regex_automata/util/
primitives.rs

1/*!
2Lower level primitive types that are useful in a variety of circumstances.
3
4# Overview
5
6This list represents the principle types in this module and briefly describes
7when you might want to use them.
8
9* [`PatternID`] - A type that represents the identifier of a regex pattern.
10This is probably the most widely used type in this module (which is why it's
11also re-exported in the crate root).
12* [`StateID`] - A type the represents the identifier of a finite automaton
13state. This is used for both NFAs and DFAs, with the notable exception of
14the hybrid NFA/DFA. (The hybrid NFA/DFA uses a special purpose "lazy" state
15identifier.)
16* [`SmallIndex`] - The internal representation of both a `PatternID` and a
17`StateID`. Its purpose is to serve as a type that can index memory without
18being as big as a `usize` on 64-bit targets. The main idea behind this type
19is that there are many things in regex engines that will, in practice, never
20overflow a 32-bit integer. (For example, like the number of patterns in a regex
21or the number of states in an NFA.) Thus, a `SmallIndex` can be used to index
22memory without peppering `as` casts everywhere. Moreover, it forces callers
23to handle errors in the case where, somehow, the value would otherwise overflow
24either a 32-bit integer or a `usize` (e.g., on 16-bit targets).
25* [`NonMaxUsize`] - Represents a `usize` that cannot be `usize::MAX`. As a
26result, `Option<NonMaxUsize>` has the same size in memory as a `usize`. This
27useful, for example, when representing the offsets of submatches since it
28reduces memory usage by a factor of 2. It is a legal optimization since Rust
29guarantees that slices never have a length that exceeds `isize::MAX`.
30*/
31
32use core::num::NonZeroUsize;
33
34#[cfg(feature = "alloc")]
35use alloc::vec::Vec;
36
37use crate::util::int::{Usize, U16, U32, U64};
38
39/// A `usize` that can never be `usize::MAX`.
40///
41/// This is similar to `core::num::NonZeroUsize`, but instead of not permitting
42/// a zero value, this does not permit a max value.
43///
44/// This is useful in certain contexts where one wants to optimize the memory
45/// usage of things that contain match offsets. Namely, since Rust slices
46/// are guaranteed to never have a length exceeding `isize::MAX`, we can use
47/// `usize::MAX` as a sentinel to indicate that no match was found. Indeed,
48/// types like `Option<NonMaxUsize>` have exactly the same size in memory as a
49/// `usize`.
50///
51/// This type is defined to be `repr(transparent)` for
52/// `core::num::NonZeroUsize`, which is in turn defined to be
53/// `repr(transparent)` for `usize`.
54#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
55#[repr(transparent)]
56pub struct NonMaxUsize(NonZeroUsize);
57
58impl NonMaxUsize {
59    /// Create a new `NonMaxUsize` from the given value.
60    ///
61    /// This returns `None` only when the given value is equal to `usize::MAX`.
62    #[inline]
63    pub fn new(value: usize) -> Option<NonMaxUsize> {
64        NonZeroUsize::new(value.wrapping_add(1)).map(NonMaxUsize)
65    }
66
67    /// Return the underlying `usize` value. The returned value is guaranteed
68    /// to not equal `usize::MAX`.
69    #[inline]
70    pub fn get(self) -> usize {
71        self.0.get().wrapping_sub(1)
72    }
73}
74
75// We provide our own Debug impl because seeing the internal repr can be quite
76// surprising if you aren't expecting it. e.g., 'NonMaxUsize(5)' vs just '5'.
77impl core::fmt::Debug for NonMaxUsize {
78    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
79        write!(f, "{:?}", self.get())
80    }
81}
82
83/// A type that represents a "small" index.
84///
85/// The main idea of this type is to provide something that can index memory,
86/// but uses less memory than `usize` on 64-bit systems. Specifically, its
87/// representation is always a `u32` and has `repr(transparent)` enabled. (So
88/// it is safe to transmute between a `u32` and a `SmallIndex`.)
89///
90/// A small index is typically useful in cases where there is no practical way
91/// that the index will overflow a 32-bit integer. A good example of this is
92/// an NFA state. If you could somehow build an NFA with `2^30` states, its
93/// memory usage would be exorbitant and its runtime execution would be so
94/// slow as to be completely worthless. Therefore, this crate generally deems
95/// it acceptable to return an error if it would otherwise build an NFA that
96/// requires a slice longer than what a 32-bit integer can index. In exchange,
97/// we can use 32-bit indices instead of 64-bit indices in various places.
98///
99/// This type ensures this by providing a constructor that will return an error
100/// if its argument cannot fit into the type. This makes it much easier to
101/// handle these sorts of boundary cases that are otherwise extremely subtle.
102///
103/// On all targets, this type guarantees that its value will fit in a `u32`,
104/// `i32`, `usize` and an `isize`. This means that on 16-bit targets, for
105/// example, this type's maximum value will never overflow an `isize`,
106/// which means it will never overflow a `i16` even though its internal
107/// representation is still a `u32`.
108///
109/// The purpose for making the type fit into even signed integer types like
110/// `isize` is to guarantee that the difference between any two small indices
111/// is itself also a small index. This is useful in certain contexts, e.g.,
112/// for delta encoding.
113///
114/// # Other types
115///
116/// The following types wrap `SmallIndex` to provide a more focused use case:
117///
118/// * [`PatternID`] is for representing the identifiers of patterns.
119/// * [`StateID`] is for representing the identifiers of states in finite
120/// automata. It is used for both NFAs and DFAs.
121///
122/// # Representation
123///
124/// This type is always represented internally by a `u32` and is marked as
125/// `repr(transparent)`. Thus, this type always has the same representation as
126/// a `u32`. It is thus safe to transmute between a `u32` and a `SmallIndex`.
127///
128/// # Indexing
129///
130/// For convenience, callers may use a `SmallIndex` to index slices.
131///
132/// # Safety
133///
134/// While a `SmallIndex` is meant to guarantee that its value fits into `usize`
135/// without using as much space as a `usize` on all targets, callers must
136/// not rely on this property for safety. Callers may choose to rely on this
137/// property for correctness however. For example, creating a `SmallIndex` with
138/// an invalid value can be done in entirely safe code. This may in turn result
139/// in panics or silent logical errors.
140#[derive(
141    Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
142)]
143#[repr(transparent)]
144pub struct SmallIndex(u32);
145
146impl SmallIndex {
147    /// The maximum index value.
148    #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
149    pub const MAX: SmallIndex =
150        // FIXME: Use as_usize() once const functions in traits are stable.
151        SmallIndex::new_unchecked(core::i32::MAX as usize - 1);
152
153    /// The maximum index value.
154    #[cfg(target_pointer_width = "16")]
155    pub const MAX: SmallIndex =
156        SmallIndex::new_unchecked(core::isize::MAX - 1);
157
158    /// The total number of values that can be represented as a small index.
159    pub const LIMIT: usize = SmallIndex::MAX.as_usize() + 1;
160
161    /// The zero index value.
162    pub const ZERO: SmallIndex = SmallIndex::new_unchecked(0);
163
164    /// The number of bytes that a single small index uses in memory.
165    pub const SIZE: usize = core::mem::size_of::<SmallIndex>();
166
167    /// Create a new small index.
168    ///
169    /// If the given index exceeds [`SmallIndex::MAX`], then this returns
170    /// an error.
171    #[inline]
172    pub fn new(index: usize) -> Result<SmallIndex, SmallIndexError> {
173        SmallIndex::try_from(index)
174    }
175
176    /// Create a new small index without checking whether the given value
177    /// exceeds [`SmallIndex::MAX`].
178    ///
179    /// Using this routine with an invalid index value will result in
180    /// unspecified behavior, but *not* undefined behavior. In particular, an
181    /// invalid index value is likely to cause panics or possibly even silent
182    /// logical errors.
183    ///
184    /// Callers must never rely on a `SmallIndex` to be within a certain range
185    /// for memory safety.
186    #[inline]
187    pub const fn new_unchecked(index: usize) -> SmallIndex {
188        // FIXME: Use as_u32() once const functions in traits are stable.
189        SmallIndex(index as u32)
190    }
191
192    /// Like [`SmallIndex::new`], but panics if the given index is not valid.
193    #[inline]
194    pub fn must(index: usize) -> SmallIndex {
195        SmallIndex::new(index).expect("invalid small index")
196    }
197
198    /// Return this small index as a `usize`. This is guaranteed to never
199    /// overflow `usize`.
200    #[inline]
201    pub const fn as_usize(&self) -> usize {
202        // FIXME: Use as_usize() once const functions in traits are stable.
203        self.0 as usize
204    }
205
206    /// Return this small index as a `u64`. This is guaranteed to never
207    /// overflow.
208    #[inline]
209    pub const fn as_u64(&self) -> u64 {
210        // FIXME: Use u64::from() once const functions in traits are stable.
211        self.0 as u64
212    }
213
214    /// Return the internal `u32` of this small index. This is guaranteed to
215    /// never overflow `u32`.
216    #[inline]
217    pub const fn as_u32(&self) -> u32 {
218        self.0
219    }
220
221    /// Return the internal `u32` of this small index represented as an `i32`.
222    /// This is guaranteed to never overflow an `i32`.
223    #[inline]
224    pub const fn as_i32(&self) -> i32 {
225        // This is OK because we guarantee that our max value is <= i32::MAX.
226        self.0 as i32
227    }
228
229    /// Returns one more than this small index as a usize.
230    ///
231    /// Since a small index has constraints on its maximum value, adding `1` to
232    /// it will always fit in a `usize`, `u32` and a `i32`.
233    #[inline]
234    pub fn one_more(&self) -> usize {
235        self.as_usize() + 1
236    }
237
238    /// Decode this small index from the bytes given using the native endian
239    /// byte order for the current target.
240    ///
241    /// If the decoded integer is not representable as a small index for the
242    /// current target, then this returns an error.
243    #[inline]
244    pub fn from_ne_bytes(
245        bytes: [u8; 4],
246    ) -> Result<SmallIndex, SmallIndexError> {
247        let id = u32::from_ne_bytes(bytes);
248        if id > SmallIndex::MAX.as_u32() {
249            return Err(SmallIndexError { attempted: u64::from(id) });
250        }
251        Ok(SmallIndex::new_unchecked(id.as_usize()))
252    }
253
254    /// Decode this small index from the bytes given using the native endian
255    /// byte order for the current target.
256    ///
257    /// This is analogous to [`SmallIndex::new_unchecked`] in that is does not
258    /// check whether the decoded integer is representable as a small index.
259    #[inline]
260    pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> SmallIndex {
261        SmallIndex::new_unchecked(u32::from_ne_bytes(bytes).as_usize())
262    }
263
264    /// Return the underlying small index integer as raw bytes in native endian
265    /// format.
266    #[inline]
267    pub fn to_ne_bytes(&self) -> [u8; 4] {
268        self.0.to_ne_bytes()
269    }
270}
271
272impl<T> core::ops::Index<SmallIndex> for [T] {
273    type Output = T;
274
275    #[inline]
276    fn index(&self, index: SmallIndex) -> &T {
277        &self[index.as_usize()]
278    }
279}
280
281impl<T> core::ops::IndexMut<SmallIndex> for [T] {
282    #[inline]
283    fn index_mut(&mut self, index: SmallIndex) -> &mut T {
284        &mut self[index.as_usize()]
285    }
286}
287
288#[cfg(feature = "alloc")]
289impl<T> core::ops::Index<SmallIndex> for Vec<T> {
290    type Output = T;
291
292    #[inline]
293    fn index(&self, index: SmallIndex) -> &T {
294        &self[index.as_usize()]
295    }
296}
297
298#[cfg(feature = "alloc")]
299impl<T> core::ops::IndexMut<SmallIndex> for Vec<T> {
300    #[inline]
301    fn index_mut(&mut self, index: SmallIndex) -> &mut T {
302        &mut self[index.as_usize()]
303    }
304}
305
306impl From<u8> for SmallIndex {
307    fn from(index: u8) -> SmallIndex {
308        SmallIndex::new_unchecked(usize::from(index))
309    }
310}
311
312impl TryFrom<u16> for SmallIndex {
313    type Error = SmallIndexError;
314
315    fn try_from(index: u16) -> Result<SmallIndex, SmallIndexError> {
316        if u32::from(index) > SmallIndex::MAX.as_u32() {
317            return Err(SmallIndexError { attempted: u64::from(index) });
318        }
319        Ok(SmallIndex::new_unchecked(index.as_usize()))
320    }
321}
322
323impl TryFrom<u32> for SmallIndex {
324    type Error = SmallIndexError;
325
326    fn try_from(index: u32) -> Result<SmallIndex, SmallIndexError> {
327        if index > SmallIndex::MAX.as_u32() {
328            return Err(SmallIndexError { attempted: u64::from(index) });
329        }
330        Ok(SmallIndex::new_unchecked(index.as_usize()))
331    }
332}
333
334impl TryFrom<u64> for SmallIndex {
335    type Error = SmallIndexError;
336
337    fn try_from(index: u64) -> Result<SmallIndex, SmallIndexError> {
338        if index > SmallIndex::MAX.as_u64() {
339            return Err(SmallIndexError { attempted: index });
340        }
341        Ok(SmallIndex::new_unchecked(index.as_usize()))
342    }
343}
344
345impl TryFrom<usize> for SmallIndex {
346    type Error = SmallIndexError;
347
348    fn try_from(index: usize) -> Result<SmallIndex, SmallIndexError> {
349        if index > SmallIndex::MAX.as_usize() {
350            return Err(SmallIndexError { attempted: index.as_u64() });
351        }
352        Ok(SmallIndex::new_unchecked(index))
353    }
354}
355
356#[cfg(test)]
357impl quickcheck::Arbitrary for SmallIndex {
358    fn arbitrary(gen: &mut quickcheck::Gen) -> SmallIndex {
359        use core::cmp::max;
360
361        let id = max(i32::MIN + 1, i32::arbitrary(gen)).abs();
362        if id > SmallIndex::MAX.as_i32() {
363            SmallIndex::MAX
364        } else {
365            SmallIndex::new(usize::try_from(id).unwrap()).unwrap()
366        }
367    }
368}
369
370/// This error occurs when a small index could not be constructed.
371///
372/// This occurs when given an integer exceeding the maximum small index value.
373///
374/// When the `std` feature is enabled, this implements the `Error` trait.
375#[derive(Clone, Debug, Eq, PartialEq)]
376pub struct SmallIndexError {
377    attempted: u64,
378}
379
380impl SmallIndexError {
381    /// Returns the value that could not be converted to a small index.
382    pub fn attempted(&self) -> u64 {
383        self.attempted
384    }
385}
386
387#[cfg(feature = "std")]
388impl std::error::Error for SmallIndexError {}
389
390impl core::fmt::Display for SmallIndexError {
391    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
392        write!(
393            f,
394            "failed to create small index from {:?}, which exceeds {:?}",
395            self.attempted(),
396            SmallIndex::MAX,
397        )
398    }
399}
400
401#[derive(Clone, Debug)]
402pub(crate) struct SmallIndexIter {
403    rng: core::ops::Range<usize>,
404}
405
406impl Iterator for SmallIndexIter {
407    type Item = SmallIndex;
408
409    fn next(&mut self) -> Option<SmallIndex> {
410        if self.rng.start >= self.rng.end {
411            return None;
412        }
413        let next_id = self.rng.start + 1;
414        let id = core::mem::replace(&mut self.rng.start, next_id);
415        // new_unchecked is OK since we asserted that the number of
416        // elements in this iterator will fit in an ID at construction.
417        Some(SmallIndex::new_unchecked(id))
418    }
419}
420
421macro_rules! index_type_impls {
422    ($name:ident, $err:ident, $iter:ident, $withiter:ident) => {
423        impl $name {
424            /// The maximum value.
425            pub const MAX: $name = $name(SmallIndex::MAX);
426
427            /// The total number of values that can be represented.
428            pub const LIMIT: usize = SmallIndex::LIMIT;
429
430            /// The zero value.
431            pub const ZERO: $name = $name(SmallIndex::ZERO);
432
433            /// The number of bytes that a single value uses in memory.
434            pub const SIZE: usize = SmallIndex::SIZE;
435
436            /// Create a new value that is represented by a "small index."
437            ///
438            /// If the given index exceeds the maximum allowed value, then this
439            /// returns an error.
440            #[inline]
441            pub fn new(value: usize) -> Result<$name, $err> {
442                SmallIndex::new(value).map($name).map_err($err)
443            }
444
445            /// Create a new value without checking whether the given argument
446            /// exceeds the maximum.
447            ///
448            /// Using this routine with an invalid value will result in
449            /// unspecified behavior, but *not* undefined behavior. In
450            /// particular, an invalid ID value is likely to cause panics or
451            /// possibly even silent logical errors.
452            ///
453            /// Callers must never rely on this type to be within a certain
454            /// range for memory safety.
455            #[inline]
456            pub const fn new_unchecked(value: usize) -> $name {
457                $name(SmallIndex::new_unchecked(value))
458            }
459
460            /// Like `new`, but panics if the given value is not valid.
461            #[inline]
462            pub fn must(value: usize) -> $name {
463                $name::new(value).expect(concat!(
464                    "invalid ",
465                    stringify!($name),
466                    " value"
467                ))
468            }
469
470            /// Return the internal value as a `usize`. This is guaranteed to
471            /// never overflow `usize`.
472            #[inline]
473            pub const fn as_usize(&self) -> usize {
474                self.0.as_usize()
475            }
476
477            /// Return the internal value as a `u64`. This is guaranteed to
478            /// never overflow.
479            #[inline]
480            pub const fn as_u64(&self) -> u64 {
481                self.0.as_u64()
482            }
483
484            /// Return the internal value as a `u32`. This is guaranteed to
485            /// never overflow `u32`.
486            #[inline]
487            pub const fn as_u32(&self) -> u32 {
488                self.0.as_u32()
489            }
490
491            /// Return the internal value as a i32`. This is guaranteed to
492            /// never overflow an `i32`.
493            #[inline]
494            pub const fn as_i32(&self) -> i32 {
495                self.0.as_i32()
496            }
497
498            /// Returns one more than this value as a usize.
499            ///
500            /// Since values represented by a "small index" have constraints
501            /// on their maximum value, adding `1` to it will always fit in a
502            /// `usize`, `u32` and a `i32`.
503            #[inline]
504            pub fn one_more(&self) -> usize {
505                self.0.one_more()
506            }
507
508            /// Decode this value from the bytes given using the native endian
509            /// byte order for the current target.
510            ///
511            /// If the decoded integer is not representable as a small index
512            /// for the current target, then this returns an error.
513            #[inline]
514            pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<$name, $err> {
515                SmallIndex::from_ne_bytes(bytes).map($name).map_err($err)
516            }
517
518            /// Decode this value from the bytes given using the native endian
519            /// byte order for the current target.
520            ///
521            /// This is analogous to `new_unchecked` in that is does not check
522            /// whether the decoded integer is representable as a small index.
523            #[inline]
524            pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> $name {
525                $name(SmallIndex::from_ne_bytes_unchecked(bytes))
526            }
527
528            /// Return the underlying integer as raw bytes in native endian
529            /// format.
530            #[inline]
531            pub fn to_ne_bytes(&self) -> [u8; 4] {
532                self.0.to_ne_bytes()
533            }
534
535            /// Returns an iterator over all values from 0 up to and not
536            /// including the given length.
537            ///
538            /// If the given length exceeds this type's limit, then this
539            /// panics.
540            pub(crate) fn iter(len: usize) -> $iter {
541                $iter::new(len)
542            }
543        }
544
545        // We write our own Debug impl so that we get things like PatternID(5)
546        // instead of PatternID(SmallIndex(5)).
547        impl core::fmt::Debug for $name {
548            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
549                f.debug_tuple(stringify!($name)).field(&self.as_u32()).finish()
550            }
551        }
552
553        impl<T> core::ops::Index<$name> for [T] {
554            type Output = T;
555
556            #[inline]
557            fn index(&self, index: $name) -> &T {
558                &self[index.as_usize()]
559            }
560        }
561
562        impl<T> core::ops::IndexMut<$name> for [T] {
563            #[inline]
564            fn index_mut(&mut self, index: $name) -> &mut T {
565                &mut self[index.as_usize()]
566            }
567        }
568
569        #[cfg(feature = "alloc")]
570        impl<T> core::ops::Index<$name> for Vec<T> {
571            type Output = T;
572
573            #[inline]
574            fn index(&self, index: $name) -> &T {
575                &self[index.as_usize()]
576            }
577        }
578
579        #[cfg(feature = "alloc")]
580        impl<T> core::ops::IndexMut<$name> for Vec<T> {
581            #[inline]
582            fn index_mut(&mut self, index: $name) -> &mut T {
583                &mut self[index.as_usize()]
584            }
585        }
586
587        impl From<u8> for $name {
588            fn from(value: u8) -> $name {
589                $name(SmallIndex::from(value))
590            }
591        }
592
593        impl TryFrom<u16> for $name {
594            type Error = $err;
595
596            fn try_from(value: u16) -> Result<$name, $err> {
597                SmallIndex::try_from(value).map($name).map_err($err)
598            }
599        }
600
601        impl TryFrom<u32> for $name {
602            type Error = $err;
603
604            fn try_from(value: u32) -> Result<$name, $err> {
605                SmallIndex::try_from(value).map($name).map_err($err)
606            }
607        }
608
609        impl TryFrom<u64> for $name {
610            type Error = $err;
611
612            fn try_from(value: u64) -> Result<$name, $err> {
613                SmallIndex::try_from(value).map($name).map_err($err)
614            }
615        }
616
617        impl TryFrom<usize> for $name {
618            type Error = $err;
619
620            fn try_from(value: usize) -> Result<$name, $err> {
621                SmallIndex::try_from(value).map($name).map_err($err)
622            }
623        }
624
625        #[cfg(test)]
626        impl quickcheck::Arbitrary for $name {
627            fn arbitrary(gen: &mut quickcheck::Gen) -> $name {
628                $name(SmallIndex::arbitrary(gen))
629            }
630        }
631
632        /// This error occurs when a value could not be constructed.
633        ///
634        /// This occurs when given an integer exceeding the maximum allowed
635        /// value.
636        ///
637        /// When the `std` feature is enabled, this implements the `Error`
638        /// trait.
639        #[derive(Clone, Debug, Eq, PartialEq)]
640        pub struct $err(SmallIndexError);
641
642        impl $err {
643            /// Returns the value that could not be converted to an ID.
644            pub fn attempted(&self) -> u64 {
645                self.0.attempted()
646            }
647        }
648
649        #[cfg(feature = "std")]
650        impl std::error::Error for $err {}
651
652        impl core::fmt::Display for $err {
653            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
654                write!(
655                    f,
656                    "failed to create {} from {:?}, which exceeds {:?}",
657                    stringify!($name),
658                    self.attempted(),
659                    $name::MAX,
660                )
661            }
662        }
663
664        #[derive(Clone, Debug)]
665        pub(crate) struct $iter(SmallIndexIter);
666
667        impl $iter {
668            fn new(len: usize) -> $iter {
669                assert!(
670                    len <= $name::LIMIT,
671                    "cannot create iterator for {} when number of \
672                     elements exceed {:?}",
673                    stringify!($name),
674                    $name::LIMIT,
675                );
676                $iter(SmallIndexIter { rng: 0..len })
677            }
678        }
679
680        impl Iterator for $iter {
681            type Item = $name;
682
683            fn next(&mut self) -> Option<$name> {
684                self.0.next().map($name)
685            }
686        }
687
688        /// An iterator adapter that is like std::iter::Enumerate, but attaches
689        /// small index values instead. It requires `ExactSizeIterator`. At
690        /// construction, it ensures that the index of each element in the
691        /// iterator is representable in the corresponding small index type.
692        #[derive(Clone, Debug)]
693        pub(crate) struct $withiter<I> {
694            it: I,
695            ids: $iter,
696        }
697
698        impl<I: Iterator + ExactSizeIterator> $withiter<I> {
699            fn new(it: I) -> $withiter<I> {
700                let ids = $name::iter(it.len());
701                $withiter { it, ids }
702            }
703        }
704
705        impl<I: Iterator + ExactSizeIterator> Iterator for $withiter<I> {
706            type Item = ($name, I::Item);
707
708            fn next(&mut self) -> Option<($name, I::Item)> {
709                let item = self.it.next()?;
710                // Number of elements in this iterator must match, according
711                // to contract of ExactSizeIterator.
712                let id = self.ids.next().unwrap();
713                Some((id, item))
714            }
715        }
716    };
717}
718
719/// The identifier of a regex pattern, represented by a [`SmallIndex`].
720///
721/// The identifier for a pattern corresponds to its relative position among
722/// other patterns in a single finite state machine. Namely, when building
723/// a multi-pattern regex engine, one must supply a sequence of patterns to
724/// match. The position (starting at 0) of each pattern in that sequence
725/// represents its identifier. This identifier is in turn used to identify and
726/// report matches of that pattern in various APIs.
727///
728/// See the [`SmallIndex`] type for more information about what it means for
729/// a pattern ID to be a "small index."
730///
731/// Note that this type is defined in the
732/// [`util::primitives`](crate::util::primitives) module, but it is also
733/// re-exported at the crate root due to how common it is.
734#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
735#[repr(transparent)]
736pub struct PatternID(SmallIndex);
737
738/// The identifier of a finite automaton state, represented by a
739/// [`SmallIndex`].
740///
741/// Most regex engines in this crate are built on top of finite automata. Each
742/// state in a finite automaton defines transitions from its state to another.
743/// Those transitions point to other states via their identifiers, i.e., a
744/// `StateID`. Since finite automata tend to contain many transitions, it is
745/// much more memory efficient to define state IDs as small indices.
746///
747/// See the [`SmallIndex`] type for more information about what it means for
748/// a state ID to be a "small index."
749#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
750#[repr(transparent)]
751pub struct StateID(SmallIndex);
752
753index_type_impls!(PatternID, PatternIDError, PatternIDIter, WithPatternIDIter);
754index_type_impls!(StateID, StateIDError, StateIDIter, WithStateIDIter);
755
756/// A utility trait that defines a couple of adapters for making it convenient
757/// to access indices as "small index" types. We require ExactSizeIterator so
758/// that iterator construction can do a single check to make sure the index of
759/// each element is representable by its small index type.
760pub(crate) trait IteratorIndexExt: Iterator {
761    fn with_pattern_ids(self) -> WithPatternIDIter<Self>
762    where
763        Self: Sized + ExactSizeIterator,
764    {
765        WithPatternIDIter::new(self)
766    }
767
768    fn with_state_ids(self) -> WithStateIDIter<Self>
769    where
770        Self: Sized + ExactSizeIterator,
771    {
772        WithStateIDIter::new(self)
773    }
774}
775
776impl<I: Iterator> IteratorIndexExt for I {}