regex_automata/hybrid/
id.rs

1/// A state identifier specifically tailored for lazy DFAs.
2///
3/// A lazy state ID logically represents a pointer to a DFA state. In practice,
4/// by limiting the number of DFA states it can address, it reserves some
5/// bits of its representation to encode some additional information. That
6/// additional information is called a "tag." That tag is used to record
7/// whether the state it points to is an unknown, dead, quit, start or match
8/// state.
9///
10/// When implementing a low level search routine with a lazy DFA, it is
11/// necessary to query the type of the current state to know what to do:
12///
13/// * **Unknown** - The state has not yet been computed. The
14/// parameters used to get this state ID must be re-passed to
15/// [`DFA::next_state`](crate::hybrid::dfa::DFA::next_state), which will never
16/// return an unknown state ID.
17/// * **Dead** - A dead state only has transitions to itself. It indicates that
18/// the search cannot do anything else and should stop with whatever result it
19/// has.
20/// * **Quit** - A quit state indicates that the automaton could not answer
21/// whether a match exists or not. Correct search implementations must return a
22/// [`MatchError::quit`](crate::MatchError::quit) when a DFA enters a quit
23/// state.
24/// * **Start** - A start state is a state in which a search can begin.
25/// Lazy DFAs usually have more than one start state. Branching on
26/// this isn't required for correctness, but a common optimization is
27/// to run a prefilter when a search enters a start state. Note that
28/// start states are *not* tagged automatically, and one must enable the
29/// [`Config::specialize_start_states`](crate::hybrid::dfa::Config::specialize_start_states)
30/// setting for start states to be tagged. The reason for this is
31/// that a DFA search loop is usually written to execute a prefilter once it
32/// enters a start state. But if there is no prefilter, this handling can be
33/// quite diastrous as the DFA may ping-pong between the special handling code
34/// and a possible optimized hot path for handling untagged states. When start
35/// states aren't specialized, then they are untagged and remain in the hot
36/// path.
37/// * **Match** - A match state indicates that a match has been found.
38/// Depending on the semantics of your search implementation, it may either
39/// continue until the end of the haystack or a dead state, or it might quit
40/// and return the match immediately.
41///
42/// As an optimization, the [`is_tagged`](LazyStateID::is_tagged) predicate
43/// can be used to determine if a tag exists at all. This is useful to avoid
44/// branching on all of the above types for every byte searched.
45///
46/// # Example
47///
48/// This example shows how `LazyStateID` can be used to implement a correct
49/// search routine with minimal branching. In particular, this search routine
50/// implements "leftmost" matching, which means that it doesn't immediately
51/// stop once a match is found. Instead, it continues until it reaches a dead
52/// state.
53///
54/// Notice also how a correct search implementation deals with
55/// [`CacheError`](crate::hybrid::CacheError)s returned by some of
56/// the lazy DFA routines. When a `CacheError` occurs, it returns
57/// [`MatchError::gave_up`](crate::MatchError::gave_up).
58///
59/// ```
60/// use regex_automata::{
61///     hybrid::dfa::{Cache, DFA},
62///     HalfMatch, MatchError, Input,
63/// };
64///
65/// fn find_leftmost_first(
66///     dfa: &DFA,
67///     cache: &mut Cache,
68///     haystack: &[u8],
69/// ) -> Result<Option<HalfMatch>, MatchError> {
70///     // The start state is determined by inspecting the position and the
71///     // initial bytes of the haystack. Note that start states can never
72///     // be match states (since DFAs in this crate delay matches by 1
73///     // byte), so we don't need to check if the start state is a match.
74///     let mut sid = dfa.start_state_forward(
75///         cache,
76///         &Input::new(haystack),
77///     )?;
78///     let mut last_match = None;
79///     // Walk all the bytes in the haystack. We can quit early if we see
80///     // a dead or a quit state. The former means the automaton will
81///     // never transition to any other state. The latter means that the
82///     // automaton entered a condition in which its search failed.
83///     for (i, &b) in haystack.iter().enumerate() {
84///         sid = dfa
85///             .next_state(cache, sid, b)
86///             .map_err(|_| MatchError::gave_up(i))?;
87///         if sid.is_tagged() {
88///             if sid.is_match() {
89///                 last_match = Some(HalfMatch::new(
90///                     dfa.match_pattern(cache, sid, 0),
91///                     i,
92///                 ));
93///             } else if sid.is_dead() {
94///                 return Ok(last_match);
95///             } else if sid.is_quit() {
96///                 // It is possible to enter into a quit state after
97///                 // observing a match has occurred. In that case, we
98///                 // should return the match instead of an error.
99///                 if last_match.is_some() {
100///                     return Ok(last_match);
101///                 }
102///                 return Err(MatchError::quit(b, i));
103///             }
104///             // Implementors may also want to check for start states and
105///             // handle them differently for performance reasons. But it is
106///             // not necessary for correctness. Note that in order to check
107///             // for start states, you'll need to enable the
108///             // 'specialize_start_states' config knob, otherwise start
109///             // states will not be tagged.
110///         }
111///     }
112///     // Matches are always delayed by 1 byte, so we must explicitly walk
113///     // the special "EOI" transition at the end of the search.
114///     sid = dfa
115///         .next_eoi_state(cache, sid)
116///         .map_err(|_| MatchError::gave_up(haystack.len()))?;
117///     if sid.is_match() {
118///         last_match = Some(HalfMatch::new(
119///             dfa.match_pattern(cache, sid, 0),
120///             haystack.len(),
121///         ));
122///     }
123///     Ok(last_match)
124/// }
125///
126/// // We use a greedy '+' operator to show how the search doesn't just stop
127/// // once a match is detected. It continues extending the match. Using
128/// // '[a-z]+?' would also work as expected and stop the search early.
129/// // Greediness is built into the automaton.
130/// let dfa = DFA::new(r"[a-z]+")?;
131/// let mut cache = dfa.create_cache();
132/// let haystack = "123 foobar 4567".as_bytes();
133/// let mat = find_leftmost_first(&dfa, &mut cache, haystack)?.unwrap();
134/// assert_eq!(mat.pattern().as_usize(), 0);
135/// assert_eq!(mat.offset(), 10);
136///
137/// // Here's another example that tests our handling of the special
138/// // EOI transition. This will fail to find a match if we don't call
139/// // 'next_eoi_state' at the end of the search since the match isn't found
140/// // until the final byte in the haystack.
141/// let dfa = DFA::new(r"[0-9]{4}")?;
142/// let mut cache = dfa.create_cache();
143/// let haystack = "123 foobar 4567".as_bytes();
144/// let mat = find_leftmost_first(&dfa, &mut cache, haystack)?.unwrap();
145/// assert_eq!(mat.pattern().as_usize(), 0);
146/// assert_eq!(mat.offset(), 15);
147///
148/// // And note that our search implementation above automatically works
149/// // with multi-DFAs. Namely, `dfa.match_pattern(match_state, 0)` selects
150/// // the appropriate pattern ID for us.
151/// let dfa = DFA::new_many(&[r"[a-z]+", r"[0-9]+"])?;
152/// let mut cache = dfa.create_cache();
153/// let haystack = "123 foobar 4567".as_bytes();
154/// let mat = find_leftmost_first(&dfa, &mut cache, haystack)?.unwrap();
155/// assert_eq!(mat.pattern().as_usize(), 1);
156/// assert_eq!(mat.offset(), 3);
157/// let mat = find_leftmost_first(&dfa, &mut cache, &haystack[3..])?.unwrap();
158/// assert_eq!(mat.pattern().as_usize(), 0);
159/// assert_eq!(mat.offset(), 7);
160/// let mat = find_leftmost_first(&dfa, &mut cache, &haystack[10..])?.unwrap();
161/// assert_eq!(mat.pattern().as_usize(), 1);
162/// assert_eq!(mat.offset(), 5);
163///
164/// # Ok::<(), Box<dyn std::error::Error>>(())
165/// ```
166#[derive(
167    Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
168)]
169pub struct LazyStateID(u32);
170
171impl LazyStateID {
172    #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
173    const MAX_BIT: usize = 31;
174
175    #[cfg(target_pointer_width = "16")]
176    const MAX_BIT: usize = 15;
177
178    const MASK_UNKNOWN: usize = 1 << (LazyStateID::MAX_BIT);
179    const MASK_DEAD: usize = 1 << (LazyStateID::MAX_BIT - 1);
180    const MASK_QUIT: usize = 1 << (LazyStateID::MAX_BIT - 2);
181    const MASK_START: usize = 1 << (LazyStateID::MAX_BIT - 3);
182    const MASK_MATCH: usize = 1 << (LazyStateID::MAX_BIT - 4);
183    const MAX: usize = LazyStateID::MASK_MATCH - 1;
184
185    /// Create a new lazy state ID.
186    ///
187    /// If the given identifier exceeds [`LazyStateID::MAX`], then this returns
188    /// an error.
189    #[inline]
190    pub(crate) fn new(id: usize) -> Result<LazyStateID, LazyStateIDError> {
191        if id > LazyStateID::MAX {
192            let attempted = u64::try_from(id).unwrap();
193            return Err(LazyStateIDError { attempted });
194        }
195        Ok(LazyStateID::new_unchecked(id))
196    }
197
198    /// Create a new lazy state ID without checking whether the given value
199    /// exceeds [`LazyStateID::MAX`].
200    ///
201    /// While this is unchecked, providing an incorrect value must never
202    /// sacrifice memory safety.
203    #[inline]
204    const fn new_unchecked(id: usize) -> LazyStateID {
205        // FIXME: Use as_u32() once const functions in traits are stable.
206        LazyStateID(id as u32)
207    }
208
209    /// Return this lazy state ID as an untagged `usize`.
210    ///
211    /// If this lazy state ID is tagged, then the usize returned is the state
212    /// ID without the tag. If the ID was not tagged, then the usize returned
213    /// is equivalent to the state ID.
214    #[inline]
215    pub(crate) fn as_usize_untagged(&self) -> usize {
216        self.as_usize_unchecked() & LazyStateID::MAX
217    }
218
219    /// Return this lazy state ID as its raw internal `usize` value, which may
220    /// be tagged (and thus greater than LazyStateID::MAX).
221    #[inline]
222    pub(crate) const fn as_usize_unchecked(&self) -> usize {
223        // FIXME: Use as_usize() once const functions in traits are stable.
224        self.0 as usize
225    }
226
227    #[inline]
228    pub(crate) const fn to_unknown(&self) -> LazyStateID {
229        LazyStateID::new_unchecked(
230            self.as_usize_unchecked() | LazyStateID::MASK_UNKNOWN,
231        )
232    }
233
234    #[inline]
235    pub(crate) const fn to_dead(&self) -> LazyStateID {
236        LazyStateID::new_unchecked(
237            self.as_usize_unchecked() | LazyStateID::MASK_DEAD,
238        )
239    }
240
241    #[inline]
242    pub(crate) const fn to_quit(&self) -> LazyStateID {
243        LazyStateID::new_unchecked(
244            self.as_usize_unchecked() | LazyStateID::MASK_QUIT,
245        )
246    }
247
248    /// Return this lazy state ID as a state ID that is tagged as a start
249    /// state.
250    #[inline]
251    pub(crate) const fn to_start(&self) -> LazyStateID {
252        LazyStateID::new_unchecked(
253            self.as_usize_unchecked() | LazyStateID::MASK_START,
254        )
255    }
256
257    /// Return this lazy state ID as a lazy state ID that is tagged as a match
258    /// state.
259    #[inline]
260    pub(crate) const fn to_match(&self) -> LazyStateID {
261        LazyStateID::new_unchecked(
262            self.as_usize_unchecked() | LazyStateID::MASK_MATCH,
263        )
264    }
265
266    /// Return true if and only if this lazy state ID is tagged.
267    ///
268    /// When a lazy state ID is tagged, then one can conclude that it is one
269    /// of a match, start, dead, quit or unknown state.
270    #[inline]
271    pub const fn is_tagged(&self) -> bool {
272        self.as_usize_unchecked() > LazyStateID::MAX
273    }
274
275    /// Return true if and only if this represents a lazy state ID that is
276    /// "unknown." That is, the state has not yet been created. When a caller
277    /// sees this state ID, it generally means that a state has to be computed
278    /// in order to proceed.
279    #[inline]
280    pub const fn is_unknown(&self) -> bool {
281        self.as_usize_unchecked() & LazyStateID::MASK_UNKNOWN > 0
282    }
283
284    /// Return true if and only if this represents a dead state. A dead state
285    /// is a state that can never transition to any other state except the
286    /// dead state. When a dead state is seen, it generally indicates that a
287    /// search should stop.
288    #[inline]
289    pub const fn is_dead(&self) -> bool {
290        self.as_usize_unchecked() & LazyStateID::MASK_DEAD > 0
291    }
292
293    /// Return true if and only if this represents a quit state. A quit state
294    /// is a state that is representationally equivalent to a dead state,
295    /// except it indicates the automaton has reached a point at which it can
296    /// no longer determine whether a match exists or not. In general, this
297    /// indicates an error during search and the caller must either pass this
298    /// error up or use a different search technique.
299    #[inline]
300    pub const fn is_quit(&self) -> bool {
301        self.as_usize_unchecked() & LazyStateID::MASK_QUIT > 0
302    }
303
304    /// Return true if and only if this lazy state ID has been tagged as a
305    /// start state.
306    ///
307    /// Note that if
308    /// [`Config::specialize_start_states`](crate::hybrid::dfa::Config) is
309    /// disabled (which is the default), then this will always return false
310    /// since start states won't be tagged.
311    #[inline]
312    pub const fn is_start(&self) -> bool {
313        self.as_usize_unchecked() & LazyStateID::MASK_START > 0
314    }
315
316    /// Return true if and only if this lazy state ID has been tagged as a
317    /// match state.
318    #[inline]
319    pub const fn is_match(&self) -> bool {
320        self.as_usize_unchecked() & LazyStateID::MASK_MATCH > 0
321    }
322}
323
324/// This error occurs when a lazy state ID could not be constructed.
325///
326/// This occurs when given an integer exceeding the maximum lazy state ID
327/// value.
328///
329/// When the `std` feature is enabled, this implements the `Error` trait.
330#[derive(Clone, Debug, Eq, PartialEq)]
331pub(crate) struct LazyStateIDError {
332    attempted: u64,
333}
334
335impl LazyStateIDError {
336    /// Returns the value that failed to constructed a lazy state ID.
337    pub(crate) fn attempted(&self) -> u64 {
338        self.attempted
339    }
340}
341
342#[cfg(feature = "std")]
343impl std::error::Error for LazyStateIDError {}
344
345impl core::fmt::Display for LazyStateIDError {
346    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
347        write!(
348            f,
349            "failed to create LazyStateID from {:?}, which exceeds {:?}",
350            self.attempted(),
351            LazyStateID::MAX,
352        )
353    }
354}