    /// This example shows how to find all matching patterns in a haystack,
1162    /// even when some patterns match at the same position as other patterns.
1163    /// It is important that we configure the `Regex` with [`MatchKind::All`]
1164    /// semantics here, or else overlapping matches will not be reported.
1165    ///
1166    /// ```
1167    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1168    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1169    ///
1170    /// let patterns = &[
1171    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1172    /// ];
1173    /// let re = Regex::builder()
1174    ///     .configure(Regex::config().match_kind(MatchKind::All))
1175    ///     .build_many(patterns)?;
1176    ///
1177    /// let input = Input::new("foobar");
1178    /// let mut patset = PatternSet::new(re.pattern_len());
1179    /// re.which_overlapping_matches(&input, &mut patset);
1180    /// let expected = vec![0, 2, 3, 4, 6];
1181    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1182    /// assert_eq!(expected, got);
1183    ///
1184    /// # Ok::<(), Box<dyn std::error::Error>>(())
1185    /// ```
1186    #[inline]
1187    pub fn which_overlapping_matches(
1188        &self,
1189        input: &Input<'_>,
1190        patset: &mut PatternSet,
1191    ) {
1192        if self.imp.info.is_impossible(input) {
1193            return;
1194        }
1195        let mut guard = self.pool.get();
1196        let result = self
1197            .imp
1198            .strat
1199            .which_overlapping_matches(&mut guard, input, patset);
1200        // See 'Regex::search' for why we put the guard back explicitly.
1201        PoolGuard::put(guard);
1202        result
1203    }
1204}
1205
1206/// Lower level search routines that give more control, and require the caller
1207/// to provide an explicit [`Cache`] parameter.
1208impl Regex {
1209    /// This is like [`Regex::search`], but requires the caller to
1210    /// explicitly pass a [`Cache`].
1211    ///
1212    /// # Why pass a `Cache` explicitly?
1213    ///
1214    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1215    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1216    /// pool can be slower in some cases when a `Regex` is used from multiple
1217    /// threads simultaneously. Typically, performance only becomes an issue
1218    /// when there is heavy contention, which in turn usually only occurs
1219    /// when each thread's primary unit of work is a regex search on a small
1220    /// haystack.
1221    ///
1222    /// # Example
1223    ///
1224    /// ```
1225    /// use regex_automata::{meta::Regex, Input, Match};
1226    ///
1227    /// let re = Regex::new(r"Samwise|Sam")?;
1228    /// let mut cache = re.create_cache();
1229    /// let input = Input::new(
1230    ///     "one of the chief characters, Samwise the Brave",
1231    /// );
1232    /// assert_eq!(
1233    ///     Some(Match::must(0, 29..36)),
1234    ///     re.search_with(&mut cache, &input),
1235    /// );
1236    ///
1237    /// # Ok::<(), Box<dyn std::error::Error>>(())
1238    /// ```
1239    #[inline]
1240    pub fn search_with(
1241        &self,
1242        cache: &mut Cache,
1243        input: &Input<'_>,
1244    ) -> Option<Match> {
1245        if self.imp.info.is_impossible(input) {
1246            return None;
1247        }
1248        self.imp.strat.search(cache, input)
1249    }
1250
1251    /// This is like [`Regex::search_half`], but requires the caller to
1252    /// explicitly pass a [`Cache`].
1253    ///
1254    /// # Why pass a `Cache` explicitly?
1255    ///
1256    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1257    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1258    /// pool can be slower in some cases when a `Regex` is used from multiple
1259    /// threads simultaneously. Typically, performance only becomes an issue
1260    /// when there is heavy contention, which in turn usually only occurs
1261    /// when each thread's primary unit of work is a regex search on a small
1262    /// haystack.
1263    ///
1264    /// # Example
1265    ///
1266    /// ```
1267    /// use regex_automata::{meta::Regex, Input, HalfMatch};
1268    ///
1269    /// let re = Regex::new(r"Samwise|Sam")?;
1270    /// let mut cache = re.create_cache();
1271    /// let input = Input::new(
1272    ///     "one of the chief characters, Samwise the Brave",
1273    /// );
1274    /// assert_eq!(
1275    ///     Some(HalfMatch::must(0, 36)),
1276    ///     re.search_half_with(&mut cache, &input),
1277    /// );
1278    ///
1279    /// # Ok::<(), Box<dyn std::error::Error>>(())
1280    /// ```
1281    #[inline]
1282    pub fn search_half_with(
1283        &self,
1284        cache: &mut Cache,
1285        input: &Input<'_>,
1286    ) -> Option<HalfMatch> {
1287        if self.imp.info.is_impossible(input) {
1288            return None;
1289        }
1290        self.imp.strat.search_half(cache, input)
1291    }
1292
1293    /// This is like [`Regex::search_captures`], but requires the caller to
1294    /// explicitly pass a [`Cache`].
1295    ///
1296    /// # Why pass a `Cache` explicitly?
1297    ///
1298    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1299    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1300    /// pool can be slower in some cases when a `Regex` is used from multiple
1301    /// threads simultaneously. Typically, performance only becomes an issue
1302    /// when there is heavy contention, which in turn usually only occurs
1303    /// when each thread's primary unit of work is a regex search on a small
1304    /// haystack.
1305    ///
1306    /// # Example: specific pattern search
1307    ///
1308    /// This example shows how to build a multi-pattern `Regex` that permits
1309    /// searching for specific patterns.
1310    ///
1311    /// ```
1312    /// use regex_automata::{
1313    ///     meta::Regex,
1314    ///     Anchored, Match, PatternID, Input,
1315    /// };
1316    ///
1317    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1318    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1319    /// let haystack = "foo123";
1320    ///
1321    /// // Since we are using the default leftmost-first match and both
1322    /// // patterns match at the same starting position, only the first pattern
1323    /// // will be returned in this case when doing a search for any of the
1324    /// // patterns.
1325    /// let expected = Some(Match::must(0, 0..6));
1326    /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1327    /// assert_eq!(expected, caps.get_match());
1328    ///
1329    /// // But if we want to check whether some other pattern matches, then we
1330    /// // can provide its pattern ID.
1331    /// let expected = Some(Match::must(1, 0..6));
1332    /// let input = Input::new(haystack)
1333    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1334    /// re.search_captures_with(&mut cache, &input, &mut caps);
1335    /// assert_eq!(expected, caps.get_match());
1336    ///
1337    /// # Ok::<(), Box<dyn std::error::Error>>(())
1338    /// ```
1339    ///
1340    /// # Example: specifying the bounds of a search
1341    ///
1342    /// This example shows how providing the bounds of a search can produce
1343    /// different results than simply sub-slicing the haystack.
1344    ///
1345    /// ```
1346    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1347    /// use regex_automata::{meta::Regex, Match, Input};
1348    ///
1349    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1350    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1351    /// let haystack = "foo123bar";
1352    ///
1353    /// // Since we sub-slice the haystack, the search doesn't know about
1354    /// // the larger context and assumes that `123` is surrounded by word
1355    /// // boundaries. And of course, the match position is reported relative
1356    /// // to the sub-slice as well, which means we get `0..3` instead of
1357    /// // `3..6`.
1358    /// let expected = Some(Match::must(0, 0..3));
1359    /// let input = Input::new(&haystack[3..6]);
1360    /// re.search_captures_with(&mut cache, &input, &mut caps);
1361    /// assert_eq!(expected, caps.get_match());
1362    ///
1363    /// // But if we provide the bounds of the search within the context of the
1364    /// // entire haystack, then the search can take the surrounding context
1365    /// // into account. (And if we did find a match, it would be reported
1366    /// // as a valid offset into `haystack` instead of its sub-slice.)
1367    /// let expected = None;
1368    /// let input = Input::new(haystack).range(3..6);
1369    /// re.search_captures_with(&mut cache, &input, &mut caps);
1370    /// assert_eq!(expected, caps.get_match());
1371    ///
1372    /// # Ok::<(), Box<dyn std::error::Error>>(())
1373    /// ```
1374    #[inline]
1375    pub fn search_captures_with(
1376        &self,
1377        cache: &mut Cache,
1378        input: &Input<'_>,
1379        caps: &mut Captures,
1380    ) {
1381        caps.set_pattern(None);
1382        let pid = self.search_slots_with(cache, input, caps.slots_mut());
1383        caps.set_pattern(pid);
1384    }
1385
1386    /// This is like [`Regex::search_slots`], but requires the caller to
1387    /// explicitly pass a [`Cache`].
1388    ///
1389    /// # Why pass a `Cache` explicitly?
1390    ///
1391    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1392    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1393    /// pool can be slower in some cases when a `Regex` is used from multiple
1394    /// threads simultaneously. Typically, performance only becomes an issue
1395    /// when there is heavy contention, which in turn usually only occurs
1396    /// when each thread's primary unit of work is a regex search on a small
1397    /// haystack.
1398    ///
1399    /// # Example
1400    ///
1401    /// This example shows how to find the overall match offsets in a
1402    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1403    /// can put our slots right on the stack.
1404    ///
1405    /// ```
1406    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1407    /// use regex_automata::{meta::Regex, PatternID, Input};
1408    ///
1409    /// let re = Regex::new_many(&[
1410    ///     r"\pL+",
1411    ///     r"\d+",
1412    /// ])?;
1413    /// let mut cache = re.create_cache();
1414    /// let input = Input::new("!@#123");
1415    ///
1416    /// // We only care about the overall match offsets here, so we just
1417    /// // allocate two slots for each pattern. Each slot records the start
1418    /// // and end of the match.
1419    /// let mut slots = [None; 4];
1420    /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1421    /// assert_eq!(Some(PatternID::must(1)), pid);
1422    ///
1423    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1424    /// // See 'GroupInfo' for more details on the mapping between groups and
1425    /// // slot indices.
1426    /// let slot_start = pid.unwrap().as_usize() * 2;
1427    /// let slot_end = slot_start + 1;
1428    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1429    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1430    ///
1431    /// # Ok::<(), Box<dyn std::error::Error>>(())
1432    /// ```
1433    #[inline]
1434    pub fn search_slots_with(
1435        &self,
1436        cache: &mut Cache,
1437        input: &Input<'_>,
1438        slots: &mut [Option<NonMaxUsize>],
1439    ) -> Option<PatternID> {
1440        if self.imp.info.is_impossible(input) {
1441            return None;
1442        }
1443        self.imp.strat.search_slots(cache, input, slots)
1444    }
1445
1446    /// This is like [`Regex::which_overlapping_matches`], but requires the
1447    /// caller to explicitly pass a [`Cache`].
1448    ///
1449    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1450    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1451    /// pool can be slower in some cases when a `Regex` is used from multiple
1452    /// threads simultaneously. Typically, performance only becomes an issue
1453    /// when there is heavy contention, which in turn usually only occurs
1454    /// when each thread's primary unit of work is a regex search on a small
1455    /// haystack.
1456    ///
1457    /// # Why pass a `Cache` explicitly?
1458    ///
1459    /// # Example
1460    ///
1461    /// ```
1462    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1463    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1464    ///
1465    /// let patterns = &[
1466    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1467    /// ];
1468    /// let re = Regex::builder()
1469    ///     .configure(Regex::config().match_kind(MatchKind::All))
1470    ///     .build_many(patterns)?;
1471    /// let mut cache = re.create_cache();
1472    ///
1473    /// let input = Input::new("foobar");
1474    /// let mut patset = PatternSet::new(re.pattern_len());
1475    /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1476    /// let expected = vec![0, 2, 3, 4, 6];
1477    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1478    /// assert_eq!(expected, got);
1479    ///
1480    /// # Ok::<(), Box<dyn std::error::Error>>(())
1481    /// ```
1482    #[inline]
1483    pub fn which_overlapping_matches_with(
1484        &self,
1485        cache: &mut Cache,
1486        input: &Input<'_>,
1487        patset: &mut PatternSet,
1488    ) {
1489        if self.imp.info.is_impossible(input) {
1490            return;
1491        }
1492        self.imp.strat.which_overlapping_matches(cache, input, patset)
1493    }
1494}
1495
1496/// Various non-search routines for querying properties of a `Regex` and
1497/// convenience routines for creating [`Captures`] and [`Cache`] values.
1498impl Regex {
1499    /// Creates a new object for recording capture group offsets. This is used
1500    /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1501    ///
1502    /// This is a convenience routine for
1503    /// `Captures::all(re.group_info().clone())`. Callers may build other types
1504    /// of `Captures` values that record less information (and thus require
1505    /// less work from the regex engine) using [`Captures::matches`] and
1506    /// [`Captures::empty`].
1507    ///
1508    /// # Example
1509    ///
1510    /// This shows some alternatives to [`Regex::create_captures`]:
1511    ///
1512    /// ```
1513    /// use regex_automata::{
1514    ///     meta::Regex,
1515    ///     util::captures::Captures,
1516    ///     Match, PatternID, Span,
1517    /// };
1518    ///
1519    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1520    ///
1521    /// // This is equivalent to Regex::create_captures. It stores matching
1522    /// // offsets for all groups in the regex.
1523    /// let mut all = Captures::all(re.group_info().clone());
1524    /// re.captures("Bruce Springsteen", &mut all);
1525    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1526    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1527    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1528    ///
1529    /// // In this version, we only care about the implicit groups, which
1530    /// // means offsets for the explicit groups will be unavailable. It can
1531    /// // sometimes be faster to ask for fewer groups, since the underlying
1532    /// // regex engine needs to do less work to keep track of them.
1533    /// let mut matches = Captures::matches(re.group_info().clone());
1534    /// re.captures("Bruce Springsteen", &mut matches);
1535    /// // We still get the overall match info.
1536    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1537    /// // But now the explicit groups are unavailable.
1538    /// assert_eq!(None, matches.get_group_by_name("first"));
1539    /// assert_eq!(None, matches.get_group_by_name("last"));
1540    ///
1541    /// // Finally, in this version, we don't ask to keep track of offsets for
1542    /// // *any* groups. All we get back is whether a match occurred, and if
1543    /// // so, the ID of the pattern that matched.
1544    /// let mut empty = Captures::empty(re.group_info().clone());
1545    /// re.captures("Bruce Springsteen", &mut empty);
1546    /// // it's a match!
1547    /// assert!(empty.is_match());
1548    /// // for pattern ID 0
1549    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1550    /// // Match offsets are unavailable.
1551    /// assert_eq!(None, empty.get_match());
1552    /// // And of course, explicit groups are unavailable too.
1553    /// assert_eq!(None, empty.get_group_by_name("first"));
1554    /// assert_eq!(None, empty.get_group_by_name("last"));
1555    ///
1556    /// # Ok::<(), Box<dyn std::error::Error>>(())
1557    /// ```
1558    pub fn create_captures(&self) -> Captures {
1559        Captures::all(self.group_info().clone())
1560    }
1561
1562    /// Creates a new cache for use with lower level search APIs like
1563    /// [`Regex::search_with`].
1564    ///
1565    /// The cache returned should only be used for searches for this `Regex`.
1566    /// If you want to reuse the cache for another `Regex`, then you must call
1567    /// [`Cache::reset`] with that `Regex`.
1568    ///
1569    /// This is a convenience routine for [`Cache::new`].
1570    ///
1571    /// # Example
1572    ///
1573    /// ```
1574    /// use regex_automata::{meta::Regex, Input, Match};
1575    ///
1576    /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1577    /// let mut cache = re.create_cache();
1578    /// let input = Input::new("crazy janey and her mission man");
1579    /// assert_eq!(
1580    ///     Some(Match::must(0, 20..31)),
1581    ///     re.search_with(&mut cache, &input),
1582    /// );
1583    ///
1584    /// # Ok::<(), Box<dyn std::error::Error>>(())
1585    /// ```
1586    pub fn create_cache(&self) -> Cache {
1587        self.imp.strat.create_cache()
1588    }
1589
1590    /// Returns the total number of patterns in this regex.
1591    ///
1592    /// The standard [`Regex::new`] constructor always results in a `Regex`
1593    /// with a single pattern, but [`Regex::new_many`] permits building a
1594    /// multi-pattern regex.
1595    ///
1596    /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1597    /// any match is `Regex::pattern_len() - 1`. In the case where the number
1598    /// of patterns is `0`, a match is impossible.
1599    ///
1600    /// # Example
1601    ///
1602    /// ```
1603    /// use regex_automata::meta::Regex;
1604    ///
1605    /// let re = Regex::new(r"(?m)^[a-z]$")?;
1606    /// assert_eq!(1, re.pattern_len());
1607    ///
1608    /// let re = Regex::new_many::<&str>(&[])?;
1609    /// assert_eq!(0, re.pattern_len());
1610    ///
1611    /// let re = Regex::new_many(&["a", "b", "c"])?;
1612    /// assert_eq!(3, re.pattern_len());
1613    ///
1614    /// # Ok::<(), Box<dyn std::error::Error>>(())
1615    /// ```
1616    pub fn pattern_len(&self) -> usize {
1617        self.imp.info.pattern_len()
1618    }
1619
1620    /// Returns the total number of capturing groups.
1621    ///
1622    /// This includes the implicit capturing group corresponding to the
1623    /// entire match. Therefore, the minimum value returned is `1`.
1624    ///
1625    /// # Example
1626    ///
1627    /// This shows a few patterns and how many capture groups they have.
1628    ///
1629    /// ```
1630    /// use regex_automata::meta::Regex;
1631    ///
1632    /// let len = |pattern| {
1633    ///     Regex::new(pattern).map(|re| re.captures_len())
1634    /// };
1635    ///
1636    /// assert_eq!(1, len("a")?);
1637    /// assert_eq!(2, len("(a)")?);
1638    /// assert_eq!(3, len("(a)|(b)")?);
1639    /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1640    /// assert_eq!(2, len("(a)|b")?);
1641    /// assert_eq!(2, len("a|(b)")?);
1642    /// assert_eq!(2, len("(b)*")?);
1643    /// assert_eq!(2, len("(b)+")?);
1644    ///
1645    /// # Ok::<(), Box<dyn std::error::Error>>(())
1646    /// ```
1647    ///
1648    /// # Example: multiple patterns
1649    ///
1650    /// This routine also works for multiple patterns. The total number is
1651    /// the sum of the capture groups of each pattern.
1652    ///
1653    /// ```
1654    /// use regex_automata::meta::Regex;
1655    ///
1656    /// let len = |patterns| {
1657    ///     Regex::new_many(patterns).map(|re| re.captures_len())
1658    /// };
1659    ///
1660    /// assert_eq!(2, len(&["a", "b"])?);
1661    /// assert_eq!(4, len(&["(a)", "(b)"])?);
1662    /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1663    /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1664    /// assert_eq!(3, len(&["(a)", "b"])?);
1665    /// assert_eq!(3, len(&["a", "(b)"])?);
1666    /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1667    /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1668    ///
1669    /// # Ok::<(), Box<dyn std::error::Error>>(())
1670    /// ```
1671    pub fn captures_len(&self) -> usize {
1672        self.imp
1673            .info
1674            .props_union()
1675            .explicit_captures_len()
1676            .saturating_add(self.pattern_len())
1677    }
1678
1679    /// Returns the total number of capturing groups that appear in every
1680    /// possible match.
1681    ///
1682    /// If the number of capture groups can vary depending on the match, then
1683    /// this returns `None`. That is, a value is only returned when the number
1684    /// of matching groups is invariant or "static."
1685    ///
1686    /// Note that like [`Regex::captures_len`], this **does** include the
1687    /// implicit capturing group corresponding to the entire match. Therefore,
1688    /// when a non-None value is returned, it is guaranteed to be at least `1`.
1689    /// Stated differently, a return value of `Some(0)` is impossible.
1690    ///
1691    /// # Example
1692    ///
1693    /// This shows a few cases where a static number of capture groups is
1694    /// available and a few cases where it is not.
1695    ///
1696    /// ```
1697    /// use regex_automata::meta::Regex;
1698    ///
1699    /// let len = |pattern| {
1700    ///     Regex::new(pattern).map(|re| re.static_captures_len())
1701    /// };
1702    ///
1703    /// assert_eq!(Some(1), len("a")?);
1704    /// assert_eq!(Some(2), len("(a)")?);
1705    /// assert_eq!(Some(2), len("(a)|(b)")?);
1706    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1707    /// assert_eq!(None, len("(a)|b")?);
1708    /// assert_eq!(None, len("a|(b)")?);
1709    /// assert_eq!(None, len("(b)*")?);
1710    /// assert_eq!(Some(2), len("(b)+")?);
1711    ///
1712    /// # Ok::<(), Box<dyn std::error::Error>>(())
1713    /// ```
1714    ///
1715    /// # Example: multiple patterns
1716    ///
1717    /// This property extends to regexes with multiple patterns as well. In
1718    /// order for their to be a static number of capture groups in this case,
1719    /// every pattern must have the same static number.
1720    ///
1721    /// ```
1722    /// use regex_automata::meta::Regex;
1723    ///
1724    /// let len = |patterns| {
1725    ///     Regex::new_many(patterns).map(|re| re.static_captures_len())
1726    /// };
1727    ///
1728    /// assert_eq!(Some(1), len(&["a", "b"])?);
1729    /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1730    /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1731    /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1732    /// assert_eq!(None, len(&["(a)", "b"])?);
1733    /// assert_eq!(None, len(&["a", "(b)"])?);
1734    /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1735    /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1736    ///
1737    /// # Ok::<(), Box<dyn std::error::Error>>(())
1738    /// ```
1739    #[inline]
1740    pub fn static_captures_len(&self) -> Option<usize> {
1741        self.imp
1742            .info
1743            .props_union()
1744            .static_explicit_captures_len()
1745            .map(|len| len.saturating_add(1))
1746    }
1747
1748    /// Return information about the capture groups in this `Regex`.
1749    ///
1750    /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1751    /// is responsible for maintaining a mapping between the capture groups
1752    /// in the concrete syntax of zero or more regex patterns and their
1753    /// internal representation used by some of the regex matchers. It is also
1754    /// responsible for maintaining a mapping between the name of each group
1755    /// (if one exists) and its corresponding group index.
1756    ///
1757    /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1758    /// which is some mutable space where group offsets are stored as a result
1759    /// of a search.
1760    ///
1761    /// # Example
1762    ///
1763    /// This shows some alternatives to [`Regex::create_captures`]:
1764    ///
1765    /// ```
1766    /// use regex_automata::{
1767    ///     meta::Regex,
1768    ///     util::captures::Captures,
1769    ///     Match, PatternID, Span,
1770    /// };
1771    ///
1772    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1773    ///
1774    /// // This is equivalent to Regex::create_captures. It stores matching
1775    /// // offsets for all groups in the regex.
1776    /// let mut all = Captures::all(re.group_info().clone());
1777    /// re.captures("Bruce Springsteen", &mut all);
1778    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1779    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1780    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1781    ///
1782    /// // In this version, we only care about the implicit groups, which
1783    /// // means offsets for the explicit groups will be unavailable. It can
1784    /// // sometimes be faster to ask for fewer groups, since the underlying
1785    /// // regex engine needs to do less work to keep track of them.
1786    /// let mut matches = Captures::matches(re.group_info().clone());
1787    /// re.captures("Bruce Springsteen", &mut matches);
1788    /// // We still get the overall match info.
1789    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1790    /// // But now the explicit groups are unavailable.
1791    /// assert_eq!(None, matches.get_group_by_name("first"));
1792    /// assert_eq!(None, matches.get_group_by_name("last"));
1793    ///
1794    /// // Finally, in this version, we don't ask to keep track of offsets for
1795    /// // *any* groups. All we get back is whether a match occurred, and if
1796    /// // so, the ID of the pattern that matched.
1797    /// let mut empty = Captures::empty(re.group_info().clone());
1798    /// re.captures("Bruce Springsteen", &mut empty);
1799    /// // it's a match!
1800    /// assert!(empty.is_match());
1801    /// // for pattern ID 0
1802    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1803    /// // Match offsets are unavailable.
1804    /// assert_eq!(None, empty.get_match());
1805    /// // And of course, explicit groups are unavailable too.
1806    /// assert_eq!(None, empty.get_group_by_name("first"));
1807    /// assert_eq!(None, empty.get_group_by_name("last"));
1808    ///
1809    /// # Ok::<(), Box<dyn std::error::Error>>(())
1810    /// ```
1811    #[inline]
1812    pub fn group_info(&self) -> &GroupInfo {
1813        self.imp.strat.group_info()
1814    }
1815
1816    /// Returns the configuration object used to build this `Regex`.
1817    ///
1818    /// If no configuration object was explicitly passed, then the
1819    /// configuration returned represents the default.
1820    #[inline]
1821    pub fn get_config(&self) -> &Config {
1822        self.imp.info.config()
1823    }
1824
1825    /// Returns true if this regex has a high chance of being "accelerated."
1826    ///
1827    /// The precise meaning of "accelerated" is specifically left unspecified,
1828    /// but the general meaning is that the search is a high likelihood of
1829    /// running faster than a character-at-a-time loop inside a standard
1830    /// regex engine.
1831    ///
1832    /// When a regex is accelerated, it is only a *probabilistic* claim. That
1833    /// is, just because the regex is believed to be accelerated, that doesn't
1834    /// mean it will definitely execute searches very fast. Similarly, if a
1835    /// regex is *not* accelerated, that is also a probabilistic claim. That
1836    /// is, a regex for which `is_accelerated` returns `false` could still run
1837    /// searches more quickly than a regex for which `is_accelerated` returns
1838    /// `true`.
1839    ///
1840    /// Whether a regex is marked as accelerated or not is dependent on
1841    /// implementations details that may change in a semver compatible release.
1842    /// That is, a regex that is accelerated in a `x.y.1` release might not be
1843    /// accelerated in a `x.y.2` release.
1844    ///
1845    /// Basically, the value of acceleration boils down to a hedge: a hodge
1846    /// podge of internal heuristics combine to make a probabilistic guess
1847    /// that this regex search may run "fast." The value in knowing this from
1848    /// a caller's perspective is that it may act as a signal that no further
1849    /// work should be done to accelerate a search. For example, a grep-like
1850    /// tool might try to do some extra work extracting literals from a regex
1851    /// to create its own heuristic acceleration strategies. But it might
1852    /// choose to defer to this crate's acceleration strategy if one exists.
1853    /// This routine permits querying whether such a strategy is active for a
1854    /// particular regex.
1855    ///
1856    /// # Example
1857    ///
1858    /// ```
1859    /// use regex_automata::meta::Regex;
1860    ///
1861    /// // A simple literal is very likely to be accelerated.
1862    /// let re = Regex::new(r"foo")?;
1863    /// assert!(re.is_accelerated());
1864    ///
1865    /// // A regex with no literals is likely to not be accelerated.
1866    /// let re = Regex::new(r"\w")?;
1867    /// assert!(!re.is_accelerated());
1868    ///
1869    /// # Ok::<(), Box<dyn std::error::Error>>(())
1870    /// ```
1871    #[inline]
1872    pub fn is_accelerated(&self) -> bool {
1873        self.imp.strat.is_accelerated()
1874    }
1875
1876    /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1877    ///
1878    /// Note that currently, there is no high level configuration for setting
1879    /// a limit on the specific value returned by this routine. Instead, the
1880    /// following routines can be used to control heap memory at a bit of a
1881    /// lower level:
1882    ///
1883    /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1884    /// allowed to be.
1885    /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1886    /// allowed to be.
1887    /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1888    /// DFA is permitted to allocate to store its transition table.
1889    /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1890    /// allowed to be.
1891    /// * [`Config::dfa_state_limit`] controls the conditions under which the
1892    /// meta regex engine will even attempt to build a fully compiled DFA.
1893    #[inline]
1894    pub fn memory_usage(&self) -> usize {
1895        self.imp.strat.memory_usage()
1896    }
1897}
1898
1899impl Clone for Regex {
1900    fn clone(&self) -> Regex {
1901        let imp = Arc::clone(&self.imp);
1902        let pool = {
1903            let strat = Arc::clone(&imp.strat);
1904            let create: CachePoolFn = Box::new(move || strat.create_cache());
1905            Pool::new(create)
1906        };
1907        Regex { imp, pool }
1908    }
1909}
1910
1911#[derive(Clone, Debug)]
1912pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1913
1914#[derive(Clone, Debug)]
1915struct RegexInfoI {
1916    config: Config,
1917    props: Vec<hir::Properties>,
1918    props_union: hir::Properties,
1919}
1920
1921impl RegexInfo {
1922    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923        // Collect all of the properties from each of the HIRs, and also
1924        // union them into one big set of properties representing all HIRs
1925        // as if they were in one big alternation.
1926        let mut props = vec![];
1927        for hir in hirs.iter() {
1928            props.push(hir.properties().clone());
1929        }
1930        let props_union = hir::Properties::union(&props);
1931
1932        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933    }
1934
1935    pub(crate) fn config(&self) -> &Config {
1936        &self.0.config
1937    }
1938
1939    pub(crate) fn props(&self) -> &[hir::Properties] {
1940        &self.0.props
1941    }
1942
1943    pub(crate) fn props_union(&self) -> &hir::Properties {
1944        &self.0.props_union
1945    }
1946
1947    pub(crate) fn pattern_len(&self) -> usize {
1948        self.props().len()
1949    }
1950
1951    pub(crate) fn memory_usage(&self) -> usize {
1952        self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1953            + self.props_union().memory_usage()
1954    }
1955
1956    /// Returns true when the search is guaranteed to be anchored. That is,
1957    /// when a match is reported, its offset is guaranteed to correspond to
1958    /// the start of the search.
1959    ///
1960    /// This includes returning true when `input` _isn't_ anchored but the
1961    /// underlying regex is.
1962    #[cfg_attr(feature = "perf-inline", inline(always))]
1963    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964        input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965    }
1966
1967    /// Returns true when this regex is always anchored to the start of a
1968    /// search. And in particular, that regardless of an `Input` configuration,
1969    /// if any match is reported it must start at `0`.
1970    #[cfg_attr(feature = "perf-inline", inline(always))]
1971    pub(crate) fn is_always_anchored_start(&self) -> bool {
1972        use regex_syntax::hir::Look;
1973        self.props_union().look_set_prefix().contains(Look::Start)
1974    }
1975
1976    /// Returns true when this regex is always anchored to the end of a
1977    /// search. And in particular, that regardless of an `Input` configuration,
1978    /// if any match is reported it must end at the end of the haystack.
1979    #[cfg_attr(feature = "perf-inline", inline(always))]
1980    pub(crate) fn is_always_anchored_end(&self) -> bool {
1981        use regex_syntax::hir::Look;
1982        self.props_union().look_set_suffix().contains(Look::End)
1983    }
1984
1985    /// Returns true if and only if it is known that a match is impossible
1986    /// for the given input. This is useful for short-circuiting and avoiding
1987    /// running the regex engine if it's known no match can be reported.
1988    ///
1989    /// Note that this doesn't necessarily detect every possible case. For
1990    /// example, when `pattern_len() == 0`, a match is impossible, but that
1991    /// case is so rare that it's fine to be handled by the regex engine
1992    /// itself. That is, it's not worth the cost of adding it here in order to
1993    /// make it a little faster. The reason is that this is called for every
1994    /// search. so there is some cost to adding checks here. Arguably, some of
1995    /// the checks that are here already probably shouldn't be here...
1996    #[cfg_attr(feature = "perf-inline", inline(always))]
1997    fn is_impossible(&self, input: &Input<'_>) -> bool {
1998        // The underlying regex is anchored, so if we don't start the search
1999        // at position 0, a match is impossible, because the anchor can only
2000        // match at position 0.
2001        if input.start() > 0 && self.is_always_anchored_start() {
2002            return true;
2003        }
2004        // Same idea, but for the end anchor.
2005        if input.end() < input.haystack().len()
2006            && self.is_always_anchored_end()
2007        {
2008            return true;
2009        }
2010        // If the haystack is smaller than the minimum length required, then
2011        // we know there can be no match.
2012        let minlen = match self.props_union().minimum_len() {
2013            None => return false,
2014            Some(minlen) => minlen,
2015        };
2016        if input.get_span().len() < minlen {
2017            return true;
2018        }
2019        // Same idea as minimum, but for maximum. This is trickier. We can
2020        // only apply the maximum when we know the entire span that we're
2021        // searching *has* to match according to the regex (and possibly the
2022        // input configuration). If we know there is too much for the regex
2023        // to match, we can bail early.
2024        //
2025        // I don't think we can apply the maximum otherwise unfortunately.
2026        if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027            let maxlen = match self.props_union().maximum_len() {
2028                None => return false,
2029                Some(maxlen) => maxlen,
2030            };
2031            if input.get_span().len() > maxlen {
2032                return true;
2033            }
2034        }
2035        false
2036    }
2037}
2038
2039/// An iterator over all non-overlapping matches.
2040///
2041/// The iterator yields a [`Match`] value until no more matches could be found.
2042///
2043/// The lifetime parameters are as follows:
2044///
2045/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2046/// * `'h` represents the lifetime of the haystack being searched.
2047///
2048/// This iterator can be created with the [`Regex::find_iter`] method.
2049#[derive(Debug)]
2050pub struct FindMatches<'r, 'h> {
2051    re: &'r Regex,
2052    cache: CachePoolGuard<'r>,
2053    it: iter::Searcher<'h>,
2054}
2055
2056impl<'r, 'h> FindMatches<'r, 'h> {
2057    /// Returns the `Regex` value that created this iterator.
2058    #[inline]
2059    pub fn regex(&self) -> &'r Regex {
2060        self.re
2061    }
2062
2063    /// Returns the current `Input` associated with this iterator.
2064    ///
2065    /// The `start` position on the given `Input` may change during iteration,
2066    /// but all other values are guaranteed to remain invariant.
2067    #[inline]
2068    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2069        self.it.input()
2070    }
2071}
2072
2073impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2074    type Item = Match;
2075
2076    #[inline]
2077    fn next(&mut self) -> Option<Match> {
2078        let FindMatches { re, ref mut cache, ref mut it } = *self;
2079        it.advance(|input| Ok(re.search_with(cache, input)))
2080    }
2081
2082    #[inline]
2083    fn count(self) -> usize {
2084        // If all we care about is a count of matches, then we only need to
2085        // find the end position of each match. This can give us a 2x perf
2086        // boost in some cases, because it avoids needing to do a reverse scan
2087        // to find the start of a match.
2088        let FindMatches { re, mut cache, it } = self;
2089        // This does the deref for PoolGuard once instead of every iter.
2090        let cache = &mut *cache;
2091        it.into_half_matches_iter(
2092            |input| Ok(re.search_half_with(cache, input)),
2093        )
2094        .count()
2095    }
2096}
2097
2098impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2099
2100/// An iterator over all non-overlapping leftmost matches with their capturing
2101/// groups.
2102///
2103/// The iterator yields a [`Captures`] value until no more matches could be
2104/// found.
2105///
2106/// The lifetime parameters are as follows:
2107///
2108/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2109/// * `'h` represents the lifetime of the haystack being searched.
2110///
2111/// This iterator can be created with the [`Regex::captures_iter`] method.
2112#[derive(Debug)]
2113pub struct CapturesMatches<'r, 'h> {
2114    re: &'r Regex,
2115    cache: CachePoolGuard<'r>,
2116    caps: Captures,
2117    it: iter::Searcher<'h>,
2118}
2119
2120impl<'r, 'h> CapturesMatches<'r, 'h> {
2121    /// Returns the `Regex` value that created this iterator.
2122    #[inline]
2123    pub fn regex(&self) -> &'r Regex {
2124        self.re
2125    }
2126
2127    /// Returns the current `Input` associated with this iterator.
2128    ///
2129    /// The `start` position on the given `Input` may change during iteration,
2130    /// but all other values are guaranteed to remain invariant.
2131    #[inline]
2132    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2133        self.it.input()
2134    }
2135}
2136
2137impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2138    type Item = Captures;
2139
2140    #[inline]
2141    fn next(&mut self) -> Option<Captures> {
2142        // Splitting 'self' apart seems necessary to appease borrowck.
2143        let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2144            *self;
2145        let _ = it.advance(|input| {
2146            re.search_captures_with(cache, input, caps);
2147            Ok(caps.get_match())
2148        });
2149        if caps.is_match() {
2150            Some(caps.clone())
2151        } else {
2152            None
2153        }
2154    }
2155
2156    #[inline]
2157    fn count(self) -> usize {
2158        let CapturesMatches { re, mut cache, it, .. } = self;
2159        // This does the deref for PoolGuard once instead of every iter.
2160        let cache = &mut *cache;
2161        it.into_half_matches_iter(
2162            |input| Ok(re.search_half_with(cache, input)),
2163        )
2164        .count()
2165    }
2166}
2167
2168impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2169
2170/// Yields all substrings delimited by a regular expression match.
2171///
2172/// The spans correspond to the offsets between matches.
2173///
2174/// The lifetime parameters are as follows:
2175///
2176/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2177/// * `'h` represents the lifetime of the haystack being searched.
2178///
2179/// This iterator can be created with the [`Regex::split`] method.
2180#[derive(Debug)]
2181pub struct Split<'r, 'h> {
2182    finder: FindMatches<'r, 'h>,
2183    last: usize,
2184}
2185
2186impl<'r, 'h> Split<'r, 'h> {
2187    /// Returns the current `Input` associated with this iterator.
2188    ///
2189    /// The `start` position on the given `Input` may change during iteration,
2190    /// but all other values are guaranteed to remain invariant.
2191    #[inline]
2192    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2193        self.finder.input()
2194    }
2195}
2196
2197impl<'r, 'h> Iterator for Split<'r, 'h> {
2198    type Item = Span;
2199
2200    fn next(&mut self) -> Option<Span> {
2201        match self.finder.next() {
2202            None => {
2203                let len = self.finder.it.input().haystack().len();
2204                if self.last > len {
2205                    None
2206                } else {
2207                    let span = Span::from(self.last..len);
2208                    self.last = len + 1; // Next call will return None
2209                    Some(span)
2210                }
2211            }
2212            Some(m) => {
2213                let span = Span::from(self.last..m.start());
2214                self.last = m.end();
2215                Some(span)
2216            }
2217        }
2218    }
2219}
2220
2221impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2222
2223/// Yields at most `N` spans delimited by a regular expression match.
2224///
2225/// The spans correspond to the offsets between matches. The last span will be
2226/// whatever remains after splitting.
2227///
2228/// The lifetime parameters are as follows:
2229///
2230/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2231/// * `'h` represents the lifetime of the haystack being searched.
2232///
2233/// This iterator can be created with the [`Regex::splitn`] method.
2234#[derive(Debug)]
2235pub struct SplitN<'r, 'h> {
2236    splits: Split<'r, 'h>,
2237    limit: usize,
2238}
2239
2240impl<'r, 'h> SplitN<'r, 'h> {
2241    /// Returns the current `Input` associated with this iterator.
2242    ///
2243    /// The `start` position on the given `Input` may change during iteration,
2244    /// but all other values are guaranteed to remain invariant.
2245    #[inline]
2246    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2247        self.splits.input()
2248    }
2249}
2250
2251impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2252    type Item = Span;
2253
2254    fn next(&mut self) -> Option<Span> {
2255        if self.limit == 0 {
2256            return None;
2257        }
2258
2259        self.limit -= 1;
2260        if self.limit > 0 {
2261            return self.splits.next();
2262        }
2263
2264        let len = self.splits.finder.it.input().haystack().len();
2265        if self.splits.last > len {
2266            // We've already returned all substrings.
2267            None
2268        } else {
2269            // self.n == 0, so future calls will return None immediately
2270            Some(Span::from(self.splits.last..len))
2271        }
2272    }
2273
2274    fn size_hint(&self) -> (usize, Option<usize>) {
2275        (0, Some(self.limit))
2276    }
2277}
2278
2279impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2280
2281/// Represents mutable scratch space used by regex engines during a search.
2282///
2283/// Most of the regex engines in this crate require some kind of
2284/// mutable state in order to execute a search. This mutable state is
2285/// explicitly separated from the core regex object (such as a
2286/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2287/// object can be shared across multiple threads simultaneously without any
2288/// synchronization. Conversely, a `Cache` must either be duplicated if using
2289/// the same `Regex` from multiple threads, or else there must be some kind of
2290/// synchronization that guarantees exclusive access while it's in use by one
2291/// thread.
2292///
2293/// A `Regex` attempts to do this synchronization for you by using a thread
2294/// pool internally. Its size scales roughly with the number of simultaneous
2295/// regex searches.
2296///
2297/// For cases where one does not want to rely on a `Regex`'s internal thread
2298/// pool, lower level routines such as [`Regex::search_with`] are provided
2299/// that permit callers to pass a `Cache` into the search routine explicitly.
2300///
2301/// General advice is that the thread pool is often more than good enough.
2302/// However, it may be possible to observe the effects of its latency,
2303/// especially when searching many small haystacks from many threads
2304/// simultaneously.
2305///
2306/// Caches can be created from their corresponding `Regex` via
2307/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2308/// that created it, or the `Regex` that was most recently used to reset it
2309/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2310/// panics or incorrect results.
2311///
2312/// # Example
2313///
2314/// ```
2315/// use regex_automata::{meta::Regex, Input, Match};
2316///
2317/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2318/// let mut cache = re.create_cache();
2319/// let input = Input::new("crazy janey and her mission man");
2320/// assert_eq!(
2321///     Some(Match::must(0, 20..31)),
2322///     re.search_with(&mut cache, &input),
2323/// );
2324///
2325/// # Ok::<(), Box<dyn std::error::Error>>(())
2326/// ```
2327#[derive(Debug, Clone)]
2328pub struct Cache {
2329    pub(crate) capmatches: Captures,
2330    pub(crate) pikevm: wrappers::PikeVMCache,
2331    pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2332    pub(crate) onepass: wrappers::OnePassCache,
2333    pub(crate) hybrid: wrappers::HybridCache,
2334    pub(crate) revhybrid: wrappers::ReverseHybridCache,
2335}
2336
2337impl Cache {
2338    /// Creates a new `Cache` for use with this regex.
2339    ///
2340    /// The cache returned should only be used for searches for the given
2341    /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2342    /// must call [`Cache::reset`] with that `Regex`.
2343    pub fn new(re: &Regex) -> Cache {
2344        re.create_cache()
2345    }
2346
2347    /// Reset this cache such that it can be used for searching with the given
2348    /// `Regex` (and only that `Regex`).
2349    ///
2350    /// A cache reset permits potentially reusing memory already allocated in
2351    /// this cache with a different `Regex`.
2352    ///
2353    /// # Example
2354    ///
2355    /// This shows how to re-purpose a cache for use with a different `Regex`.
2356    ///
2357    /// ```
2358    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2359    /// use regex_automata::{meta::Regex, Match, Input};
2360    ///
2361    /// let re1 = Regex::new(r"\w")?;
2362    /// let re2 = Regex::new(r"\W")?;
2363    ///
2364    /// let mut cache = re1.create_cache();
2365    /// assert_eq!(
2366    ///     Some(Match::must(0, 0..2)),
2367    ///     re1.search_with(&mut cache, &Input::new("Δ")),
2368    /// );
2369    ///
2370    /// // Using 'cache' with re2 is not allowed. It may result in panics or
2371    /// // incorrect results. In order to re-purpose the cache, we must reset
2372    /// // it with the Regex we'd like to use it with.
2373    /// //
2374    /// // Similarly, after this reset, using the cache with 're1' is also not
2375    /// // allowed.
2376    /// cache.reset(&re2);
2377    /// assert_eq!(
2378    ///     Some(Match::must(0, 0..3)),
2379    ///     re2.search_with(&mut cache, &Input::new("☃")),
2380    /// );
2381    ///
2382    /// # Ok::<(), Box<dyn std::error::Error>>(())
2383    /// ```
2384    pub fn reset(&mut self, re: &Regex) {
2385        re.imp.strat.reset_cache(self)
2386    }
2387
2388    /// Returns the heap memory usage, in bytes, of this cache.
2389    ///
2390    /// This does **not** include the stack size used up by this cache. To
2391    /// compute that, use `std::mem::size_of::<Cache>()`.
2392    pub fn memory_usage(&self) -> usize {
2393        let mut bytes = 0;
2394        bytes += self.pikevm.memory_usage();
2395        bytes += self.backtrack.memory_usage();
2396        bytes += self.onepass.memory_usage();
2397        bytes += self.hybrid.memory_usage();
2398        bytes += self.revhybrid.memory_usage();
2399        bytes
2400    }
2401}
2402
2403/// An object describing the configuration of a `Regex`.
2404///
2405/// This configuration only includes options for the
2406/// non-syntax behavior of a `Regex`, and can be applied via the
2407/// [`Builder::configure`] method. For configuring the syntax options, see
2408/// [`util::syntax::Config`](crate::util::syntax::Config).
2409///
2410/// # Example: lower the NFA size limit
2411///
2412/// In some cases, the default size limit might be too big. The size limit can
2413/// be lowered, which will prevent large regex patterns from compiling.
2414///
2415/// ```
2416/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2417/// use regex_automata::meta::Regex;
2418///
2419/// let result = Regex::builder()
2420///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2421///     // Not even 20KB is enough to build a single large Unicode class!
2422///     .build(r"\pL");
2423/// assert!(result.is_err());
2424///
2425/// # Ok::<(), Box<dyn std::error::Error>>(())
2426/// ```
2427#[derive(Clone, Debug, Default)]
2428pub struct Config {
2429    // As with other configuration types in this crate, we put all our knobs
2430    // in options so that we can distinguish between "default" and "not set."
2431    // This makes it possible to easily combine multiple configurations
2432    // without default values overwriting explicitly specified values. See the
2433    // 'overwrite' method.
2434    //
2435    // For docs on the fields below, see the corresponding method setters.
2436    match_kind: Option<MatchKind>,
2437    utf8_empty: Option<bool>,
2438    autopre: Option<bool>,
2439    pre: Option<Option<Prefilter>>,
2440    which_captures: Option<WhichCaptures>,
2441    nfa_size_limit: Option<Option<usize>>,
2442    onepass_size_limit: Option<Option<usize>>,
2443    hybrid_cache_capacity: Option<usize>,
2444    hybrid: Option<bool>,
2445    dfa: Option<bool>,
2446    dfa_size_limit: Option<Option<usize>>,
2447    dfa_state_limit: Option<Option<usize>>,
2448    onepass: Option<bool>,
2449    backtrack: Option<bool>,
2450    byte_classes: Option<bool>,
2451    line_terminator: Option<u8>,
2452}
2453
2454impl Config {
2455    /// Create a new configuration object for a `Regex`.
2456    pub fn new() -> Config {
2457        Config::default()
2458    }
2459
2460    /// Set the match semantics for a `Regex`.
2461    ///
2462    /// The default value is [`MatchKind::LeftmostFirst`].
2463    ///
2464    /// # Example
2465    ///
2466    /// ```
2467    /// use regex_automata::{meta::Regex, Match, MatchKind};
2468    ///
2469    /// // By default, leftmost-first semantics are used, which
2470    /// // disambiguates matches at the same position by selecting
2471    /// // the one that corresponds earlier in the pattern.
2472    /// let re = Regex::new("sam|samwise")?;
2473    /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2474    ///
2475    /// // But with 'all' semantics, match priority is ignored
2476    /// // and all match states are included. When coupled with
2477    /// // a leftmost search, the search will report the last
2478    /// // possible match.
2479    /// let re = Regex::builder()
2480    ///     .configure(Regex::config().match_kind(MatchKind::All))
2481    ///     .build("sam|samwise")?;
2482    /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2483    /// // Beware that this can lead to skipping matches!
2484    /// // Usually 'all' is used for anchored reverse searches
2485    /// // only, or for overlapping searches.
2486    /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2487    ///
2488    /// # Ok::<(), Box<dyn std::error::Error>>(())
2489    /// ```
2490    pub fn match_kind(self, kind: MatchKind) -> Config {
2491        Config { match_kind: Some(kind), ..self }
2492    }
2493
2494    /// Toggles whether empty matches are permitted to occur between the code
2495    /// units of a UTF-8 encoded codepoint.
2496    ///
2497    /// This should generally be enabled when search a `&str` or anything that
2498    /// you otherwise know is valid UTF-8. It should be disabled in all other
2499    /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2500    /// then behavior is unspecified.
2501    ///
2502    /// By default, this is enabled.
2503    ///
2504    /// # Example
2505    ///
2506    /// ```
2507    /// use regex_automata::{meta::Regex, Match};
2508    ///
2509    /// let re = Regex::new("")?;
2510    /// let got: Vec<Match> = re.find_iter("☃").collect();
2511    /// // Matches only occur at the beginning and end of the snowman.
2512    /// assert_eq!(got, vec![
2513    ///     Match::must(0, 0..0),
2514    ///     Match::must(0, 3..3),
2515    /// ]);
2516    ///
2517    /// let re = Regex::builder()
2518    ///     .configure(Regex::config().utf8_empty(false))
2519    ///     .build("")?;
2520    /// let got: Vec<Match> = re.find_iter("☃").collect();
2521    /// // Matches now occur at every position!
2522    /// assert_eq!(got, vec![
2523    ///     Match::must(0, 0..0),
2524    ///     Match::must(0, 1..1),
2525    ///     Match::must(0, 2..2),
2526    ///     Match::must(0, 3..3),
2527    /// ]);
2528    ///
2529    /// Ok::<(), Box<dyn std::error::Error>>(())
2530    /// ```
2531    pub fn utf8_empty(self, yes: bool) -> Config {
2532        Config { utf8_empty: Some(yes), ..self }
2533    }
2534
2535    /// Toggles whether automatic prefilter support is enabled.
2536    ///
2537    /// If this is disabled and [`Config::prefilter`] is not set, then the
2538    /// meta regex engine will not use any prefilters. This can sometimes
2539    /// be beneficial in cases where you know (or have measured) that the
2540    /// prefilter leads to overall worse search performance.
2541    ///
2542    /// By default, this is enabled.
2543    ///
2544    /// # Example
2545    ///
2546    /// ```
2547    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2548    /// use regex_automata::{meta::Regex, Match};
2549    ///
2550    /// let re = Regex::builder()
2551    ///     .configure(Regex::config().auto_prefilter(false))
2552    ///     .build(r"Bruce \w+")?;
2553    /// let hay = "Hello Bruce Springsteen!";
2554    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2555    ///
2556    /// Ok::<(), Box<dyn std::error::Error>>(())
2557    /// ```
2558    pub fn auto_prefilter(self, yes: bool) -> Config {
2559        Config { autopre: Some(yes), ..self }
2560    }
2561
2562    /// Overrides and sets the prefilter to use inside a `Regex`.
2563    ///
2564    /// This permits one to forcefully set a prefilter in cases where the
2565    /// caller knows better than whatever the automatic prefilter logic is
2566    /// capable of.
2567    ///
2568    /// By default, this is set to `None` and an automatic prefilter will be
2569    /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2570    /// enabled, which it is by default.)
2571    ///
2572    /// # Example
2573    ///
2574    /// This example shows how to set your own prefilter. In the case of a
2575    /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2576    /// constructed in a way that it will look for occurrences of `Bruce `.
2577    /// In most cases, this is the best choice. But in some cases, it may be
2578    /// the case that running `memchr` on `B` is the best choice. One can
2579    /// achieve that behavior by overriding the automatic prefilter logic
2580    /// and providing a prefilter that just matches `B`.
2581    ///
2582    /// ```
2583    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2584    /// use regex_automata::{
2585    ///     meta::Regex,
2586    ///     util::prefilter::Prefilter,
2587    ///     Match, MatchKind,
2588    /// };
2589    ///
2590    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2591    ///     .expect("a prefilter");
2592    /// let re = Regex::builder()
2593    ///     .configure(Regex::config().prefilter(Some(pre)))
2594    ///     .build(r"Bruce \w+")?;
2595    /// let hay = "Hello Bruce Springsteen!";
2596    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2597    ///
2598    /// # Ok::<(), Box<dyn std::error::Error>>(())
2599    /// ```
2600    ///
2601    /// # Example: incorrect prefilters can lead to incorrect results!
2602    ///
2603    /// Be warned that setting an incorrect prefilter can lead to missed
2604    /// matches. So if you use this option, ensure your prefilter can _never_
2605    /// report false negatives. (A false positive is, on the other hand, quite
2606    /// okay and generally unavoidable.)
2607    ///
2608    /// ```
2609    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2610    /// use regex_automata::{
2611    ///     meta::Regex,
2612    ///     util::prefilter::Prefilter,
2613    ///     Match, MatchKind,
2614    /// };
2615    ///
2616    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2617    ///     .expect("a prefilter");
2618    /// let re = Regex::builder()
2619    ///     .configure(Regex::config().prefilter(Some(pre)))
2620    ///     .build(r"Bruce \w+")?;
2621    /// let hay = "Hello Bruce Springsteen!";
2622    /// // Oops! No match found, but there should be one!
2623    /// assert_eq!(None, re.find(hay));
2624    ///
2625    /// # Ok::<(), Box<dyn std::error::Error>>(())
2626    /// ```
2627    pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2628        Config { pre: Some(pre), ..self }
2629    }
2630
2631    /// Configures what kinds of groups are compiled as "capturing" in the
2632    /// underlying regex engine.
2633    ///
2634    /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2635    /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2636    /// overhead of capture states for explicit groups.
2637    ///
2638    /// Note that another approach to avoiding the overhead of capture groups
2639    /// is by using non-capturing groups in the regex pattern. That is,
2640    /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2641    /// the concrete syntax but know that you don't need the underlying capture
2642    /// states. For example, using `WhichCaptures::Implicit` will behave as if
2643    /// all explicit capturing groups in the pattern were non-capturing.
2644    ///
2645    /// Setting this to `WhichCaptures::None` is usually not the right thing to
2646    /// do. When no capture states are compiled, some regex engines (such as
2647    /// the `PikeVM`) won't be able to report match offsets. This will manifest
2648    /// as no match being found.
2649    ///
2650    /// # Example
2651    ///
2652    /// This example demonstrates how the results of capture groups can change
2653    /// based on this option. First we show the default (all capture groups in
2654    /// the pattern are capturing):
2655    ///
2656    /// ```
2657    /// use regex_automata::{meta::Regex, Match, Span};
2658    ///
2659    /// let re = Regex::new(r"foo([0-9]+)bar")?;
2660    /// let hay = "foo123bar";
2661    ///
2662    /// let mut caps = re.create_captures();
2663    /// re.captures(hay, &mut caps);
2664    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2665    /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2666    ///
2667    /// Ok::<(), Box<dyn std::error::Error>>(())
2668    /// ```
2669    ///
2670    /// And now we show the behavior when we only include implicit capture
2671    /// groups. In this case, we can only find the overall match span, but the
2672    /// spans of any other explicit group don't exist because they are treated
2673    /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2674    /// there is no real point in using [`Regex::captures`] since it will never
2675    /// be able to report more information than [`Regex::find`].)
2676    ///
2677    /// ```
2678    /// use regex_automata::{
2679    ///     meta::Regex,
2680    ///     nfa::thompson::WhichCaptures,
2681    ///     Match,
2682    ///     Span,
2683    /// };
2684    ///
2685    /// let re = Regex::builder()
2686    ///     .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2687    ///     .build(r"foo([0-9]+)bar")?;
2688    /// let hay = "foo123bar";
2689    ///
2690    /// let mut caps = re.create_captures();
2691    /// re.captures(hay, &mut caps);
2692    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2693    /// assert_eq!(None, caps.get_group(1));
2694    ///
2695    /// Ok::<(), Box<dyn std::error::Error>>(())
2696    /// ```
2697    pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2698        self.which_captures = Some(which_captures);
2699        self
2700    }
2701
2702    /// Sets the size limit, in bytes, to enforce on the construction of every
2703    /// NFA build by the meta regex engine.
2704    ///
2705    /// Setting it to `None` disables the limit. This is not recommended if
2706    /// you're compiling untrusted patterns.
2707    ///
2708    /// Note that this limit is applied to _each_ NFA built, and if any of
2709    /// them exceed the limit, then construction will fail. This limit does
2710    /// _not_ correspond to the total memory used by all NFAs in the meta regex
2711    /// engine.
2712    ///
2713    /// This defaults to some reasonable number that permits most reasonable
2714    /// patterns.
2715    ///
2716    /// # Example
2717    ///
2718    /// ```
2719    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2720    /// use regex_automata::meta::Regex;
2721    ///
2722    /// let result = Regex::builder()
2723    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2724    ///     // Not even 20KB is enough to build a single large Unicode class!
2725    ///     .build(r"\pL");
2726    /// assert!(result.is_err());
2727    ///
2728    /// // But notice that building such a regex with the exact same limit
2729    /// // can succeed depending on other aspects of the configuration. For
2730    /// // example, a single *forward* NFA will (at time of writing) fit into
2731    /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2732    /// // So if one configures a meta regex such that a reverse NFA is never
2733    /// // needed and thus never built, then the 20KB limit will be enough for
2734    /// // a pattern like \pL!
2735    /// let result = Regex::builder()
2736    ///     .configure(Regex::config()
2737    ///         .nfa_size_limit(Some(20 * (1<<10)))
2738    ///         // The DFAs are the only thing that (currently) need a reverse
2739    ///         // NFA. So if both are disabled, the meta regex engine will
2740    ///         // skip building the reverse NFA. Note that this isn't an API
2741    ///         // guarantee. A future semver compatible version may introduce
2742    ///         // new use cases for a reverse NFA.
2743    ///         .hybrid(false)
2744    ///         .dfa(false)
2745    ///     )
2746    ///     // Not even 20KB is enough to build a single large Unicode class!
2747    ///     .build(r"\pL");
2748    /// assert!(result.is_ok());
2749    ///
2750    /// # Ok::<(), Box<dyn std::error::Error>>(())
2751    /// ```
2752    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753        Config { nfa_size_limit: Some(limit), ..self }
2754    }
2755
2756    /// Sets the size limit, in bytes, for the one-pass DFA.
2757    ///
2758    /// Setting it to `None` disables the limit. Disabling the limit is
2759    /// strongly discouraged when compiling untrusted patterns. Even if the
2760    /// patterns are trusted, it still may not be a good idea, since a one-pass
2761    /// DFA can use a lot of memory. With that said, as the size of a regex
2762    /// increases, the likelihood of it being one-pass likely decreases.
2763    ///
2764    /// This defaults to some reasonable number that permits most reasonable
2765    /// one-pass patterns.
2766    ///
2767    /// # Example
2768    ///
2769    /// This shows how to set the one-pass DFA size limit. Note that since
2770    /// a one-pass DFA is an optional component of the meta regex engine,
2771    /// this size limit only impacts what is built internally and will never
2772    /// determine whether a `Regex` itself fails to build.
2773    ///
2774    /// ```
2775    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2776    /// use regex_automata::meta::Regex;
2777    ///
2778    /// let result = Regex::builder()
2779    ///     .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2780    ///     .build(r"\pL{5}");
2781    /// assert!(result.is_ok());
2782    /// # Ok::<(), Box<dyn std::error::Error>>(())
2783    /// ```
2784    pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2785        Config { onepass_size_limit: Some(limit), ..self }
2786    }
2787
2788    /// Set the cache capacity, in bytes, for the lazy DFA.
2789    ///
2790    /// The cache capacity of the lazy DFA determines approximately how much
2791    /// heap memory it is allowed to use to store its state transitions. The
2792    /// state transitions are computed at search time, and if the cache fills
2793    /// up it, it is cleared. At this point, any previously generated state
2794    /// transitions are lost and are re-generated if they're needed again.
2795    ///
2796    /// This sort of cache filling and clearing works quite well _so long as
2797    /// cache clearing happens infrequently_. If it happens too often, then the
2798    /// meta regex engine will stop using the lazy DFA and switch over to a
2799    /// different regex engine.
2800    ///
2801    /// In cases where the cache is cleared too often, it may be possible to
2802    /// give the cache more space and reduce (or eliminate) how often it is
2803    /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2804    /// used at all if its cache capacity isn't big enough.
2805    ///
2806    /// The capacity set here is a _limit_ on how much memory is used. The
2807    /// actual memory used is only allocated as it's needed.
2808    ///
2809    /// Determining the right value for this is a little tricky and will likely
2810    /// required some profiling. Enabling the `logging` feature and setting the
2811    /// log level to `trace` will also tell you how often the cache is being
2812    /// cleared.
2813    ///
2814    /// # Example
2815    ///
2816    /// ```
2817    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2818    /// use regex_automata::meta::Regex;
2819    ///
2820    /// let result = Regex::builder()
2821    ///     .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2822    ///     .build(r"\pL{5}");
2823    /// assert!(result.is_ok());
2824    /// # Ok::<(), Box<dyn std::error::Error>>(())
2825    /// ```
2826    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827        Config { hybrid_cache_capacity: Some(limit), ..self }
2828    }
2829
2830    /// Sets the size limit, in bytes, for heap memory used for a fully
2831    /// compiled DFA.
2832    ///
2833    /// **NOTE:** If you increase this, you'll likely also need to increase
2834    /// [`Config::dfa_state_limit`].
2835    ///
2836    /// In contrast to the lazy DFA, building a full DFA requires computing
2837    /// all of its state transitions up front. This can be a very expensive
2838    /// process, and runs in worst case `2^n` time and space (where `n` is
2839    /// proportional to the size of the regex). However, a full DFA unlocks
2840    /// some additional optimization opportunities.
2841    ///
2842    /// Because full DFAs can be so expensive, the default limits for them are
2843    /// incredibly small. Generally speaking, if your regex is moderately big
2844    /// or if you're using Unicode features (`\w` is Unicode-aware by default
2845    /// for example), then you can expect that the meta regex engine won't even
2846    /// attempt to build a DFA for it.
2847    ///
2848    /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2849    /// meta regex will not use any sort of limits when deciding whether to
2850    /// build a DFA. This in turn makes construction of a `Regex` take
2851    /// worst case exponential time and space. Even short patterns can result
2852    /// in huge space blow ups. So it is strongly recommended to keep some kind
2853    /// of limit set!
2854    ///
2855    /// The default is set to a small number that permits some simple regexes
2856    /// to get compiled into DFAs in reasonable time.
2857    ///
2858    /// # Example
2859    ///
2860    /// ```
2861    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2862    /// use regex_automata::meta::Regex;
2863    ///
2864    /// let result = Regex::builder()
2865    ///     // 100MB is much bigger than the default.
2866    ///     .configure(Regex::config()
2867    ///         .dfa_size_limit(Some(100 * (1<<20)))
2868    ///         // We don't care about size too much here, so just
2869    ///         // remove the NFA state limit altogether.
2870    ///         .dfa_state_limit(None))
2871    ///     .build(r"\pL{5}");
2872    /// assert!(result.is_ok());
2873    /// # Ok::<(), Box<dyn std::error::Error>>(())
2874    /// ```
2875    pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2876        Config { dfa_size_limit: Some(limit), ..self }
2877    }
2878
2879    /// Sets a limit on the total number of NFA states, beyond which, a full
2880    /// DFA is not attempted to be compiled.
2881    ///
2882    /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2883    /// where as `Config::dfa_size_limit` is applied by attempting to construct
2884    /// a DFA, this limit is used to avoid the attempt in the first place. This
2885    /// is useful to avoid hefty initialization costs associated with building
2886    /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2887    ///
2888    /// By default, this is set to a very small number.
2889    ///
2890    /// # Example
2891    ///
2892    /// ```
2893    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2894    /// use regex_automata::meta::Regex;
2895    ///
2896    /// let result = Regex::builder()
2897    ///     .configure(Regex::config()
2898    ///         // Sometimes the default state limit rejects DFAs even
2899    ///         // if they would fit in the size limit. Here, we disable
2900    ///         // the check on the number of NFA states and just rely on
2901    ///         // the size limit.
2902    ///         .dfa_state_limit(None))
2903    ///     .build(r"(?-u)\w{30}");
2904    /// assert!(result.is_ok());
2905    /// # Ok::<(), Box<dyn std::error::Error>>(())
2906    /// ```
2907    pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2908        Config { dfa_state_limit: Some(limit), ..self }
2909    }
2910
2911    /// Whether to attempt to shrink the size of the alphabet for the regex
2912    /// pattern or not. When enabled, the alphabet is shrunk into a set of
2913    /// equivalence classes, where every byte in the same equivalence class
2914    /// cannot discriminate between a match or non-match.
2915    ///
2916    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2917    /// does not yield any speed advantages. Indeed, disabling it can result
2918    /// in much higher memory usage. Disabling byte classes is useful for
2919    /// debugging the actual generated transitions because it lets one see the
2920    /// transitions defined on actual bytes instead of the equivalence classes.
2921    ///
2922    /// This option is enabled by default and should never be disabled unless
2923    /// one is debugging the meta regex engine's internals.
2924    ///
2925    /// # Example
2926    ///
2927    /// ```
2928    /// use regex_automata::{meta::Regex, Match};
2929    ///
2930    /// let re = Regex::builder()
2931    ///     .configure(Regex::config().byte_classes(false))
2932    ///     .build(r"[a-z]+")?;
2933    /// let hay = "!!quux!!";
2934    /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2935    ///
2936    /// # Ok::<(), Box<dyn std::error::Error>>(())
2937    /// ```
2938    pub fn byte_classes(self, yes: bool) -> Config {
2939        Config { byte_classes: Some(yes), ..self }
2940    }
2941
2942    /// Set the line terminator to be used by the `^` and `$` anchors in
2943    /// multi-line mode.
2944    ///
2945    /// This option has no effect when CRLF mode is enabled. That is,
2946    /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
2947    /// `\r` and `\n` as line terminators (and will never match between a `\r`
2948    /// and a `\n`).
2949    ///
2950    /// By default, `\n` is the line terminator.
2951    ///
2952    /// **Warning**: This does not change the behavior of `.`. To do that,
2953    /// you'll need to configure the syntax option
2954    /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
2955    /// in addition to this. Otherwise, `.` will continue to match any
2956    /// character other than `\n`.
2957    ///
2958    /// # Example
2959    ///
2960    /// ```
2961    /// use regex_automata::{meta::Regex, util::syntax, Match};
2962    ///
2963    /// let re = Regex::builder()
2964    ///     .syntax(syntax::Config::new().multi_line(true))
2965    ///     .configure(Regex::config().line_terminator(b'\x00'))
2966    ///     .build(r"^foo$")?;
2967    /// let hay = "\x00foo\x00";
2968    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
2969    ///
2970    /// # Ok::<(), Box<dyn std::error::Error>>(())
2971    /// ```
2972    pub fn line_terminator(self, byte: u8) -> Config {
2973        Config { line_terminator: Some(byte), ..self }
2974    }
2975
2976    /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
2977    /// be available for use by the meta regex engine.
2978    ///
2979    /// Enabling this does not necessarily mean that the lazy DFA will
2980    /// definitely be used. It just means that it will be _available_ for use
2981    /// if the meta regex engine thinks it will be useful.
2982    ///
2983    /// When the `hybrid` crate feature is enabled, then this is enabled by
2984    /// default. Otherwise, if the crate feature is disabled, then this is
2985    /// always disabled, regardless of its setting by the caller.
2986    pub fn hybrid(self, yes: bool) -> Config {
2987        Config { hybrid: Some(yes), ..self }
2988    }
2989
2990    /// Toggle whether a fully compiled DFA should be available for use by the
2991    /// meta regex engine.
2992    ///
2993    /// Enabling this does not necessarily mean that a DFA will definitely be
2994    /// used. It just means that it will be _available_ for use if the meta
2995    /// regex engine thinks it will be useful.
2996    ///
2997    /// When the `dfa-build` crate feature is enabled, then this is enabled by
2998    /// default. Otherwise, if the crate feature is disabled, then this is
2999    /// always disabled, regardless of its setting by the caller.
3000    pub fn dfa(self, yes: bool) -> Config {
3001        Config { dfa: Some(yes), ..self }
3002    }
3003
3004    /// Toggle whether a one-pass DFA should be available for use by the meta
3005    /// regex engine.
3006    ///
3007    /// Enabling this does not necessarily mean that a one-pass DFA will
3008    /// definitely be used. It just means that it will be _available_ for
3009    /// use if the meta regex engine thinks it will be useful. (Indeed, a
3010    /// one-pass DFA can only be used when the regex is one-pass. See the
3011    /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3012    ///
3013    /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3014    /// by default. Otherwise, if the crate feature is disabled, then this is
3015    /// always disabled, regardless of its setting by the caller.
3016    pub fn onepass(self, yes: bool) -> Config {
3017        Config { onepass: Some(yes), ..self }
3018    }
3019
3020    /// Toggle whether a bounded backtracking regex engine should be available
3021    /// for use by the meta regex engine.
3022    ///
3023    /// Enabling this does not necessarily mean that a bounded backtracker will
3024    /// definitely be used. It just means that it will be _available_ for use
3025    /// if the meta regex engine thinks it will be useful.
3026    ///
3027    /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3028    /// by default. Otherwise, if the crate feature is disabled, then this is
3029    /// always disabled, regardless of its setting by the caller.
3030    pub fn backtrack(self, yes: bool) -> Config {
3031        Config { backtrack: Some(yes), ..self }
3032    }
3033
3034    /// Returns the match kind on this configuration, as set by
3035    /// [`Config::match_kind`].
3036    ///
3037    /// If it was not explicitly set, then a default value is returned.
3038    pub fn get_match_kind(&self) -> MatchKind {
3039        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040    }
3041
3042    /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3043    /// set by [`Config::utf8_empty`].
3044    ///
3045    /// If it was not explicitly set, then a default value is returned.
3046    pub fn get_utf8_empty(&self) -> bool {
3047        self.utf8_empty.unwrap_or(true)
3048    }
3049
3050    /// Returns whether automatic prefilters are enabled, as set by
3051    /// [`Config::auto_prefilter`].
3052    ///
3053    /// If it was not explicitly set, then a default value is returned.
3054    pub fn get_auto_prefilter(&self) -> bool {
3055        self.autopre.unwrap_or(true)
3056    }
3057
3058    /// Returns a manually set prefilter, if one was set by
3059    /// [`Config::prefilter`].
3060    ///
3061    /// If it was not explicitly set, then a default value is returned.
3062    pub fn get_prefilter(&self) -> Option<&Prefilter> {
3063        self.pre.as_ref().unwrap_or(&None).as_ref()
3064    }
3065
3066    /// Returns the capture configuration, as set by
3067    /// [`Config::which_captures`].
3068    ///
3069    /// If it was not explicitly set, then a default value is returned.
3070    pub fn get_which_captures(&self) -> WhichCaptures {
3071        self.which_captures.unwrap_or(WhichCaptures::All)
3072    }
3073
3074    /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3075    ///
3076    /// If it was not explicitly set, then a default value is returned.
3077    pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079    }
3080
3081    /// Returns one-pass DFA size limit, as set by
3082    /// [`Config::onepass_size_limit`].
3083    ///
3084    /// If it was not explicitly set, then a default value is returned.
3085    pub fn get_onepass_size_limit(&self) -> Option<usize> {
3086        self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3087    }
3088
3089    /// Returns hybrid NFA/DFA cache capacity, as set by
3090    /// [`Config::hybrid_cache_capacity`].
3091    ///
3092    /// If it was not explicitly set, then a default value is returned.
3093    pub fn get_hybrid_cache_capacity(&self) -> usize {
3094        self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3095    }
3096
3097    /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3098    ///
3099    /// If it was not explicitly set, then a default value is returned.
3100    pub fn get_dfa_size_limit(&self) -> Option<usize> {
3101        // The default for this is VERY small because building a full DFA is
3102        // ridiculously costly. But for regexes that are very small, it can be
3103        // beneficial to use a full DFA. In particular, a full DFA can enable
3104        // additional optimizations via something called "accelerated" states.
3105        // Namely, when there's a state with only a few outgoing transitions,
3106        // we can temporary suspend walking the transition table and use memchr
3107        // for just those outgoing transitions to skip ahead very quickly.
3108        //
3109        // Generally speaking, if Unicode is enabled in your regex and you're
3110        // using some kind of Unicode feature, then it's going to blow this
3111        // size limit. Moreover, Unicode tends to defeat the "accelerated"
3112        // state optimization too, so it's a double whammy.
3113        //
3114        // We also use a limit on the number of NFA states to avoid even
3115        // starting the DFA construction process. Namely, DFA construction
3116        // itself could make lots of initial allocs proportional to the size
3117        // of the NFA, and if the NFA is large, it doesn't make sense to pay
3118        // that cost if we know it's likely to be blown by a large margin.
3119        self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3120    }
3121
3122    /// Returns DFA size limit in terms of the number of states in the NFA, as
3123    /// set by [`Config::dfa_state_limit`].
3124    ///
3125    /// If it was not explicitly set, then a default value is returned.
3126    pub fn get_dfa_state_limit(&self) -> Option<usize> {
3127        // Again, as with the size limit, we keep this very small.
3128        self.dfa_state_limit.unwrap_or(Some(30))
3129    }
3130
3131    /// Returns whether byte classes are enabled, as set by
3132    /// [`Config::byte_classes`].
3133    ///
3134    /// If it was not explicitly set, then a default value is returned.
3135    pub fn get_byte_classes(&self) -> bool {
3136        self.byte_classes.unwrap_or(true)
3137    }
3138
3139    /// Returns the line terminator for this configuration, as set by
3140    /// [`Config::line_terminator`].
3141    ///
3142    /// If it was not explicitly set, then a default value is returned.
3143    pub fn get_line_terminator(&self) -> u8 {
3144        self.line_terminator.unwrap_or(b'\n')
3145    }
3146
3147    /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3148    /// [`Config::hybrid`].
3149    ///
3150    /// If it was not explicitly set, then a default value is returned.
3151    pub fn get_hybrid(&self) -> bool {
3152        #[cfg(feature = "hybrid")]
3153        {
3154            self.hybrid.unwrap_or(true)
3155        }
3156        #[cfg(not(feature = "hybrid"))]
3157        {
3158            false
3159        }
3160    }
3161
3162    /// Returns whether the DFA regex engine may be used, as set by
3163    /// [`Config::dfa`].
3164    ///
3165    /// If it was not explicitly set, then a default value is returned.
3166    pub fn get_dfa(&self) -> bool {
3167        #[cfg(feature = "dfa-build")]
3168        {
3169            self.dfa.unwrap_or(true)
3170        }
3171        #[cfg(not(feature = "dfa-build"))]
3172        {
3173            false
3174        }
3175    }
3176
3177    /// Returns whether the one-pass DFA regex engine may be used, as set by
3178    /// [`Config::onepass`].
3179    ///
3180    /// If it was not explicitly set, then a default value is returned.
3181    pub fn get_onepass(&self) -> bool {
3182        #[cfg(feature = "dfa-onepass")]
3183        {
3184            self.onepass.unwrap_or(true)
3185        }
3186        #[cfg(not(feature = "dfa-onepass"))]
3187        {
3188            false
3189        }
3190    }
3191
3192    /// Returns whether the bounded backtracking regex engine may be used, as
3193    /// set by [`Config::backtrack`].
3194    ///
3195    /// If it was not explicitly set, then a default value is returned.
3196    pub fn get_backtrack(&self) -> bool {
3197        #[cfg(feature = "nfa-backtrack")]
3198        {
3199            self.backtrack.unwrap_or(true)
3200        }
3201        #[cfg(not(feature = "nfa-backtrack"))]
3202        {
3203            false
3204        }
3205    }
3206
3207    /// Overwrite the default configuration such that the options in `o` are
3208    /// always used. If an option in `o` is not set, then the corresponding
3209    /// option in `self` is used. If it's not set in `self` either, then it
3210    /// remains not set.
3211    pub(crate) fn overwrite(&self, o: Config) -> Config {
3212        Config {
3213            match_kind: o.match_kind.or(self.match_kind),
3214            utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215            autopre: o.autopre.or(self.autopre),
3216            pre: o.pre.or_else(|| self.pre.clone()),
3217            which_captures: o.which_captures.or(self.which_captures),
3218            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219            onepass_size_limit: o
3220                .onepass_size_limit
3221                .or(self.onepass_size_limit),
3222            hybrid_cache_capacity: o
3223                .hybrid_cache_capacity
3224                .or(self.hybrid_cache_capacity),
3225            hybrid: o.hybrid.or(self.hybrid),
3226            dfa: o.dfa.or(self.dfa),
3227            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229            onepass: o.onepass.or(self.onepass),
3230            backtrack: o.backtrack.or(self.backtrack),
3231            byte_classes: o.byte_classes.or(self.byte_classes),
3232            line_terminator: o.line_terminator.or(self.line_terminator),
3233        }
3234    }
3235}
3236
3237/// A builder for configuring and constructing a `Regex`.
3238///
3239/// The builder permits configuring two different aspects of a `Regex`:
3240///
3241/// * [`Builder::configure`] will set high-level configuration options as
3242/// described by a [`Config`].
3243/// * [`Builder::syntax`] will set the syntax level configuration options
3244/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3245/// This only applies when building a `Regex` from pattern strings.
3246///
3247/// Once configured, the builder can then be used to construct a `Regex` from
3248/// one of 4 different inputs:
3249///
3250/// * [`Builder::build`] creates a regex from a single pattern string.
3251/// * [`Builder::build_many`] creates a regex from many pattern strings.
3252/// * [`Builder::build_from_hir`] creates a regex from a
3253/// [`regex-syntax::Hir`](Hir) expression.
3254/// * [`Builder::build_many_from_hir`] creates a regex from many
3255/// [`regex-syntax::Hir`](Hir) expressions.
3256///
3257/// The latter two methods in particular provide a way to construct a fully
3258/// feature regular expression matcher directly from an `Hir` expression
3259/// without having to first convert it to a string. (This is in contrast to the
3260/// top-level `regex` crate which intentionally provides no such API in order
3261/// to avoid making `regex-syntax` a public dependency.)
3262///
3263/// As a convenience, this builder may be created via [`Regex::builder`], which
3264/// may help avoid an extra import.
3265///
3266/// # Example: change the line terminator
3267///
3268/// This example shows how to enable multi-line mode by default and change the
3269/// line terminator to the NUL byte:
3270///
3271/// ```
3272/// use regex_automata::{meta::Regex, util::syntax, Match};
3273///
3274/// let re = Regex::builder()
3275///     .syntax(syntax::Config::new().multi_line(true))
3276///     .configure(Regex::config().line_terminator(b'\x00'))
3277///     .build(r"^foo$")?;
3278/// let hay = "\x00foo\x00";
3279/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3280///
3281/// # Ok::<(), Box<dyn std::error::Error>>(())
3282/// ```
3283///
3284/// # Example: disable UTF-8 requirement
3285///
3286/// By default, regex patterns are required to match UTF-8. This includes
3287/// regex patterns that can produce matches of length zero. In the case of an
3288/// empty match, by default, matches will not appear between the code units of
3289/// a UTF-8 encoded codepoint.
3290///
3291/// However, it can be useful to disable this requirement, particularly if
3292/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3293///
3294/// ```
3295/// use regex_automata::{meta::Regex, util::syntax, Match};
3296///
3297/// let mut builder = Regex::builder();
3298/// // Disables the requirement that non-empty matches match UTF-8.
3299/// builder.syntax(syntax::Config::new().utf8(false));
3300/// // Disables the requirement that empty matches match UTF-8 boundaries.
3301/// builder.configure(Regex::config().utf8_empty(false));
3302///
3303/// // We can match raw bytes via \xZZ syntax, but we need to disable
3304/// // Unicode mode to do that. We could disable it everywhere, or just
3305/// // selectively, as shown here.
3306/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3307/// let hay = b"\xFFfoo\xFF";
3308/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3309///
3310/// // We can also match between code units.
3311/// let re = builder.build(r"")?;
3312/// let hay = "☃";
3313/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3314///     Match::must(0, 0..0),
3315///     Match::must(0, 1..1),
3316///     Match::must(0, 2..2),
3317///     Match::must(0, 3..3),
3318/// ]);
3319///
3320/// # Ok::<(), Box<dyn std::error::Error>>(())
3321/// ```
3322#[derive(Clone, Debug)]
3323pub struct Builder {
3324    config: Config,
3325    ast: ast::parse::ParserBuilder,
3326    hir: hir::translate::TranslatorBuilder,
3327}
3328
3329impl Builder {
3330    /// Creates a new builder for configuring and constructing a [`Regex`].
3331    pub fn new() -> Builder {
3332        Builder {
3333            config: Config::default(),
3334            ast: ast::parse::ParserBuilder::new(),
3335            hir: hir::translate::TranslatorBuilder::new(),
3336        }
3337    }
3338
3339    /// Builds a `Regex` from a single pattern string.
3340    ///
3341    /// If there was a problem parsing the pattern or a problem turning it into
3342    /// a regex matcher, then an error is returned.
3343    ///
3344    /// # Example
3345    ///
3346    /// This example shows how to configure syntax options.
3347    ///
3348    /// ```
3349    /// use regex_automata::{meta::Regex, util::syntax, Match};
3350    ///
3351    /// let re = Regex::builder()
3352    ///     .syntax(syntax::Config::new().crlf(true).multi_line(true))
3353    ///     .build(r"^foo$")?;
3354    /// let hay = "\r\nfoo\r\n";
3355    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3356    ///
3357    /// # Ok::<(), Box<dyn std::error::Error>>(())
3358    /// ```
3359    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360        self.build_many(&[pattern])
3361    }
3362
3363    /// Builds a `Regex` from many pattern strings.
3364    ///
3365    /// If there was a problem parsing any of the patterns or a problem turning
3366    /// them into a regex matcher, then an error is returned.
3367    ///
3368    /// # Example: finding the pattern that caused an error
3369    ///
3370    /// When a syntax error occurs, it is possible to ask which pattern
3371    /// caused the syntax error.
3372    ///
3373    /// ```
3374    /// use regex_automata::{meta::Regex, PatternID};
3375    ///
3376    /// let err = Regex::builder()
3377    ///     .build_many(&["a", "b", r"\p{Foo}", "c"])
3378    ///     .unwrap_err();
3379    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3380    /// ```
3381    ///
3382    /// # Example: zero patterns is valid
3383    ///
3384    /// Building a regex with zero patterns results in a regex that never
3385    /// matches anything. Because this routine is generic, passing an empty
3386    /// slice usually requires a turbo-fish (or something else to help type
3387    /// inference).
3388    ///
3389    /// ```
3390    /// use regex_automata::{meta::Regex, util::syntax, Match};
3391    ///
3392    /// let re = Regex::builder()
3393    ///     .build_many::<&str>(&[])?;
3394    /// assert_eq!(None, re.find(""));
3395    ///
3396    /// # Ok::<(), Box<dyn std::error::Error>>(())
3397    /// ```
3398    pub fn build_many<P: AsRef<str>>(
3399        &self,
3400        patterns: &[P],
3401    ) -> Result<Regex, BuildError> {
3402        use crate::util::primitives::IteratorIndexExt;
3403        log! {
3404            debug!("building meta regex with {} patterns:", patterns.len());
3405            for (pid, p) in patterns.iter().with_pattern_ids() {
3406                let p = p.as_ref();
3407                // We might split a grapheme with this truncation logic, but
3408                // that's fine. We at least avoid splitting a codepoint.
3409                let maxoff = p
3410                    .char_indices()
3411                    .map(|(i, ch)| i + ch.len_utf8())
3412                    .take(1000)
3413                    .last()
3414                    .unwrap_or(0);
3415                if maxoff < p.len() {
3416                    debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417                } else {
3418                    debug!("{:?}: {}", pid, p);
3419                }
3420            }
3421        }
3422        let (mut asts, mut hirs) = (vec![], vec![]);
3423        for (pid, p) in patterns.iter().with_pattern_ids() {
3424            let ast = self
3425                .ast
3426                .build()
3427                .parse(p.as_ref())
3428                .map_err(|err| BuildError::ast(pid, err))?;
3429            asts.push(ast);
3430        }
3431        for ((pid, p), ast) in
3432            patterns.iter().with_pattern_ids().zip(asts.iter())
3433        {
3434            let hir = self
3435                .hir
3436                .build()
3437                .translate(p.as_ref(), ast)
3438                .map_err(|err| BuildError::hir(pid, err))?;
3439            hirs.push(hir);
3440        }
3441        self.build_many_from_hir(&hirs)
3442    }
3443
3444    /// Builds a `Regex` directly from an `Hir` expression.
3445    ///
3446    /// This is useful if you needed to parse a pattern string into an `Hir`
3447    /// for other reasons (such as analysis or transformations). This routine
3448    /// permits building a `Regex` directly from the `Hir` expression instead
3449    /// of first converting the `Hir` back to a pattern string.
3450    ///
3451    /// When using this method, any options set via [`Builder::syntax`] are
3452    /// ignored. Namely, the syntax options only apply when parsing a pattern
3453    /// string, which isn't relevant here.
3454    ///
3455    /// If there was a problem building the underlying regex matcher for the
3456    /// given `Hir`, then an error is returned.
3457    ///
3458    /// # Example
3459    ///
3460    /// This example shows how one can hand-construct an `Hir` expression and
3461    /// build a regex from it without doing any parsing at all.
3462    ///
3463    /// ```
3464    /// use {
3465    ///     regex_automata::{meta::Regex, Match},
3466    ///     regex_syntax::hir::{Hir, Look},
3467    /// };
3468    ///
3469    /// // (?Rm)^foo$
3470    /// let hir = Hir::concat(vec![
3471    ///     Hir::look(Look::StartCRLF),
3472    ///     Hir::literal("foo".as_bytes()),
3473    ///     Hir::look(Look::EndCRLF),
3474    /// ]);
3475    /// let re = Regex::builder()
3476    ///     .build_from_hir(&hir)?;
3477    /// let hay = "\r\nfoo\r\n";
3478    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3479    ///
3480    /// Ok::<(), Box<dyn std::error::Error>>(())
3481    /// ```
3482    pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3483        self.build_many_from_hir(&[hir])
3484    }
3485
3486    /// Builds a `Regex` directly from many `Hir` expressions.
3487    ///
3488    /// This is useful if you needed to parse pattern strings into `Hir`
3489    /// expressions for other reasons (such as analysis or transformations).
3490    /// This routine permits building a `Regex` directly from the `Hir`
3491    /// expressions instead of first converting the `Hir` expressions back to
3492    /// pattern strings.
3493    ///
3494    /// When using this method, any options set via [`Builder::syntax`] are
3495    /// ignored. Namely, the syntax options only apply when parsing a pattern
3496    /// string, which isn't relevant here.
3497    ///
3498    /// If there was a problem building the underlying regex matcher for the
3499    /// given `Hir` expressions, then an error is returned.
3500    ///
3501    /// Note that unlike [`Builder::build_many`], this can only fail as a
3502    /// result of building the underlying matcher. In that case, there is
3503    /// no single `Hir` expression that can be isolated as a reason for the
3504    /// failure. So if this routine fails, it's not possible to determine which
3505    /// `Hir` expression caused the failure.
3506    ///
3507    /// # Example
3508    ///
3509    /// This example shows how one can hand-construct multiple `Hir`
3510    /// expressions and build a single regex from them without doing any
3511    /// parsing at all.
3512    ///
3513    /// ```
3514    /// use {
3515    ///     regex_automata::{meta::Regex, Match},
3516    ///     regex_syntax::hir::{Hir, Look},
3517    /// };
3518    ///
3519    /// // (?Rm)^foo$
3520    /// let hir1 = Hir::concat(vec![
3521    ///     Hir::look(Look::StartCRLF),
3522    ///     Hir::literal("foo".as_bytes()),
3523    ///     Hir::look(Look::EndCRLF),
3524    /// ]);
3525    /// // (?Rm)^bar$
3526    /// let hir2 = Hir::concat(vec![
3527    ///     Hir::look(Look::StartCRLF),
3528    ///     Hir::literal("bar".as_bytes()),
3529    ///     Hir::look(Look::EndCRLF),
3530    /// ]);
3531    /// let re = Regex::builder()
3532    ///     .build_many_from_hir(&[&hir1, &hir2])?;
3533    /// let hay = "\r\nfoo\r\nbar";
3534    /// let got: Vec<Match> = re.find_iter(hay).collect();
3535    /// let expected = vec![
3536    ///     Match::must(0, 2..5),
3537    ///     Match::must(1, 7..10),
3538    /// ];
3539    /// assert_eq!(expected, got);
3540    ///
3541    /// Ok::<(), Box<dyn std::error::Error>>(())
3542    /// ```
3543    pub fn build_many_from_hir<H: Borrow<Hir>>(
3544        &self,
3545        hirs: &[H],
3546    ) -> Result<Regex, BuildError> {
3547        let config = self.config.clone();
3548        // We collect the HIRs into a vec so we can write internal routines
3549        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550        // bloat down..
3551        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3552        let info = RegexInfo::new(config, &hirs);
3553        let strat = strategy::new(&info, &hirs)?;
3554        let pool = {
3555            let strat = Arc::clone(&strat);
3556            let create: CachePoolFn = Box::new(move || strat.create_cache());
3557            Pool::new(create)
3558        };
3559        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560    }
3561
3562    /// Configure the behavior of a `Regex`.
3563    ///
3564    /// This configuration controls non-syntax options related to the behavior
3565    /// of a `Regex`. This includes things like whether empty matches can split
3566    /// a codepoint, prefilters, line terminators and a long list of options
3567    /// for configuring which regex engines the meta regex engine will be able
3568    /// to use internally.
3569    ///
3570    /// # Example
3571    ///
3572    /// This example shows how to disable UTF-8 empty mode. This will permit
3573    /// empty matches to occur between the UTF-8 encoding of a codepoint.
3574    ///
3575    /// ```
3576    /// use regex_automata::{meta::Regex, Match};
3577    ///
3578    /// let re = Regex::new("")?;
3579    /// let got: Vec<Match> = re.find_iter("☃").collect();
3580    /// // Matches only occur at the beginning and end of the snowman.
3581    /// assert_eq!(got, vec![
3582    ///     Match::must(0, 0..0),
3583    ///     Match::must(0, 3..3),
3584    /// ]);
3585    ///
3586    /// let re = Regex::builder()
3587    ///     .configure(Regex::config().utf8_empty(false))
3588    ///     .build("")?;
3589    /// let got: Vec<Match> = re.find_iter("☃").collect();
3590    /// // Matches now occur at every position!
3591    /// assert_eq!(got, vec![
3592    ///     Match::must(0, 0..0),
3593    ///     Match::must(0, 1..1),
3594    ///     Match::must(0, 2..2),
3595    ///     Match::must(0, 3..3),
3596    /// ]);
3597    ///
3598    /// Ok::<(), Box<dyn std::error::Error>>(())
3599    /// ```
3600    pub fn configure(&mut self, config: Config) -> &mut Builder {
3601        self.config = self.config.overwrite(config);
3602        self
3603    }
3604
3605    /// Configure the syntax options when parsing a pattern string while
3606    /// building a `Regex`.
3607    ///
3608    /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3609    /// are used. The other build methods accept `Hir` values, which have
3610    /// already been parsed.
3611    ///
3612    /// # Example
3613    ///
3614    /// This example shows how to enable case insensitive mode.
3615    ///
3616    /// ```
3617    /// use regex_automata::{meta::Regex, util::syntax, Match};
3618    ///
3619    /// let re = Regex::builder()
3620    ///     .syntax(syntax::Config::new().case_insensitive(true))
3621    ///     .build(r"δ")?;
3622    /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3623    ///
3624    /// Ok::<(), Box<dyn std::error::Error>>(())
3625    /// ```
3626    pub fn syntax(
3627        &mut self,
3628        config: crate::util::syntax::Config,
3629    ) -> &mut Builder {
3630        config.apply_ast(&mut self.ast);
3631        config.apply_hir(&mut self.hir);
3632        self
3633    }
3634}
3635
3636#[cfg(test)]
3637mod tests {
3638    use super::*;
3639
3640    // I found this in the course of building out the benchmark suite for
3641    // rebar.
3642    #[test]
3643    fn regression_suffix_literal_count() {
3644        let _ = env_logger::try_init();
3645
3646        let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3647        assert_eq!(1, re.find_iter("tingling").count());
3648    }
3649}