regex_automata/hybrid/
dfa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
/*!
Types and routines specific to lazy DFAs.

This module is the home of [`hybrid::dfa::DFA`](DFA).

This module also contains a [`hybrid::dfa::Builder`](Builder) and a
[`hybrid::dfa::Config`](Config) for configuring and building a lazy DFA.
*/

use core::{iter, mem::size_of};

use alloc::vec::Vec;

use crate::{
    hybrid::{
        error::{BuildError, CacheError, StartError},
        id::{LazyStateID, LazyStateIDError},
        search,
    },
    nfa::thompson,
    util::{
        alphabet::{self, ByteClasses, ByteSet},
        determinize::{self, State, StateBuilderEmpty, StateBuilderNFA},
        empty,
        prefilter::Prefilter,
        primitives::{PatternID, StateID as NFAStateID},
        search::{
            Anchored, HalfMatch, Input, MatchError, MatchKind, PatternSet,
        },
        sparse_set::SparseSets,
        start::{self, Start, StartByteMap},
    },
};

/// The minimum number of states that a lazy DFA's cache size must support.
///
/// This is checked at time of construction to ensure that at least some small
/// number of states can fit in the given capacity allotment. If we can't fit
/// at least this number of states, then the thinking is that it's pretty
/// senseless to use the lazy DFA. More to the point, parts of the code do
/// assume that the cache can fit at least some small number of states.
const MIN_STATES: usize = SENTINEL_STATES + 2;

/// The number of "sentinel" states that get added to every lazy DFA.
///
/// These are special states indicating status conditions of a search: unknown,
/// dead and quit. These states in particular also use zero NFA states, so
/// their memory usage is quite small. This is relevant for computing the
/// minimum memory needed for a lazy DFA cache.
const SENTINEL_STATES: usize = 3;

/// A hybrid NFA/DFA (also called a "lazy DFA") for regex searching.
///
/// A lazy DFA is a DFA that builds itself at search time. It otherwise has
/// very similar characteristics as a [`dense::DFA`](crate::dfa::dense::DFA).
/// Indeed, both support precisely the same regex features with precisely the
/// same semantics.
///
/// Where as a `dense::DFA` must be completely built to handle any input before
/// it may be used for search, a lazy DFA starts off effectively empty. During
/// a search, a lazy DFA will build itself depending on whether it has already
/// computed the next transition or not. If it has, then it looks a lot like
/// a `dense::DFA` internally: it does a very fast table based access to find
/// the next transition. Otherwise, if the state hasn't been computed, then it
/// does determinization _for that specific transition_ to compute the next DFA
/// state.
///
/// The main selling point of a lazy DFA is that, in practice, it has
/// the performance profile of a `dense::DFA` without the weakness of it
/// taking worst case exponential time to build. Indeed, for each byte of
/// input, the lazy DFA will construct as most one new DFA state. Thus, a
/// lazy DFA achieves worst case `O(mn)` time for regex search (where `m ~
/// pattern.len()` and `n ~ haystack.len()`).
///
/// The main downsides of a lazy DFA are:
///
/// 1. It requires mutable "cache" space during search. This is where the
/// transition table, among other things, is stored.
/// 2. In pathological cases (e.g., if the cache is too small), it will run
/// out of room and either require a bigger cache capacity or will repeatedly
/// clear the cache and thus repeatedly regenerate DFA states. Overall, this
/// will tend to be slower than a typical NFA simulation.
///
/// # Capabilities
///
/// Like a `dense::DFA`, a single lazy DFA fundamentally supports the following
/// operations:
///
/// 1. Detection of a match.
/// 2. Location of the end of a match.
/// 3. In the case of a lazy DFA with multiple patterns, which pattern matched
/// is reported as well.
///
/// A notable absence from the above list of capabilities is the location of
/// the *start* of a match. In order to provide both the start and end of
/// a match, *two* lazy DFAs are required. This functionality is provided by a
/// [`Regex`](crate::hybrid::regex::Regex).
///
/// # Example
///
/// This shows how to build a lazy DFA with the default configuration and
/// execute a search. Notice how, in contrast to a `dense::DFA`, we must create
/// a cache and pass it to our search routine.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let mut cache = dfa.create_cache();
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(
///     &mut cache, &Input::new("foo12345"))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct DFA {
    config: Config,
    nfa: thompson::NFA,
    stride2: usize,
    start_map: StartByteMap,
    classes: ByteClasses,
    quitset: ByteSet,
    cache_capacity: usize,
}

impl DFA {
    /// Parse the given regular expression using a default configuration and
    /// return the corresponding lazy DFA.
    ///
    /// If you want a non-default configuration, then use the [`Builder`] to
    /// set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa = DFA::new("foo[0-9]+bar")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let expected = HalfMatch::must(0, 11);
    /// assert_eq!(
    ///     Some(expected),
    ///     dfa.try_search_fwd(&mut cache, &Input::new("foo12345bar"))?,
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "syntax")]
    pub fn new(pattern: &str) -> Result<DFA, BuildError> {
        DFA::builder().build(pattern)
    }

    /// Parse the given regular expressions using a default configuration and
    /// return the corresponding lazy multi-DFA.
    ///
    /// If you want a non-default configuration, then use the [`Builder`] to
    /// set your own configuration.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+"])?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let expected = HalfMatch::must(1, 3);
    /// assert_eq!(
    ///     Some(expected),
    ///     dfa.try_search_fwd(&mut cache, &Input::new("foo12345bar"))?,
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "syntax")]
    pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
        DFA::builder().build_many(patterns)
    }

    /// Create a new lazy DFA that matches every input.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa = DFA::always_match()?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let expected = HalfMatch::must(0, 0);
    /// assert_eq!(Some(expected), dfa.try_search_fwd(
    ///     &mut cache, &Input::new(""))?,
    /// );
    /// assert_eq!(Some(expected), dfa.try_search_fwd(
    ///     &mut cache, &Input::new("foo"))?,
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn always_match() -> Result<DFA, BuildError> {
        let nfa = thompson::NFA::always_match();
        Builder::new().build_from_nfa(nfa)
    }

    /// Create a new lazy DFA that never matches any input.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, Input};
    ///
    /// let dfa = DFA::never_match()?;
    /// let mut cache = dfa.create_cache();
    ///
    /// assert_eq!(None, dfa.try_search_fwd(&mut cache, &Input::new(""))?);
    /// assert_eq!(None, dfa.try_search_fwd(&mut cache, &Input::new("foo"))?);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn never_match() -> Result<DFA, BuildError> {
        let nfa = thompson::NFA::never_match();
        Builder::new().build_from_nfa(nfa)
    }

    /// Return a default configuration for a `DFA`.
    ///
    /// This is a convenience routine to avoid needing to import the [`Config`]
    /// type when customizing the construction of a lazy DFA.
    ///
    /// # Example
    ///
    /// This example shows how to build a lazy DFA that heuristically supports
    /// Unicode word boundaries.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchError, Input};
    ///
    /// let re = DFA::builder()
    ///     .configure(DFA::config().unicode_word_boundary(true))
    ///     .build(r"\b\w+\b")?;
    /// let mut cache = re.create_cache();
    ///
    /// // Since our haystack is all ASCII, the DFA search sees then and knows
    /// // it is legal to interpret Unicode word boundaries as ASCII word
    /// // boundaries.
    /// let input = Input::new("!!foo!!");
    /// let expected = HalfMatch::must(0, 5);
    /// assert_eq!(Some(expected), re.try_search_fwd(&mut cache, &input)?);
    ///
    /// // But if our haystack contains non-ASCII, then the search will fail
    /// // with an error.
    /// let input = Input::new("!!βββ!!");
    /// let expected = MatchError::quit(b'\xCE', 2);
    /// assert_eq!(Err(expected), re.try_search_fwd(&mut cache, &input));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn config() -> Config {
        Config::new()
    }

    /// Return a builder for configuring the construction of a `Regex`.
    ///
    /// This is a convenience routine to avoid needing to import the
    /// [`Builder`] type in common cases.
    ///
    /// # Example
    ///
    /// This example shows how to use the builder to disable UTF-8 mode
    /// everywhere for lazy DFAs.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, util::syntax, HalfMatch, Input};
    ///
    /// let re = DFA::builder()
    ///     .syntax(syntax::Config::new().utf8(false))
    ///     .build(r"foo(?-u:[^b])ar.*")?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new(b"\xFEfoo\xFFarzz\xE2\x98\xFF\n");
    /// let expected = Some(HalfMatch::must(0, 9));
    /// let got = re.try_search_fwd(&mut cache, &input)?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn builder() -> Builder {
        Builder::new()
    }

    /// Create a new cache for this lazy DFA.
    ///
    /// The cache returned should only be used for searches for this
    /// lazy DFA. If you want to reuse the cache for another DFA, then
    /// you must call [`Cache::reset`] with that DFA (or, equivalently,
    /// [`DFA::reset_cache`]).
    pub fn create_cache(&self) -> Cache {
        Cache::new(self)
    }

    /// Reset the given cache such that it can be used for searching with the
    /// this lazy DFA (and only this DFA).
    ///
    /// A cache reset permits reusing memory already allocated in this cache
    /// with a different lazy DFA.
    ///
    /// Resetting a cache sets its "clear count" to 0. This is relevant if the
    /// lazy DFA has been configured to "give up" after it has cleared the
    /// cache a certain number of times.
    ///
    /// Any lazy state ID generated by the cache prior to resetting it is
    /// invalid after the reset.
    ///
    /// # Example
    ///
    /// This shows how to re-purpose a cache for use with a different DFA.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa1 = DFA::new(r"\w")?;
    /// let dfa2 = DFA::new(r"\W")?;
    ///
    /// let mut cache = dfa1.create_cache();
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 2)),
    ///     dfa1.try_search_fwd(&mut cache, &Input::new("Δ"))?,
    /// );
    ///
    /// // Using 'cache' with dfa2 is not allowed. It may result in panics or
    /// // incorrect results. In order to re-purpose the cache, we must reset
    /// // it with the DFA we'd like to use it with.
    /// //
    /// // Similarly, after this reset, using the cache with 'dfa1' is also not
    /// // allowed.
    /// dfa2.reset_cache(&mut cache);
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 3)),
    ///     dfa2.try_search_fwd(&mut cache, &Input::new("☃"))?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn reset_cache(&self, cache: &mut Cache) {
        Lazy::new(self, cache).reset_cache()
    }

    /// Returns the total number of patterns compiled into this lazy DFA.
    ///
    /// In the case of a DFA that contains no patterns, this returns `0`.
    ///
    /// # Example
    ///
    /// This example shows the pattern length for a DFA that never matches:
    ///
    /// ```
    /// use regex_automata::hybrid::dfa::DFA;
    ///
    /// let dfa = DFA::never_match()?;
    /// assert_eq!(dfa.pattern_len(), 0);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// And another example for a DFA that matches at every position:
    ///
    /// ```
    /// use regex_automata::hybrid::dfa::DFA;
    ///
    /// let dfa = DFA::always_match()?;
    /// assert_eq!(dfa.pattern_len(), 1);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// And finally, a DFA that was constructed from multiple patterns:
    ///
    /// ```
    /// use regex_automata::hybrid::dfa::DFA;
    ///
    /// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
    /// assert_eq!(dfa.pattern_len(), 3);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn pattern_len(&self) -> usize {
        self.nfa.pattern_len()
    }

    /// Returns the equivalence classes that make up the alphabet for this DFA.
    ///
    /// Unless [`Config::byte_classes`] was disabled, it is possible that
    /// multiple distinct bytes are grouped into the same equivalence class
    /// if it is impossible for them to discriminate between a match and a
    /// non-match. This has the effect of reducing the overall alphabet size
    /// and in turn potentially substantially reducing the size of the DFA's
    /// transition table.
    ///
    /// The downside of using equivalence classes like this is that every state
    /// transition will automatically use this map to convert an arbitrary
    /// byte to its corresponding equivalence class. In practice this has a
    /// negligible impact on performance.
    pub fn byte_classes(&self) -> &ByteClasses {
        &self.classes
    }

    /// Returns this lazy DFA's configuration.
    pub fn get_config(&self) -> &Config {
        &self.config
    }

    /// Returns a reference to the underlying NFA.
    pub fn get_nfa(&self) -> &thompson::NFA {
        &self.nfa
    }

    /// Returns the stride, as a base-2 exponent, required for these
    /// equivalence classes.
    ///
    /// The stride is always the smallest power of 2 that is greater than or
    /// equal to the alphabet length. This is done so that converting between
    /// state IDs and indices can be done with shifts alone, which is much
    /// faster than integer division.
    fn stride2(&self) -> usize {
        self.stride2
    }

    /// Returns the total stride for every state in this lazy DFA. This
    /// corresponds to the total number of transitions used by each state in
    /// this DFA's transition table.
    fn stride(&self) -> usize {
        1 << self.stride2()
    }

    /// Returns the memory usage, in bytes, of this lazy DFA.
    ///
    /// This does **not** include the stack size used up by this lazy DFA. To
    /// compute that, use `std::mem::size_of::<DFA>()`. This also does not
    /// include the size of the `Cache` used.
    ///
    /// This also does not include any heap memory used by the NFA inside of
    /// this hybrid NFA/DFA. This is because the NFA's ownership is shared, and
    /// thus not owned by this hybrid NFA/DFA. More practically, several regex
    /// engines in this crate embed an NFA, and reporting the NFA's memory
    /// usage in all of them would likely result in reporting higher heap
    /// memory than is actually used.
    pub fn memory_usage(&self) -> usize {
        // The only thing that uses heap memory in a DFA is the NFA. But the
        // NFA has shared ownership, so reporting its memory as part of the
        // hybrid DFA is likely to lead to double-counting the NFA memory
        // somehow. In particular, this DFA does not really own an NFA, so
        // including it in the DFA's memory usage doesn't seem semantically
        // correct.
        0
    }
}

impl DFA {
    /// Executes a forward search and returns the end position of the leftmost
    /// match that is found. If no match exists, then `None` is returned.
    ///
    /// In particular, this method continues searching even after it enters
    /// a match state. The search only terminates once it has reached the
    /// end of the input or when it has entered a dead or quit state. Upon
    /// termination, the position of the last byte seen while still in a match
    /// state is returned.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the lazy DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the lazy DFA quitting.
    /// * The configuration of the lazy DFA may also permit it to "give up"
    /// on a search if it makes ineffective use of its transition table
    /// cache. The default configuration does not enable this by default,
    /// although it is typically a good idea to.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    ///
    /// # Example
    ///
    /// This example shows how to run a basic search.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa = DFA::new("foo[0-9]+")?;
    /// let mut cache = dfa.create_cache();
    /// let expected = HalfMatch::must(0, 8);
    /// assert_eq!(Some(expected), dfa.try_search_fwd(
    ///     &mut cache, &Input::new("foo12345"))?,
    /// );
    ///
    /// // Even though a match is found after reading the first byte (`a`),
    /// // the leftmost first match semantics demand that we find the earliest
    /// // match that prefers earlier parts of the pattern over later parts.
    /// let dfa = DFA::new("abc|a")?;
    /// let mut cache = dfa.create_cache();
    /// let expected = HalfMatch::must(0, 3);
    /// assert_eq!(Some(expected), dfa.try_search_fwd(
    ///     &mut cache, &Input::new("abc"))?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: specific pattern search
    ///
    /// This example shows how to build a lazy multi-DFA that permits searching
    /// for specific patterns.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     Anchored, HalfMatch, PatternID, Input,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().starts_for_each_pattern(true))
    ///     .build_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "foo123";
    ///
    /// // Since we are using the default leftmost-first match and both
    /// // patterns match at the same starting position, only the first pattern
    /// // will be returned in this case when doing a search for any of the
    /// // patterns.
    /// let expected = Some(HalfMatch::must(0, 6));
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
    /// assert_eq!(expected, got);
    ///
    /// // But if we want to check whether some other pattern matches, then we
    /// // can provide its pattern ID.
    /// let expected = Some(HalfMatch::must(1, 6));
    /// let input = Input::new(haystack)
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
    /// let got = dfa.try_search_fwd(&mut cache, &input)?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: specifying the bounds of a search
    ///
    /// This example shows how providing the bounds of a search can produce
    /// different results than simply sub-slicing the haystack.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// // N.B. We disable Unicode here so that we use a simple ASCII word
    /// // boundary. Alternatively, we could enable heuristic support for
    /// // Unicode word boundaries since our haystack is pure ASCII.
    /// let dfa = DFA::new(r"(?-u)\b[0-9]{3}\b")?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "foo123bar";
    ///
    /// // Since we sub-slice the haystack, the search doesn't know about the
    /// // larger context and assumes that `123` is surrounded by word
    /// // boundaries. And of course, the match position is reported relative
    /// // to the sub-slice as well, which means we get `3` instead of `6`.
    /// let expected = Some(HalfMatch::must(0, 3));
    /// let got = dfa.try_search_fwd(
    ///     &mut cache,
    ///     &Input::new(&haystack[3..6]),
    /// )?;
    /// assert_eq!(expected, got);
    ///
    /// // But if we provide the bounds of the search within the context of the
    /// // entire haystack, then the search can take the surrounding context
    /// // into account. (And if we did find a match, it would be reported
    /// // as a valid offset into `haystack` instead of its sub-slice.)
    /// let expected = None;
    /// let got = dfa.try_search_fwd(
    ///     &mut cache,
    ///     &Input::new(haystack).range(3..6),
    /// )?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_search_fwd(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, MatchError> {
        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
        let hm = match search::find_fwd(self, cache, input)? {
            None => return Ok(None),
            Some(hm) if !utf8empty => return Ok(Some(hm)),
            Some(hm) => hm,
        };
        // We get to this point when we know our DFA can match the empty string
        // AND when UTF-8 mode is enabled. In this case, we skip any matches
        // whose offset splits a codepoint. Such a match is necessarily a
        // zero-width match, because UTF-8 mode requires the underlying NFA
        // to be built such that all non-empty matches span valid UTF-8.
        // Therefore, any match that ends in the middle of a codepoint cannot
        // be part of a span of valid UTF-8 and thus must be an empty match.
        // In such cases, we skip it, so as not to report matches that split a
        // codepoint.
        //
        // Note that this is not a checked assumption. Callers *can* provide an
        // NFA with UTF-8 mode enabled but produces non-empty matches that span
        // invalid UTF-8. But doing so is documented to result in unspecified
        // behavior.
        empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
            let got = search::find_fwd(self, cache, input)?;
            Ok(got.map(|hm| (hm, hm.offset())))
        })
    }

    /// Executes a reverse search and returns the start of the position of the
    /// leftmost match that is found. If no match exists, then `None` is
    /// returned.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the lazy DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the lazy DFA quitting.
    /// * The configuration of the lazy DFA may also permit it to "give up"
    /// on a search if it makes ineffective use of its transition table
    /// cache. The default configuration does not enable this by default,
    /// although it is typically a good idea to.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    ///
    /// # Example
    ///
    /// This routine is principally useful when used in
    /// conjunction with the
    /// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::reverse)
    /// configuration. In general, it's unlikely to be correct to use both
    /// `try_search_fwd` and `try_search_rev` with the same DFA since any
    /// particular DFA will only support searching in one direction with
    /// respect to the pattern.
    ///
    /// ```
    /// use regex_automata::{
    ///     nfa::thompson,
    ///     hybrid::dfa::DFA,
    ///     HalfMatch, Input,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .thompson(thompson::Config::new().reverse(true))
    ///     .build("foo[0-9]+")?;
    /// let mut cache = dfa.create_cache();
    /// let expected = HalfMatch::must(0, 0);
    /// assert_eq!(
    ///     Some(expected),
    ///     dfa.try_search_rev(&mut cache, &Input::new("foo12345"))?,
    /// );
    ///
    /// // Even though a match is found after reading the last byte (`c`),
    /// // the leftmost first match semantics demand that we find the earliest
    /// // match that prefers earlier parts of the pattern over latter parts.
    /// let dfa = DFA::builder()
    ///     .thompson(thompson::Config::new().reverse(true))
    ///     .build("abc|c")?;
    /// let mut cache = dfa.create_cache();
    /// let expected = HalfMatch::must(0, 0);
    /// assert_eq!(Some(expected), dfa.try_search_rev(
    ///     &mut cache, &Input::new("abc"))?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: UTF-8 mode
    ///
    /// This examples demonstrates that UTF-8 mode applies to reverse
    /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
    /// matches reported must correspond to valid UTF-8 spans. This includes
    /// prohibiting zero-width matches that split a codepoint.
    ///
    /// UTF-8 mode is enabled by default. Notice below how the only zero-width
    /// matches reported are those at UTF-8 boundaries:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     nfa::thompson,
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .thompson(thompson::Config::new().reverse(true))
    ///     .build(r"")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // Run the reverse DFA to collect all matches.
    /// let mut input = Input::new("☃");
    /// let mut matches = vec![];
    /// loop {
    ///     match dfa.try_search_rev(&mut cache, &input)? {
    ///         None => break,
    ///         Some(hm) => {
    ///             matches.push(hm);
    ///             if hm.offset() == 0 || input.end() == 0 {
    ///                 break;
    ///             } else if hm.offset() < input.end() {
    ///                 input.set_end(hm.offset());
    ///             } else {
    ///                 // This is only necessary to handle zero-width
    ///                 // matches, which of course occur in this example.
    ///                 // Without this, the search would never advance
    ///                 // backwards beyond the initial match.
    ///                 input.set_end(input.end() - 1);
    ///             }
    ///         }
    ///     }
    /// }
    ///
    /// // No matches split a codepoint.
    /// let expected = vec![
    ///     HalfMatch::must(0, 3),
    ///     HalfMatch::must(0, 0),
    /// ];
    /// assert_eq!(expected, matches);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Now let's look at the same example, but with UTF-8 mode on the
    /// underlying NFA disabled:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     nfa::thompson,
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .thompson(thompson::Config::new().reverse(true).utf8(false))
    ///     .build(r"")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // Run the reverse DFA to collect all matches.
    /// let mut input = Input::new("☃");
    /// let mut matches = vec![];
    /// loop {
    ///     match dfa.try_search_rev(&mut cache, &input)? {
    ///         None => break,
    ///         Some(hm) => {
    ///             matches.push(hm);
    ///             if hm.offset() == 0 || input.end() == 0 {
    ///                 break;
    ///             } else if hm.offset() < input.end() {
    ///                 input.set_end(hm.offset());
    ///             } else {
    ///                 // This is only necessary to handle zero-width
    ///                 // matches, which of course occur in this example.
    ///                 // Without this, the search would never advance
    ///                 // backwards beyond the initial match.
    ///                 input.set_end(input.end() - 1);
    ///             }
    ///         }
    ///     }
    /// }
    ///
    /// // No matches split a codepoint.
    /// let expected = vec![
    ///     HalfMatch::must(0, 3),
    ///     HalfMatch::must(0, 2),
    ///     HalfMatch::must(0, 1),
    ///     HalfMatch::must(0, 0),
    /// ];
    /// assert_eq!(expected, matches);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_search_rev(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, MatchError> {
        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
        let hm = match search::find_rev(self, cache, input)? {
            None => return Ok(None),
            Some(hm) if !utf8empty => return Ok(Some(hm)),
            Some(hm) => hm,
        };
        empty::skip_splits_rev(input, hm, hm.offset(), |input| {
            let got = search::find_rev(self, cache, input)?;
            Ok(got.map(|hm| (hm, hm.offset())))
        })
    }

    /// Executes an overlapping forward search and returns the end position of
    /// matches as they are found. If no match exists, then `None` is returned.
    ///
    /// This routine is principally only useful when searching for multiple
    /// patterns on inputs where multiple patterns may match the same regions
    /// of text. In particular, callers must preserve the automaton's search
    /// state from prior calls so that the implementation knows where the last
    /// match occurred.
    ///
    /// When using this routine to implement an iterator of overlapping
    /// matches, the `start` of the search should remain invariant throughout
    /// iteration. The `OverlappingState` given to the search will keep track
    /// of the current position of the search. (This is because multiple
    /// matches may be reported at the same position, so only the search
    /// implementation itself knows when to advance the position.)
    ///
    /// If for some reason you want the search to forget about its previous
    /// state and restart the search at a particular position, then setting the
    /// state to [`OverlappingState::start`] will accomplish that.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the lazy DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the lazy DFA quitting.
    /// * The configuration of the lazy DFA may also permit it to "give up"
    /// on a search if it makes ineffective use of its transition table
    /// cache. The default configuration does not enable this by default,
    /// although it is typically a good idea to.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    ///
    /// # Example
    ///
    /// This example shows how to run a basic overlapping search. Notice
    /// that we build the automaton with a `MatchKind::All` configuration.
    /// Overlapping searches are unlikely to work as one would expect when
    /// using the default `MatchKind::LeftmostFirst` match semantics, since
    /// leftmost-first matching is fundamentally incompatible with overlapping
    /// searches. Namely, overlapping searches need to report matches as they
    /// are seen, where as leftmost-first searches will continue searching even
    /// after a match has been observed in order to find the conventional end
    /// position of the match. More concretely, leftmost-first searches use
    /// dead states to terminate a search after a specific match can no longer
    /// be extended. Overlapping searches instead do the opposite by continuing
    /// the search to find totally new matches (potentially of other patterns).
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     hybrid::dfa::{DFA, OverlappingState},
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .build_many(&[r"\w+$", r"\S+$"])?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "@foo";
    /// let mut state = OverlappingState::start();
    ///
    /// let expected = Some(HalfMatch::must(1, 4));
    /// dfa.try_search_overlapping_fwd(
    ///     &mut cache, &Input::new(haystack), &mut state,
    /// )?;
    /// assert_eq!(expected, state.get_match());
    ///
    /// // The first pattern also matches at the same position, so re-running
    /// // the search will yield another match. Notice also that the first
    /// // pattern is returned after the second. This is because the second
    /// // pattern begins its match before the first, is therefore an earlier
    /// // match and is thus reported first.
    /// let expected = Some(HalfMatch::must(0, 4));
    /// dfa.try_search_overlapping_fwd(
    ///     &mut cache, &Input::new(haystack), &mut state,
    /// )?;
    /// assert_eq!(expected, state.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_search_overlapping_fwd(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        state: &mut OverlappingState,
    ) -> Result<(), MatchError> {
        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
        search::find_overlapping_fwd(self, cache, input, state)?;
        match state.get_match() {
            None => Ok(()),
            Some(_) if !utf8empty => Ok(()),
            Some(_) => skip_empty_utf8_splits_overlapping(
                input,
                state,
                |input, state| {
                    search::find_overlapping_fwd(self, cache, input, state)
                },
            ),
        }
    }

    /// Executes a reverse overlapping search and returns the start of the
    /// position of the leftmost match that is found. If no match exists, then
    /// `None` is returned.
    ///
    /// When using this routine to implement an iterator of overlapping
    /// matches, the `start` of the search should remain invariant throughout
    /// iteration. The `OverlappingState` given to the search will keep track
    /// of the current position of the search. (This is because multiple
    /// matches may be reported at the same position, so only the search
    /// implementation itself knows when to advance the position.)
    ///
    /// If for some reason you want the search to forget about its previous
    /// state and restart the search at a particular position, then setting the
    /// state to [`OverlappingState::start`] will accomplish that.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the lazy DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the lazy DFA quitting.
    /// * The configuration of the lazy DFA may also permit it to "give up"
    /// on a search if it makes ineffective use of its transition table
    /// cache. The default configuration does not enable this by default,
    /// although it is typically a good idea to.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    ///
    /// # Example: UTF-8 mode
    ///
    /// This examples demonstrates that UTF-8 mode applies to reverse
    /// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
    /// matches reported must correspond to valid UTF-8 spans. This includes
    /// prohibiting zero-width matches that split a codepoint.
    ///
    /// UTF-8 mode is enabled by default. Notice below how the only zero-width
    /// matches reported are those at UTF-8 boundaries:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::{DFA, OverlappingState},
    ///     nfa::thompson,
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .thompson(thompson::Config::new().reverse(true))
    ///     .build_many(&[r"", r"☃"])?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // Run the reverse DFA to collect all matches.
    /// let input = Input::new("☃");
    /// let mut state = OverlappingState::start();
    /// let mut matches = vec![];
    /// loop {
    ///     dfa.try_search_overlapping_rev(&mut cache, &input, &mut state)?;
    ///     match state.get_match() {
    ///         None => break,
    ///         Some(hm) => matches.push(hm),
    ///     }
    /// }
    ///
    /// // No matches split a codepoint.
    /// let expected = vec![
    ///     HalfMatch::must(0, 3),
    ///     HalfMatch::must(1, 0),
    ///     HalfMatch::must(0, 0),
    /// ];
    /// assert_eq!(expected, matches);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Now let's look at the same example, but with UTF-8 mode on the
    /// underlying NFA disabled:
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::{DFA, OverlappingState},
    ///     nfa::thompson,
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .thompson(thompson::Config::new().reverse(true).utf8(false))
    ///     .build_many(&[r"", r"☃"])?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // Run the reverse DFA to collect all matches.
    /// let input = Input::new("☃");
    /// let mut state = OverlappingState::start();
    /// let mut matches = vec![];
    /// loop {
    ///     dfa.try_search_overlapping_rev(&mut cache, &input, &mut state)?;
    ///     match state.get_match() {
    ///         None => break,
    ///         Some(hm) => matches.push(hm),
    ///     }
    /// }
    ///
    /// // Now *all* positions match, even within a codepoint,
    /// // because we lifted the requirement that matches
    /// // correspond to valid UTF-8 spans.
    /// let expected = vec![
    ///     HalfMatch::must(0, 3),
    ///     HalfMatch::must(0, 2),
    ///     HalfMatch::must(0, 1),
    ///     HalfMatch::must(1, 0),
    ///     HalfMatch::must(0, 0),
    /// ];
    /// assert_eq!(expected, matches);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_search_overlapping_rev(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        state: &mut OverlappingState,
    ) -> Result<(), MatchError> {
        let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
        search::find_overlapping_rev(self, cache, input, state)?;
        match state.get_match() {
            None => Ok(()),
            Some(_) if !utf8empty => Ok(()),
            Some(_) => skip_empty_utf8_splits_overlapping(
                input,
                state,
                |input, state| {
                    search::find_overlapping_rev(self, cache, input, state)
                },
            ),
        }
    }

    /// Writes the set of patterns that match anywhere in the given search
    /// configuration to `patset`. If multiple patterns match at the same
    /// position and the underlying DFA supports overlapping matches, then all
    /// matching patterns are written to the given set.
    ///
    /// Unless all of the patterns in this DFA are anchored, then generally
    /// speaking, this will visit every byte in the haystack.
    ///
    /// This search routine *does not* clear the pattern set. This gives some
    /// flexibility to the caller (e.g., running multiple searches with the
    /// same pattern set), but does make the API bug-prone if you're reusing
    /// the same pattern set for multiple searches but intended them to be
    /// independent.
    ///
    /// If a pattern ID matched but the given `PatternSet` does not have
    /// sufficient capacity to store it, then it is not inserted and silently
    /// dropped.
    ///
    /// # Errors
    ///
    /// This routine errors if the search could not complete. This can occur
    /// in a number of circumstances:
    ///
    /// * The configuration of the lazy DFA may permit it to "quit" the search.
    /// For example, setting quit bytes or enabling heuristic support for
    /// Unicode word boundaries. The default configuration does not enable any
    /// option that could result in the lazy DFA quitting.
    /// * The configuration of the lazy DFA may also permit it to "give up"
    /// on a search if it makes ineffective use of its transition table
    /// cache. The default configuration does not enable this by default,
    /// although it is typically a good idea to.
    /// * When the provided `Input` configuration is not supported. For
    /// example, by providing an unsupported anchor mode.
    ///
    /// When a search returns an error, callers cannot know whether a match
    /// exists or not.
    ///
    /// # Example
    ///
    /// This example shows how to find all matching patterns in a haystack,
    /// even when some patterns match at the same position as other patterns.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     Input, MatchKind, PatternSet,
    /// };
    ///
    /// let patterns = &[
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
    /// ];
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .build_many(patterns)?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let input = Input::new("foobar");
    /// let mut patset = PatternSet::new(dfa.pattern_len());
    /// dfa.try_which_overlapping_matches(&mut cache, &input, &mut patset)?;
    /// let expected = vec![0, 2, 3, 4, 6];
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) -> Result<(), MatchError> {
        let mut state = OverlappingState::start();
        while let Some(m) = {
            self.try_search_overlapping_fwd(cache, input, &mut state)?;
            state.get_match()
        } {
            let _ = patset.try_insert(m.pattern());
            // There's nothing left to find, so we can stop. Or the caller
            // asked us to.
            if patset.is_full() || input.get_earliest() {
                break;
            }
        }
        Ok(())
    }
}

impl DFA {
    /// Transitions from the current state to the next state, given the next
    /// byte of input.
    ///
    /// The given cache is used to either reuse pre-computed state
    /// transitions, or to store this newly computed transition for future
    /// reuse. Thus, this routine guarantees that it will never return a state
    /// ID that has an "unknown" tag.
    ///
    /// # State identifier validity
    ///
    /// The only valid value for `current` is the lazy state ID returned
    /// by the most recent call to `next_state`, `next_state_untagged`,
    /// `next_state_untagged_unchecked`, `start_state_forward` or
    /// `state_state_reverse` for the given `cache`. Any state ID returned from
    /// prior calls to these routines (with the same `cache`) is considered
    /// invalid (even if it gives an appearance of working). State IDs returned
    /// from _any_ prior call for different `cache` values are also always
    /// invalid.
    ///
    /// The returned ID is always a valid ID when `current` refers to a valid
    /// ID. Moreover, this routine is defined for all possible values of
    /// `input`.
    ///
    /// These validity rules are not checked, even in debug mode. Callers are
    /// required to uphold these rules themselves.
    ///
    /// Violating these state ID validity rules will not sacrifice memory
    /// safety, but _may_ produce an incorrect result or a panic.
    ///
    /// # Panics
    ///
    /// If the given ID does not refer to a valid state, then this routine
    /// may panic but it also may not panic and instead return an invalid or
    /// incorrect ID.
    ///
    /// # Example
    ///
    /// This shows a simplistic example for walking a lazy DFA for a given
    /// haystack by using the `next_state` method.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, Input};
    ///
    /// let dfa = DFA::new(r"[a-z]+r")?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "bar".as_bytes();
    ///
    /// // The start state is determined by inspecting the position and the
    /// // initial bytes of the haystack.
    /// let mut sid = dfa.start_state_forward(
    ///     &mut cache, &Input::new(haystack),
    /// )?;
    /// // Walk all the bytes in the haystack.
    /// for &b in haystack {
    ///     sid = dfa.next_state(&mut cache, sid, b)?;
    /// }
    /// // Matches are always delayed by 1 byte, so we must explicitly walk the
    /// // special "EOI" transition at the end of the search.
    /// sid = dfa.next_eoi_state(&mut cache, sid)?;
    /// assert!(sid.is_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn next_state(
        &self,
        cache: &mut Cache,
        current: LazyStateID,
        input: u8,
    ) -> Result<LazyStateID, CacheError> {
        let class = usize::from(self.classes.get(input));
        let offset = current.as_usize_untagged() + class;
        let sid = cache.trans[offset];
        if !sid.is_unknown() {
            return Ok(sid);
        }
        let unit = alphabet::Unit::u8(input);
        Lazy::new(self, cache).cache_next_state(current, unit)
    }

    /// Transitions from the current state to the next state, given the next
    /// byte of input and a state ID that is not tagged.
    ///
    /// The only reason to use this routine is performance. In particular, the
    /// `next_state` method needs to do some additional checks, among them is
    /// to account for identifiers to states that are not yet computed. In
    /// such a case, the transition is computed on the fly. However, if it is
    /// known that the `current` state ID is untagged, then these checks can be
    /// omitted.
    ///
    /// Since this routine does not compute states on the fly, it does not
    /// modify the cache and thus cannot return an error. Consequently, `cache`
    /// does not need to be mutable and it is possible for this routine to
    /// return a state ID corresponding to the special "unknown" state. In
    /// this case, it is the caller's responsibility to use the prior state
    /// ID and `input` with `next_state` in order to force the computation of
    /// the unknown transition. Otherwise, trying to use the "unknown" state
    /// ID will just result in transitioning back to itself, and thus never
    /// terminating. (This is technically a special exemption to the state ID
    /// validity rules, but is permissible since this routine is guarateed to
    /// never mutate the given `cache`, and thus the identifier is guaranteed
    /// to remain valid.)
    ///
    /// See [`LazyStateID`] for more details on what it means for a state ID
    /// to be tagged. Also, see
    /// [`next_state_untagged_unchecked`](DFA::next_state_untagged_unchecked)
    /// for this same idea, but with bounds checks forcefully elided.
    ///
    /// # State identifier validity
    ///
    /// The only valid value for `current` is an **untagged** lazy
    /// state ID returned by the most recent call to `next_state`,
    /// `next_state_untagged`, `next_state_untagged_unchecked`,
    /// `start_state_forward` or `state_state_reverse` for the given `cache`.
    /// Any state ID returned from prior calls to these routines (with the
    /// same `cache`) is considered invalid (even if it gives an appearance
    /// of working). State IDs returned from _any_ prior call for different
    /// `cache` values are also always invalid.
    ///
    /// The returned ID is always a valid ID when `current` refers to a valid
    /// ID, although it may be tagged. Moreover, this routine is defined for
    /// all possible values of `input`.
    ///
    /// Not all validity rules are checked, even in debug mode. Callers are
    /// required to uphold these rules themselves.
    ///
    /// Violating these state ID validity rules will not sacrifice memory
    /// safety, but _may_ produce an incorrect result or a panic.
    ///
    /// # Panics
    ///
    /// If the given ID does not refer to a valid state, then this routine
    /// may panic but it also may not panic and instead return an invalid or
    /// incorrect ID.
    ///
    /// # Example
    ///
    /// This shows a simplistic example for walking a lazy DFA for a given
    /// haystack by using the `next_state_untagged` method where possible.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, Input};
    ///
    /// let dfa = DFA::new(r"[a-z]+r")?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "bar".as_bytes();
    ///
    /// // The start state is determined by inspecting the position and the
    /// // initial bytes of the haystack.
    /// let mut sid = dfa.start_state_forward(
    ///     &mut cache, &Input::new(haystack),
    /// )?;
    /// // Walk all the bytes in the haystack.
    /// let mut at = 0;
    /// while at < haystack.len() {
    ///     if sid.is_tagged() {
    ///         sid = dfa.next_state(&mut cache, sid, haystack[at])?;
    ///     } else {
    ///         let mut prev_sid = sid;
    ///         // We attempt to chew through as much as we can while moving
    ///         // through untagged state IDs. Thus, the transition function
    ///         // does less work on average per byte. (Unrolling this loop
    ///         // may help even more.)
    ///         while at < haystack.len() {
    ///             prev_sid = sid;
    ///             sid = dfa.next_state_untagged(
    ///                 &mut cache, sid, haystack[at],
    ///             );
    ///             at += 1;
    ///             if sid.is_tagged() {
    ///                 break;
    ///             }
    ///         }
    ///         // We must ensure that we never proceed to the next iteration
    ///         // with an unknown state ID. If we don't account for this
    ///         // case, then search isn't guaranteed to terminate since all
    ///         // transitions on unknown states loop back to itself.
    ///         if sid.is_unknown() {
    ///             sid = dfa.next_state(
    ///                 &mut cache, prev_sid, haystack[at - 1],
    ///             )?;
    ///         }
    ///     }
    /// }
    /// // Matches are always delayed by 1 byte, so we must explicitly walk the
    /// // special "EOI" transition at the end of the search.
    /// sid = dfa.next_eoi_state(&mut cache, sid)?;
    /// assert!(sid.is_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn next_state_untagged(
        &self,
        cache: &Cache,
        current: LazyStateID,
        input: u8,
    ) -> LazyStateID {
        debug_assert!(!current.is_tagged());
        let class = usize::from(self.classes.get(input));
        let offset = current.as_usize_unchecked() + class;
        cache.trans[offset]
    }

    /// Transitions from the current state to the next state, eliding bounds
    /// checks, given the next byte of input and a state ID that is not tagged.
    ///
    /// The only reason to use this routine is performance. In particular, the
    /// `next_state` method needs to do some additional checks, among them is
    /// to account for identifiers to states that are not yet computed. In
    /// such a case, the transition is computed on the fly. However, if it is
    /// known that the `current` state ID is untagged, then these checks can be
    /// omitted.
    ///
    /// Since this routine does not compute states on the fly, it does not
    /// modify the cache and thus cannot return an error. Consequently, `cache`
    /// does not need to be mutable and it is possible for this routine to
    /// return a state ID corresponding to the special "unknown" state. In
    /// this case, it is the caller's responsibility to use the prior state
    /// ID and `input` with `next_state` in order to force the computation of
    /// the unknown transition. Otherwise, trying to use the "unknown" state
    /// ID will just result in transitioning back to itself, and thus never
    /// terminating. (This is technically a special exemption to the state ID
    /// validity rules, but is permissible since this routine is guarateed to
    /// never mutate the given `cache`, and thus the identifier is guaranteed
    /// to remain valid.)
    ///
    /// See [`LazyStateID`] for more details on what it means for a state ID
    /// to be tagged. Also, see
    /// [`next_state_untagged`](DFA::next_state_untagged)
    /// for this same idea, but with memory safety guaranteed by retaining
    /// bounds checks.
    ///
    /// # State identifier validity
    ///
    /// The only valid value for `current` is an **untagged** lazy
    /// state ID returned by the most recent call to `next_state`,
    /// `next_state_untagged`, `next_state_untagged_unchecked`,
    /// `start_state_forward` or `state_state_reverse` for the given `cache`.
    /// Any state ID returned from prior calls to these routines (with the
    /// same `cache`) is considered invalid (even if it gives an appearance
    /// of working). State IDs returned from _any_ prior call for different
    /// `cache` values are also always invalid.
    ///
    /// The returned ID is always a valid ID when `current` refers to a valid
    /// ID, although it may be tagged. Moreover, this routine is defined for
    /// all possible values of `input`.
    ///
    /// Not all validity rules are checked, even in debug mode. Callers are
    /// required to uphold these rules themselves.
    ///
    /// Violating these state ID validity rules will not sacrifice memory
    /// safety, but _may_ produce an incorrect result or a panic.
    ///
    /// # Safety
    ///
    /// Callers of this method must guarantee that `current` refers to a valid
    /// state ID according to the rules described above. If `current` is not a
    /// valid state ID for this automaton, then calling this routine may result
    /// in undefined behavior.
    ///
    /// If `current` is valid, then the ID returned is valid for all possible
    /// values of `input`.
    #[inline]
    pub unsafe fn next_state_untagged_unchecked(
        &self,
        cache: &Cache,
        current: LazyStateID,
        input: u8,
    ) -> LazyStateID {
        debug_assert!(!current.is_tagged());
        let class = usize::from(self.classes.get(input));
        let offset = current.as_usize_unchecked() + class;
        *cache.trans.get_unchecked(offset)
    }

    /// Transitions from the current state to the next state for the special
    /// EOI symbol.
    ///
    /// The given cache is used to either reuse pre-computed state
    /// transitions, or to store this newly computed transition for future
    /// reuse. Thus, this routine guarantees that it will never return a state
    /// ID that has an "unknown" tag.
    ///
    /// This routine must be called at the end of every search in a correct
    /// implementation of search. Namely, lazy DFAs in this crate delay matches
    /// by one byte in order to support look-around operators. Thus, after
    /// reaching the end of a haystack, a search implementation must follow one
    /// last EOI transition.
    ///
    /// It is best to think of EOI as an additional symbol in the alphabet of a
    /// DFA that is distinct from every other symbol. That is, the alphabet of
    /// lazy DFAs in this crate has a logical size of 257 instead of 256, where
    /// 256 corresponds to every possible inhabitant of `u8`. (In practice, the
    /// physical alphabet size may be smaller because of alphabet compression
    /// via equivalence classes, but EOI is always represented somehow in the
    /// alphabet.)
    ///
    /// # State identifier validity
    ///
    /// The only valid value for `current` is the lazy state ID returned
    /// by the most recent call to `next_state`, `next_state_untagged`,
    /// `next_state_untagged_unchecked`, `start_state_forward` or
    /// `state_state_reverse` for the given `cache`. Any state ID returned from
    /// prior calls to these routines (with the same `cache`) is considered
    /// invalid (even if it gives an appearance of working). State IDs returned
    /// from _any_ prior call for different `cache` values are also always
    /// invalid.
    ///
    /// The returned ID is always a valid ID when `current` refers to a valid
    /// ID.
    ///
    /// These validity rules are not checked, even in debug mode. Callers are
    /// required to uphold these rules themselves.
    ///
    /// Violating these state ID validity rules will not sacrifice memory
    /// safety, but _may_ produce an incorrect result or a panic.
    ///
    /// # Panics
    ///
    /// If the given ID does not refer to a valid state, then this routine
    /// may panic but it also may not panic and instead return an invalid or
    /// incorrect ID.
    ///
    /// # Example
    ///
    /// This shows a simplistic example for walking a DFA for a given haystack,
    /// and then finishing the search with the final EOI transition.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, Input};
    ///
    /// let dfa = DFA::new(r"[a-z]+r")?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "bar".as_bytes();
    ///
    /// // The start state is determined by inspecting the position and the
    /// // initial bytes of the haystack.
    /// let mut sid = dfa.start_state_forward(
    ///     &mut cache, &Input::new(haystack),
    /// )?;
    /// // Walk all the bytes in the haystack.
    /// for &b in haystack {
    ///     sid = dfa.next_state(&mut cache, sid, b)?;
    /// }
    /// // Matches are always delayed by 1 byte, so we must explicitly walk
    /// // the special "EOI" transition at the end of the search. Without this
    /// // final transition, the assert below will fail since the DFA will not
    /// // have entered a match state yet!
    /// sid = dfa.next_eoi_state(&mut cache, sid)?;
    /// assert!(sid.is_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn next_eoi_state(
        &self,
        cache: &mut Cache,
        current: LazyStateID,
    ) -> Result<LazyStateID, CacheError> {
        let eoi = self.classes.eoi().as_usize();
        let offset = current.as_usize_untagged() + eoi;
        let sid = cache.trans[offset];
        if !sid.is_unknown() {
            return Ok(sid);
        }
        let unit = self.classes.eoi();
        Lazy::new(self, cache).cache_next_state(current, unit)
    }

    /// Return the ID of the start state for this lazy DFA for the given
    /// starting configuration.
    ///
    /// Unlike typical DFA implementations, the start state for DFAs in this
    /// crate is dependent on a few different factors:
    ///
    /// * The [`Anchored`] mode of the search. Unanchored, anchored and
    /// anchored searches for a specific [`PatternID`] all use different start
    /// states.
    /// * Whether a "look-behind" byte exists. For example, the `^` anchor
    /// matches if and only if there is no look-behind byte.
    /// * The specific value of that look-behind byte. For example, a `(?m:^)`
    /// assertion only matches when there is either no look-behind byte, or
    /// when the look-behind byte is a line terminator.
    ///
    /// The [starting configuration](start::Config) provides the above
    /// information.
    ///
    /// This routine can be used for either forward or reverse searches.
    /// Although, as a convenience, if you have an [`Input`], then it
    /// may be more succinct to use [`DFA::start_state_forward`] or
    /// [`DFA::start_state_reverse`]. Note, for example, that the convenience
    /// routines return a [`MatchError`] on failure where as this routine
    /// returns a [`StartError`].
    ///
    /// # Errors
    ///
    /// This may return a [`StartError`] if the search needs to give up when
    /// determining the start state (for example, if it sees a "quit" byte
    /// or if the cache has become inefficient). This can also return an
    /// error if the given configuration contains an unsupported [`Anchored`]
    /// configuration.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub fn start_state(
        &self,
        cache: &mut Cache,
        config: &start::Config,
    ) -> Result<LazyStateID, StartError> {
        let lazy = LazyRef::new(self, cache);
        let anchored = config.get_anchored();
        let start = match config.get_look_behind() {
            None => Start::Text,
            Some(byte) => {
                if !self.quitset.is_empty() && self.quitset.contains(byte) {
                    return Err(StartError::quit(byte));
                }
                self.start_map.get(byte)
            }
        };
        let start_id = lazy.get_cached_start_id(anchored, start)?;
        if !start_id.is_unknown() {
            return Ok(start_id);
        }
        Lazy::new(self, cache).cache_start_group(anchored, start)
    }

    /// Return the ID of the start state for this lazy DFA when executing a
    /// forward search.
    ///
    /// This is a convenience routine for calling [`DFA::start_state`] that
    /// converts the given [`Input`] to a [start configuration](start::Config).
    /// Additionally, if an error occurs, it is converted from a [`StartError`]
    /// to a [`MatchError`] using the offset information in the given
    /// [`Input`].
    ///
    /// # Errors
    ///
    /// This may return a [`MatchError`] if the search needs to give up when
    /// determining the start state (for example, if it sees a "quit" byte or
    /// if the cache has become inefficient). This can also return an error if
    /// the given `Input` contains an unsupported [`Anchored`] configuration.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub fn start_state_forward(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<LazyStateID, MatchError> {
        let config = start::Config::from_input_forward(input);
        self.start_state(cache, &config).map_err(|err| match err {
            StartError::Cache { .. } => MatchError::gave_up(input.start()),
            StartError::Quit { byte } => {
                let offset = input
                    .start()
                    .checked_sub(1)
                    .expect("no quit in start without look-behind");
                MatchError::quit(byte, offset)
            }
            StartError::UnsupportedAnchored { mode } => {
                MatchError::unsupported_anchored(mode)
            }
        })
    }

    /// Return the ID of the start state for this lazy DFA when executing a
    /// reverse search.
    ///
    /// This is a convenience routine for calling [`DFA::start_state`] that
    /// converts the given [`Input`] to a [start configuration](start::Config).
    /// Additionally, if an error occurs, it is converted from a [`StartError`]
    /// to a [`MatchError`] using the offset information in the given
    /// [`Input`].
    ///
    /// # Errors
    ///
    /// This may return a [`MatchError`] if the search needs to give up when
    /// determining the start state (for example, if it sees a "quit" byte or
    /// if the cache has become inefficient). This can also return an error if
    /// the given `Input` contains an unsupported [`Anchored`] configuration.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub fn start_state_reverse(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<LazyStateID, MatchError> {
        let config = start::Config::from_input_reverse(input);
        self.start_state(cache, &config).map_err(|err| match err {
            StartError::Cache { .. } => MatchError::gave_up(input.end()),
            StartError::Quit { byte } => {
                let offset = input.end();
                MatchError::quit(byte, offset)
            }
            StartError::UnsupportedAnchored { mode } => {
                MatchError::unsupported_anchored(mode)
            }
        })
    }

    /// Returns the total number of patterns that match in this state.
    ///
    /// If the lazy DFA was compiled with one pattern, then this must
    /// necessarily always return `1` for all match states.
    ///
    /// A lazy DFA guarantees that [`DFA::match_pattern`] can be called with
    /// indices up to (but not including) the length returned by this routine
    /// without panicking.
    ///
    /// # Panics
    ///
    /// If the given state is not a match state, then this may either panic
    /// or return an incorrect result.
    ///
    /// # Example
    ///
    /// This example shows a simple instance of implementing overlapping
    /// matches. In particular, it shows not only how to determine how many
    /// patterns have matched in a particular state, but also how to access
    /// which specific patterns have matched.
    ///
    /// Notice that we must use [`MatchKind::All`] when building the DFA. If we
    /// used [`MatchKind::LeftmostFirst`] instead, then the DFA would not be
    /// constructed in a way that supports overlapping matches. (It would only
    /// report a single pattern that matches at any particular point in time.)
    ///
    /// Another thing to take note of is the patterns used and the order in
    /// which the pattern IDs are reported. In the example below, pattern `3`
    /// is yielded first. Why? Because it corresponds to the match that
    /// appears first. Namely, the `@` symbol is part of `\S+` but not part
    /// of any of the other patterns. Since the `\S+` pattern has a match that
    /// starts to the left of any other pattern, its ID is returned before any
    /// other.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, Input, MatchKind};
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .build_many(&[
    ///         r"\w+", r"[a-z]+", r"[A-Z]+", r"\S+",
    ///     ])?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "@bar".as_bytes();
    ///
    /// // The start state is determined by inspecting the position and the
    /// // initial bytes of the haystack.
    /// let mut sid = dfa.start_state_forward(
    ///     &mut cache, &Input::new(haystack),
    /// )?;
    /// // Walk all the bytes in the haystack.
    /// for &b in haystack {
    ///     sid = dfa.next_state(&mut cache, sid, b)?;
    /// }
    /// sid = dfa.next_eoi_state(&mut cache, sid)?;
    ///
    /// assert!(sid.is_match());
    /// assert_eq!(dfa.match_len(&mut cache, sid), 3);
    /// // The following calls are guaranteed to not panic since `match_len`
    /// // returned `3` above.
    /// assert_eq!(dfa.match_pattern(&mut cache, sid, 0).as_usize(), 3);
    /// assert_eq!(dfa.match_pattern(&mut cache, sid, 1).as_usize(), 0);
    /// assert_eq!(dfa.match_pattern(&mut cache, sid, 2).as_usize(), 1);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn match_len(&self, cache: &Cache, id: LazyStateID) -> usize {
        assert!(id.is_match());
        LazyRef::new(self, cache).get_cached_state(id).match_len()
    }

    /// Returns the pattern ID corresponding to the given match index in the
    /// given state.
    ///
    /// See [`DFA::match_len`] for an example of how to use this method
    /// correctly. Note that if you know your lazy DFA is configured with a
    /// single pattern, then this routine is never necessary since it will
    /// always return a pattern ID of `0` for an index of `0` when `id`
    /// corresponds to a match state.
    ///
    /// Typically, this routine is used when implementing an overlapping
    /// search, as the example for `DFA::match_len` does.
    ///
    /// # Panics
    ///
    /// If the state ID is not a match state or if the match index is out
    /// of bounds for the given state, then this routine may either panic
    /// or produce an incorrect result. If the state ID is correct and the
    /// match index is correct, then this routine always produces a valid
    /// `PatternID`.
    #[inline]
    pub fn match_pattern(
        &self,
        cache: &Cache,
        id: LazyStateID,
        match_index: usize,
    ) -> PatternID {
        // This is an optimization for the very common case of a DFA with a
        // single pattern. This conditional avoids a somewhat more costly path
        // that finds the pattern ID from the corresponding `State`, which
        // requires a bit of slicing/pointer-chasing. This optimization tends
        // to only matter when matches are frequent.
        if self.pattern_len() == 1 {
            return PatternID::ZERO;
        }
        LazyRef::new(self, cache)
            .get_cached_state(id)
            .match_pattern(match_index)
    }
}

/// A cache represents a partially computed DFA.
///
/// A cache is the key component that differentiates a classical DFA and a
/// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a
/// complete transition table that can handle all possible inputs, a hybrid
/// NFA/DFA starts with an empty transition table and builds only the parts
/// required during search. The parts that are built are stored in a cache. For
/// this reason, a cache is a required parameter for nearly every operation on
/// a [`DFA`].
///
/// Caches can be created from their corresponding DFA via
/// [`DFA::create_cache`]. A cache can only be used with either the DFA that
/// created it, or the DFA that was most recently used to reset it with
/// [`Cache::reset`]. Using a cache with any other DFA may result in panics
/// or incorrect results.
#[derive(Clone, Debug)]
pub struct Cache {
    // N.B. If you're looking to understand how determinization works, it
    // is probably simpler to first grok src/dfa/determinize.rs, since that
    // doesn't have the "laziness" component.
    /// The transition table.
    ///
    /// Given a `current` LazyStateID and an `input` byte, the next state can
    /// be computed via `trans[untagged(current) + equiv_class(input)]`. Notice
    /// that no multiplication is used. That's because state identifiers are
    /// "premultiplied."
    ///
    /// Note that the next state may be the "unknown" state. In this case, the
    /// next state is not known and determinization for `current` on `input`
    /// must be performed.
    trans: Vec<LazyStateID>,
    /// The starting states for this DFA.
    ///
    /// These are computed lazily. Initially, these are all set to "unknown"
    /// lazy state IDs.
    ///
    /// When 'starts_for_each_pattern' is disabled (the default), then the size
    /// of this is constrained to the possible starting configurations based
    /// on the search parameters. (At time of writing, that's 4.) However,
    /// when starting states for each pattern is enabled, then there are N
    /// additional groups of starting states, where each group reflects the
    /// different possible configurations and N is the number of patterns.
    starts: Vec<LazyStateID>,
    /// A sequence of NFA/DFA powerset states that have been computed for this
    /// lazy DFA. This sequence is indexable by untagged LazyStateIDs. (Every
    /// tagged LazyStateID can be used to index this sequence by converting it
    /// to its untagged form.)
    states: Vec<State>,
    /// A map from states to their corresponding IDs. This map may be accessed
    /// via the raw byte representation of a state, which means that a `State`
    /// does not need to be allocated to determine whether it already exists
    /// in this map. Indeed, the existence of such a state is what determines
    /// whether we allocate a new `State` or not.
    ///
    /// The higher level idea here is that we do just enough determinization
    /// for a state to check whether we've already computed it. If we have,
    /// then we can save a little (albeit not much) work. The real savings is
    /// in memory usage. If we never checked for trivially duplicate states,
    /// then our memory usage would explode to unreasonable levels.
    states_to_id: StateMap,
    /// Sparse sets used to track which NFA states have been visited during
    /// various traversals.
    sparses: SparseSets,
    /// Scratch space for traversing the NFA graph. (We use space on the heap
    /// instead of the call stack.)
    stack: Vec<NFAStateID>,
    /// Scratch space for building a NFA/DFA powerset state. This is used to
    /// help amortize allocation since not every powerset state generated is
    /// added to the cache. In particular, if it already exists in the cache,
    /// then there is no need to allocate a new `State` for it.
    scratch_state_builder: StateBuilderEmpty,
    /// A simple abstraction for handling the saving of at most a single state
    /// across a cache clearing. This is required for correctness. Namely, if
    /// adding a new state after clearing the cache fails, then the caller
    /// must retain the ability to continue using the state ID given. The
    /// state corresponding to the state ID is what we preserve across cache
    /// clearings.
    state_saver: StateSaver,
    /// The memory usage, in bytes, used by 'states' and 'states_to_id'. We
    /// track this as new states are added since states use a variable amount
    /// of heap. Tracking this as we add states makes it possible to compute
    /// the total amount of memory used by the determinizer in constant time.
    memory_usage_state: usize,
    /// The number of times the cache has been cleared. When a minimum cache
    /// clear count is set, then the cache will return an error instead of
    /// clearing the cache if the count has been exceeded.
    clear_count: usize,
    /// The total number of bytes searched since the last time this cache was
    /// cleared, not including the current search.
    ///
    /// This can be added to the length of the current search to get the true
    /// total number of bytes searched.
    ///
    /// This is generally only non-zero when the
    /// `Cache::search_{start,update,finish}` APIs are used to track search
    /// progress.
    bytes_searched: usize,
    /// The progress of the current search.
    ///
    /// This is only non-`None` when callers utlize the `Cache::search_start`,
    /// `Cache::search_update` and `Cache::search_finish` APIs.
    ///
    /// The purpose of recording search progress is to be able to make a
    /// determination about the efficiency of the cache. Namely, by keeping
    /// track of the
    progress: Option<SearchProgress>,
}

impl Cache {
    /// Create a new cache for the given lazy DFA.
    ///
    /// The cache returned should only be used for searches for the given DFA.
    /// If you want to reuse the cache for another DFA, then you must call
    /// [`Cache::reset`] with that DFA.
    pub fn new(dfa: &DFA) -> Cache {
        let mut cache = Cache {
            trans: alloc::vec![],
            starts: alloc::vec![],
            states: alloc::vec![],
            states_to_id: StateMap::new(),
            sparses: SparseSets::new(dfa.get_nfa().states().len()),
            stack: alloc::vec![],
            scratch_state_builder: StateBuilderEmpty::new(),
            state_saver: StateSaver::none(),
            memory_usage_state: 0,
            clear_count: 0,
            bytes_searched: 0,
            progress: None,
        };
        debug!("pre-init lazy DFA cache size: {}", cache.memory_usage());
        Lazy { dfa, cache: &mut cache }.init_cache();
        debug!("post-init lazy DFA cache size: {}", cache.memory_usage());
        cache
    }

    /// Reset this cache such that it can be used for searching with the given
    /// lazy DFA (and only that DFA).
    ///
    /// A cache reset permits reusing memory already allocated in this cache
    /// with a different lazy DFA.
    ///
    /// Resetting a cache sets its "clear count" to 0. This is relevant if the
    /// lazy DFA has been configured to "give up" after it has cleared the
    /// cache a certain number of times.
    ///
    /// Any lazy state ID generated by the cache prior to resetting it is
    /// invalid after the reset.
    ///
    /// # Example
    ///
    /// This shows how to re-purpose a cache for use with a different DFA.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let dfa1 = DFA::new(r"\w")?;
    /// let dfa2 = DFA::new(r"\W")?;
    ///
    /// let mut cache = dfa1.create_cache();
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 2)),
    ///     dfa1.try_search_fwd(&mut cache, &Input::new("Δ"))?,
    /// );
    ///
    /// // Using 'cache' with dfa2 is not allowed. It may result in panics or
    /// // incorrect results. In order to re-purpose the cache, we must reset
    /// // it with the DFA we'd like to use it with.
    /// //
    /// // Similarly, after this reset, using the cache with 'dfa1' is also not
    /// // allowed.
    /// cache.reset(&dfa2);
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 3)),
    ///     dfa2.try_search_fwd(&mut cache, &Input::new("☃"))?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn reset(&mut self, dfa: &DFA) {
        Lazy::new(dfa, self).reset_cache()
    }

    /// Initializes a new search starting at the given position.
    ///
    /// If a previous search was unfinished, then it is finished automatically
    /// and a new search is begun.
    ///
    /// Note that keeping track of search progress is _not necessary_
    /// for correct implementations of search using a lazy DFA. Keeping
    /// track of search progress is only necessary if you want the
    /// [`Config::minimum_bytes_per_state`] configuration knob to work.
    #[inline]
    pub fn search_start(&mut self, at: usize) {
        // If a previous search wasn't marked as finished, then finish it
        // now automatically.
        if let Some(p) = self.progress.take() {
            self.bytes_searched += p.len();
        }
        self.progress = Some(SearchProgress { start: at, at });
    }

    /// Updates the current search to indicate that it has search to the
    /// current position.
    ///
    /// No special care needs to be taken for reverse searches. Namely, the
    /// position given may be _less than_ the starting position of the search.
    ///
    /// # Panics
    ///
    /// This panics if no search has been started by [`Cache::search_start`].
    #[inline]
    pub fn search_update(&mut self, at: usize) {
        let p =
            self.progress.as_mut().expect("no in-progress search to update");
        p.at = at;
    }

    /// Indicates that a search has finished at the given position.
    ///
    /// # Panics
    ///
    /// This panics if no search has been started by [`Cache::search_start`].
    #[inline]
    pub fn search_finish(&mut self, at: usize) {
        let mut p =
            self.progress.take().expect("no in-progress search to finish");
        p.at = at;
        self.bytes_searched += p.len();
    }

    /// Returns the total number of bytes that have been searched since this
    /// cache was last cleared.
    ///
    /// This is useful for determining the efficiency of the cache. For
    /// example, the lazy DFA uses this value in conjunction with the
    /// [`Config::minimum_bytes_per_state`] knob to help determine whether it
    /// should quit searching.
    ///
    /// This always returns `0` if search progress isn't being tracked. Note
    /// that the lazy DFA search routines in this crate always track search
    /// progress.
    pub fn search_total_len(&self) -> usize {
        self.bytes_searched + self.progress.as_ref().map_or(0, |p| p.len())
    }

    /// Returns the total number of times this cache has been cleared since it
    /// was either created or last reset.
    ///
    /// This is useful for informational purposes or if you want to change
    /// search strategies based on the number of times the cache has been
    /// cleared.
    pub fn clear_count(&self) -> usize {
        self.clear_count
    }

    /// Returns the heap memory usage, in bytes, of this cache.
    ///
    /// This does **not** include the stack size used up by this cache. To
    /// compute that, use `std::mem::size_of::<Cache>()`.
    pub fn memory_usage(&self) -> usize {
        const ID_SIZE: usize = size_of::<LazyStateID>();
        const STATE_SIZE: usize = size_of::<State>();

        // NOTE: If you make changes to the below, then
        // 'minimum_cache_capacity' should be updated correspondingly.

        self.trans.len() * ID_SIZE
        + self.starts.len() * ID_SIZE
        + self.states.len() * STATE_SIZE
        // Maps likely use more memory than this, but it's probably close.
        + self.states_to_id.len() * (STATE_SIZE + ID_SIZE)
        + self.sparses.memory_usage()
        + self.stack.capacity() * ID_SIZE
        + self.scratch_state_builder.capacity()
        // Heap memory used by 'State' in both 'states' and 'states_to_id'.
        + self.memory_usage_state
    }
}

/// Keeps track of the progress of the current search.
///
/// This is updated via the `Cache::search_{start,update,finish}` APIs to
/// record how many bytes have been searched. This permits computing a
/// heuristic that represents the efficiency of a cache, and thus helps inform
/// whether the lazy DFA should give up or not.
#[derive(Clone, Debug)]
struct SearchProgress {
    start: usize,
    at: usize,
}

impl SearchProgress {
    /// Returns the length, in bytes, of this search so far.
    ///
    /// This automatically handles the case of a reverse search, where `at`
    /// is likely to be less than `start`.
    fn len(&self) -> usize {
        if self.start <= self.at {
            self.at - self.start
        } else {
            self.start - self.at
        }
    }
}

/// A map from states to state identifiers. When using std, we use a standard
/// hashmap, since it's a bit faster for this use case. (Other maps, like
/// one's based on FNV, have not yet been benchmarked.)
///
/// The main purpose of this map is to reuse states where possible. This won't
/// fully minimize the DFA, but it works well in a lot of cases.
#[cfg(feature = "std")]
type StateMap = std::collections::HashMap<State, LazyStateID>;
#[cfg(not(feature = "std"))]
type StateMap = alloc::collections::BTreeMap<State, LazyStateID>;

/// A type that groups methods that require the base NFA/DFA and writable
/// access to the cache.
#[derive(Debug)]
struct Lazy<'i, 'c> {
    dfa: &'i DFA,
    cache: &'c mut Cache,
}

impl<'i, 'c> Lazy<'i, 'c> {
    /// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
    fn new(dfa: &'i DFA, cache: &'c mut Cache) -> Lazy<'i, 'c> {
        Lazy { dfa, cache }
    }

    /// Return an immutable view by downgrading a writable cache to a read-only
    /// cache.
    fn as_ref<'a>(&'a self) -> LazyRef<'i, 'a> {
        LazyRef::new(self.dfa, self.cache)
    }

    /// This is marked as 'inline(never)' to avoid bloating methods on 'DFA'
    /// like 'next_state' and 'next_eoi_state' that are called in critical
    /// areas. The idea is to let the optimizer focus on the other areas of
    /// those methods as the hot path.
    ///
    /// Here's an example that justifies 'inline(never)'
    ///
    /// ```ignore
    /// regex-cli find match hybrid \
    ///   --cache-capacity 100000000 \
    ///   -p '\pL{100}'
    ///   all-codepoints-utf8-100x
    /// ```
    ///
    /// Where 'all-codepoints-utf8-100x' is the UTF-8 encoding of every
    /// codepoint, in sequence, repeated 100 times.
    ///
    /// With 'inline(never)' hyperfine reports 1.1s per run. With
    /// 'inline(always)', hyperfine reports 1.23s. So that's a 10% improvement.
    #[cold]
    #[inline(never)]
    fn cache_next_state(
        &mut self,
        mut current: LazyStateID,
        unit: alphabet::Unit,
    ) -> Result<LazyStateID, CacheError> {
        let stride2 = self.dfa.stride2();
        let empty_builder = self.get_state_builder();
        let builder = determinize::next(
            self.dfa.get_nfa(),
            self.dfa.get_config().get_match_kind(),
            &mut self.cache.sparses,
            &mut self.cache.stack,
            &self.cache.states[current.as_usize_untagged() >> stride2],
            unit,
            empty_builder,
        );
        let save_state = !self.as_ref().state_builder_fits_in_cache(&builder);
        if save_state {
            self.save_state(current);
        }
        let next = self.add_builder_state(builder, |sid| sid)?;
        if save_state {
            current = self.saved_state_id();
        }
        // This is the payoff. The next time 'next_state' is called with this
        // state and alphabet unit, it will find this transition and avoid
        // having to re-determinize this transition.
        self.set_transition(current, unit, next);
        Ok(next)
    }

    /// Compute and cache the starting state for the given pattern ID (if
    /// present) and the starting configuration.
    ///
    /// This panics if a pattern ID is given and the DFA isn't configured to
    /// build anchored start states for each pattern.
    ///
    /// This will never return an unknown lazy state ID.
    ///
    /// If caching this state would otherwise result in a cache that has been
    /// cleared too many times, then an error is returned.
    #[cold]
    #[inline(never)]
    fn cache_start_group(
        &mut self,
        anchored: Anchored,
        start: Start,
    ) -> Result<LazyStateID, StartError> {
        let nfa_start_id = match anchored {
            Anchored::No => self.dfa.get_nfa().start_unanchored(),
            Anchored::Yes => self.dfa.get_nfa().start_anchored(),
            Anchored::Pattern(pid) => {
                if !self.dfa.get_config().get_starts_for_each_pattern() {
                    return Err(StartError::unsupported_anchored(anchored));
                }
                match self.dfa.get_nfa().start_pattern(pid) {
                    None => return Ok(self.as_ref().dead_id()),
                    Some(sid) => sid,
                }
            }
        };

        let id = self
            .cache_start_one(nfa_start_id, start)
            .map_err(StartError::cache)?;
        self.set_start_state(anchored, start, id);
        Ok(id)
    }

    /// Compute and cache the starting state for the given NFA state ID and the
    /// starting configuration. The NFA state ID might be one of the following:
    ///
    /// 1) An unanchored start state to match any pattern.
    /// 2) An anchored start state to match any pattern.
    /// 3) An anchored start state for a particular pattern.
    ///
    /// This will never return an unknown lazy state ID.
    ///
    /// If caching this state would otherwise result in a cache that has been
    /// cleared too many times, then an error is returned.
    fn cache_start_one(
        &mut self,
        nfa_start_id: NFAStateID,
        start: Start,
    ) -> Result<LazyStateID, CacheError> {
        let mut builder_matches = self.get_state_builder().into_matches();
        determinize::set_lookbehind_from_start(
            self.dfa.get_nfa(),
            &start,
            &mut builder_matches,
        );
        self.cache.sparses.set1.clear();
        determinize::epsilon_closure(
            self.dfa.get_nfa(),
            nfa_start_id,
            builder_matches.look_have(),
            &mut self.cache.stack,
            &mut self.cache.sparses.set1,
        );
        let mut builder = builder_matches.into_nfa();
        determinize::add_nfa_states(
            &self.dfa.get_nfa(),
            &self.cache.sparses.set1,
            &mut builder,
        );
        let tag_starts = self.dfa.get_config().get_specialize_start_states();
        self.add_builder_state(builder, |id| {
            if tag_starts {
                id.to_start()
            } else {
                id
            }
        })
    }

    /// Either add the given builder state to this cache, or return an ID to an
    /// equivalent state already in this cache.
    ///
    /// In the case where no equivalent state exists, the idmap function given
    /// may be used to transform the identifier allocated. This is useful if
    /// the caller needs to tag the ID with additional information.
    ///
    /// This will never return an unknown lazy state ID.
    ///
    /// If caching this state would otherwise result in a cache that has been
    /// cleared too many times, then an error is returned.
    fn add_builder_state(
        &mut self,
        builder: StateBuilderNFA,
        idmap: impl Fn(LazyStateID) -> LazyStateID,
    ) -> Result<LazyStateID, CacheError> {
        if let Some(&cached_id) =
            self.cache.states_to_id.get(builder.as_bytes())
        {
            // Since we have a cached state, put the constructed state's
            // memory back into our scratch space, so that it can be reused.
            self.put_state_builder(builder);
            return Ok(cached_id);
        }
        let result = self.add_state(builder.to_state(), idmap);
        self.put_state_builder(builder);
        result
    }

    /// Allocate a new state ID and add the given state to this cache.
    ///
    /// The idmap function given may be used to transform the identifier
    /// allocated. This is useful if the caller needs to tag the ID with
    /// additional information.
    ///
    /// This will never return an unknown lazy state ID.
    ///
    /// If caching this state would otherwise result in a cache that has been
    /// cleared too many times, then an error is returned.
    fn add_state(
        &mut self,
        state: State,
        idmap: impl Fn(LazyStateID) -> LazyStateID,
    ) -> Result<LazyStateID, CacheError> {
        if !self.as_ref().state_fits_in_cache(&state) {
            self.try_clear_cache()?;
        }
        // It's important for this to come second, since the above may clear
        // the cache. If we clear the cache after ID generation, then the ID
        // is likely bunk since it would have been generated based on a larger
        // transition table.
        let mut id = idmap(self.next_state_id()?);
        if state.is_match() {
            id = id.to_match();
        }
        // Add room in the transition table. Since this is a fresh state, all
        // of its transitions are unknown.
        self.cache.trans.extend(
            iter::repeat(self.as_ref().unknown_id()).take(self.dfa.stride()),
        );
        // When we add a sentinel state, we never want to set any quit
        // transitions. Technically, this is harmless, since sentinel states
        // have all of their transitions set to loop back to themselves. But
        // when creating sentinel states before the quit sentinel state,
        // this will try to call 'set_transition' on a state ID that doesn't
        // actually exist yet, which isn't allowed. So we just skip doing so
        // entirely.
        if !self.dfa.quitset.is_empty() && !self.as_ref().is_sentinel(id) {
            let quit_id = self.as_ref().quit_id();
            for b in self.dfa.quitset.iter() {
                self.set_transition(id, alphabet::Unit::u8(b), quit_id);
            }
        }
        self.cache.memory_usage_state += state.memory_usage();
        self.cache.states.push(state.clone());
        self.cache.states_to_id.insert(state, id);
        Ok(id)
    }

    /// Allocate a new state ID.
    ///
    /// This will never return an unknown lazy state ID.
    ///
    /// If caching this state would otherwise result in a cache that has been
    /// cleared too many times, then an error is returned.
    fn next_state_id(&mut self) -> Result<LazyStateID, CacheError> {
        let sid = match LazyStateID::new(self.cache.trans.len()) {
            Ok(sid) => sid,
            Err(_) => {
                self.try_clear_cache()?;
                // This has to pass since we check that ID capacity at
                // construction time can fit at least MIN_STATES states.
                LazyStateID::new(self.cache.trans.len()).unwrap()
            }
        };
        Ok(sid)
    }

    /// Attempt to clear the cache used by this lazy DFA.
    ///
    /// If clearing the cache exceeds the minimum number of required cache
    /// clearings, then this will return a cache error. In this case,
    /// callers should bubble this up as the cache can't be used until it is
    /// reset. Implementations of search should convert this error into a
    /// [`MatchError::gave_up`].
    ///
    /// If 'self.state_saver' is set to save a state, then this state is
    /// persisted through cache clearing. Otherwise, the cache is returned to
    /// its state after initialization with two exceptions: its clear count
    /// is incremented and some of its memory likely has additional capacity.
    /// That is, clearing a cache does _not_ release memory.
    ///
    /// Otherwise, any lazy state ID generated by the cache prior to resetting
    /// it is invalid after the reset.
    fn try_clear_cache(&mut self) -> Result<(), CacheError> {
        let c = self.dfa.get_config();
        if let Some(min_count) = c.get_minimum_cache_clear_count() {
            if self.cache.clear_count >= min_count {
                if let Some(min_bytes_per) = c.get_minimum_bytes_per_state() {
                    let len = self.cache.search_total_len();
                    let min_bytes =
                        min_bytes_per.saturating_mul(self.cache.states.len());
                    // If we've searched 0 bytes then probably something has
                    // gone wrong and the lazy DFA search implementation isn't
                    // correctly updating the search progress state.
                    if len == 0 {
                        trace!(
                            "number of bytes searched is 0, but \
                             a minimum bytes per state searched ({}) is \
                             enabled, maybe Cache::search_update \
                             is not being used?",
                            min_bytes_per,
                        );
                    }
                    if len < min_bytes {
                        trace!(
                            "lazy DFA cache has been cleared {} times, \
                             which exceeds the limit of {}, \
                             AND its bytes searched per state is less \
                             than the configured minimum of {}, \
                             therefore lazy DFA is giving up \
                             (bytes searched since cache clear = {}, \
                              number of states = {})",
                            self.cache.clear_count,
                            min_count,
                            min_bytes_per,
                            len,
                            self.cache.states.len(),
                        );
                        return Err(CacheError::bad_efficiency());
                    } else {
                        trace!(
                            "lazy DFA cache has been cleared {} times, \
                             which exceeds the limit of {}, \
                             AND its bytes searched per state is greater \
                             than the configured minimum of {}, \
                             therefore lazy DFA is continuing! \
                             (bytes searched since cache clear = {}, \
                              number of states = {})",
                            self.cache.clear_count,
                            min_count,
                            min_bytes_per,
                            len,
                            self.cache.states.len(),
                        );
                    }
                } else {
                    trace!(
                        "lazy DFA cache has been cleared {} times, \
                         which exceeds the limit of {}, \
                         since there is no configured bytes per state \
                         minimum, lazy DFA is giving up",
                        self.cache.clear_count,
                        min_count,
                    );
                    return Err(CacheError::too_many_cache_clears());
                }
            }
        }
        self.clear_cache();
        Ok(())
    }

    /// Clears _and_ resets the cache. Resetting the cache means that no
    /// states are persisted and the clear count is reset to 0. No heap memory
    /// is released.
    ///
    /// Note that the caller may reset a cache with a different DFA than what
    /// it was created from. In which case, the cache can now be used with the
    /// new DFA (and not the old DFA).
    fn reset_cache(&mut self) {
        self.cache.state_saver = StateSaver::none();
        self.clear_cache();
        // If a new DFA is used, it might have a different number of NFA
        // states, so we need to make sure our sparse sets have the appropriate
        // size.
        self.cache.sparses.resize(self.dfa.get_nfa().states().len());
        self.cache.clear_count = 0;
        self.cache.progress = None;
    }

    /// Clear the cache used by this lazy DFA.
    ///
    /// If 'self.state_saver' is set to save a state, then this state is
    /// persisted through cache clearing. Otherwise, the cache is returned to
    /// its state after initialization with two exceptions: its clear count
    /// is incremented and some of its memory likely has additional capacity.
    /// That is, clearing a cache does _not_ release memory.
    ///
    /// Otherwise, any lazy state ID generated by the cache prior to resetting
    /// it is invalid after the reset.
    fn clear_cache(&mut self) {
        self.cache.trans.clear();
        self.cache.starts.clear();
        self.cache.states.clear();
        self.cache.states_to_id.clear();
        self.cache.memory_usage_state = 0;
        self.cache.clear_count += 1;
        self.cache.bytes_searched = 0;
        if let Some(ref mut progress) = self.cache.progress {
            progress.start = progress.at;
        }
        trace!(
            "lazy DFA cache has been cleared (count: {})",
            self.cache.clear_count
        );
        self.init_cache();
        // If the state we want to save is one of the sentinel
        // (unknown/dead/quit) states, then 'init_cache' adds those back, and
        // their identifier values remains invariant. So there's no need to add
        // it again. (And indeed, doing so would be incorrect!)
        if let Some((old_id, state)) = self.cache.state_saver.take_to_save() {
            // If the state is one of the special sentinel states, then it is
            // automatically added by cache initialization and its ID always
            // remains the same. With that said, this should never occur since
            // the sentinel states are all loop states back to themselves. So
            // we should never be in a position where we're attempting to save
            // a sentinel state since we never compute transitions out of a
            // sentinel state.
            assert!(
                !self.as_ref().is_sentinel(old_id),
                "cannot save sentinel state"
            );
            let new_id = self
                .add_state(state, |id| {
                    if old_id.is_start() {
                        // We don't need to consult the
                        // 'specialize_start_states' config knob here, because
                        // if it's disabled, old_id.is_start() will never
                        // return true.
                        id.to_start()
                    } else {
                        id
                    }
                })
                // The unwrap here is OK because lazy DFA creation ensures that
                // we have room in the cache to add MIN_STATES states. Since
                // 'init_cache' above adds 3, this adds a 4th.
                .expect("adding one state after cache clear must work");
            self.cache.state_saver = StateSaver::Saved(new_id);
        }
    }

    /// Initialize this cache from emptiness to a place where it can be used
    /// for search.
    ///
    /// This is called both at cache creation time and after the cache has been
    /// cleared.
    ///
    /// Primarily, this adds the three sentinel states and allocates some
    /// initial memory.
    fn init_cache(&mut self) {
        // Why multiply by 2 here? Because we make room for both the unanchored
        // and anchored start states. Unanchored is first and then anchored.
        let mut starts_len = Start::len().checked_mul(2).unwrap();
        // ... but if we also want start states for every pattern, we make room
        // for that too.
        if self.dfa.get_config().get_starts_for_each_pattern() {
            starts_len += Start::len() * self.dfa.pattern_len();
        }
        self.cache
            .starts
            .extend(iter::repeat(self.as_ref().unknown_id()).take(starts_len));
        // This is the set of NFA states that corresponds to each of our three
        // sentinel states: the empty set.
        let dead = State::dead();
        // This sets up some states that we use as sentinels that are present
        // in every DFA. While it would be technically possible to implement
        // this DFA without explicitly putting these states in the transition
        // table, this is convenient to do to make `next_state` correct for all
        // valid state IDs without needing explicit conditionals to special
        // case these sentinel states.
        //
        // All three of these states are "dead" states. That is, all of
        // them transition only to themselves. So once you enter one of
        // these states, it's impossible to leave them. Thus, any correct
        // search routine must explicitly check for these state types. (Sans
        // `unknown`, since that is only used internally to represent missing
        // states.)
        let unk_id =
            self.add_state(dead.clone(), |id| id.to_unknown()).unwrap();
        let dead_id = self.add_state(dead.clone(), |id| id.to_dead()).unwrap();
        let quit_id = self.add_state(dead.clone(), |id| id.to_quit()).unwrap();
        assert_eq!(unk_id, self.as_ref().unknown_id());
        assert_eq!(dead_id, self.as_ref().dead_id());
        assert_eq!(quit_id, self.as_ref().quit_id());
        // The idea here is that if you start in an unknown/dead/quit state and
        // try to transition on them, then you should end up where you started.
        self.set_all_transitions(unk_id, unk_id);
        self.set_all_transitions(dead_id, dead_id);
        self.set_all_transitions(quit_id, quit_id);
        // All of these states are technically equivalent from the FSM
        // perspective, so putting all three of them in the cache isn't
        // possible. (They are distinct merely because we use their
        // identifiers as sentinels to mean something, as indicated by the
        // names.) Moreover, we wouldn't want to do that. Unknown and quit
        // states are special in that they are artificial constructions
        // this implementation. But dead states are a natural part of
        // determinization. When you reach a point in the NFA where you cannot
        // go anywhere else, a dead state will naturally arise and we MUST
        // reuse the canonical dead state that we've created here. Why? Because
        // it is the state ID that tells the search routine whether a state is
        // dead or not, and thus, whether to stop the search. Having a bunch of
        // distinct dead states would be quite wasteful!
        self.cache.states_to_id.insert(dead, dead_id);
    }

    /// Save the state corresponding to the ID given such that the state
    /// persists through a cache clearing.
    ///
    /// While the state may persist, the ID may not. In order to discover the
    /// new state ID, one must call 'saved_state_id' after a cache clearing.
    fn save_state(&mut self, id: LazyStateID) {
        let state = self.as_ref().get_cached_state(id).clone();
        self.cache.state_saver = StateSaver::ToSave { id, state };
    }

    /// Returns the updated lazy state ID for a state that was persisted
    /// through a cache clearing.
    ///
    /// It is only correct to call this routine when both a state has been
    /// saved and the cache has just been cleared. Otherwise, this panics.
    fn saved_state_id(&mut self) -> LazyStateID {
        self.cache
            .state_saver
            .take_saved()
            .expect("state saver does not have saved state ID")
    }

    /// Set all transitions on the state 'from' to 'to'.
    fn set_all_transitions(&mut self, from: LazyStateID, to: LazyStateID) {
        for unit in self.dfa.classes.representatives(..) {
            self.set_transition(from, unit, to);
        }
    }

    /// Set the transition on 'from' for 'unit' to 'to'.
    ///
    /// This panics if either 'from' or 'to' is invalid.
    ///
    /// All unit values are OK.
    fn set_transition(
        &mut self,
        from: LazyStateID,
        unit: alphabet::Unit,
        to: LazyStateID,
    ) {
        assert!(self.as_ref().is_valid(from), "invalid 'from' id: {:?}", from);
        assert!(self.as_ref().is_valid(to), "invalid 'to' id: {:?}", to);
        let offset =
            from.as_usize_untagged() + self.dfa.classes.get_by_unit(unit);
        self.cache.trans[offset] = to;
    }

    /// Set the start ID for the given pattern ID (if given) and starting
    /// configuration to the ID given.
    ///
    /// This panics if 'id' is not valid or if a pattern ID is given and
    /// 'starts_for_each_pattern' is not enabled.
    fn set_start_state(
        &mut self,
        anchored: Anchored,
        start: Start,
        id: LazyStateID,
    ) {
        assert!(self.as_ref().is_valid(id));
        let start_index = start.as_usize();
        let index = match anchored {
            Anchored::No => start_index,
            Anchored::Yes => Start::len() + start_index,
            Anchored::Pattern(pid) => {
                assert!(
                    self.dfa.get_config().get_starts_for_each_pattern(),
                    "attempted to search for a specific pattern \
                     without enabling starts_for_each_pattern",
                );
                let pid = pid.as_usize();
                (2 * Start::len()) + (Start::len() * pid) + start_index
            }
        };
        self.cache.starts[index] = id;
    }

    /// Returns a state builder from this DFA that might have existing
    /// capacity. This helps avoid allocs in cases where a state is built that
    /// turns out to already be cached.
    ///
    /// Callers must put the state builder back with 'put_state_builder',
    /// otherwise the allocation reuse won't work.
    fn get_state_builder(&mut self) -> StateBuilderEmpty {
        core::mem::replace(
            &mut self.cache.scratch_state_builder,
            StateBuilderEmpty::new(),
        )
    }

    /// Puts the given state builder back into this DFA for reuse.
    ///
    /// Note that building a 'State' from a builder always creates a new alloc,
    /// so callers should always put the builder back.
    fn put_state_builder(&mut self, builder: StateBuilderNFA) {
        let _ = core::mem::replace(
            &mut self.cache.scratch_state_builder,
            builder.clear(),
        );
    }
}

/// A type that groups methods that require the base NFA/DFA and read-only
/// access to the cache.
#[derive(Debug)]
struct LazyRef<'i, 'c> {
    dfa: &'i DFA,
    cache: &'c Cache,
}

impl<'i, 'c> LazyRef<'i, 'c> {
    /// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
    fn new(dfa: &'i DFA, cache: &'c Cache) -> LazyRef<'i, 'c> {
        LazyRef { dfa, cache }
    }

    /// Return the ID of the start state for the given configuration.
    ///
    /// If the start state has not yet been computed, then this returns an
    /// unknown lazy state ID.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn get_cached_start_id(
        &self,
        anchored: Anchored,
        start: Start,
    ) -> Result<LazyStateID, StartError> {
        let start_index = start.as_usize();
        let index = match anchored {
            Anchored::No => start_index,
            Anchored::Yes => Start::len() + start_index,
            Anchored::Pattern(pid) => {
                if !self.dfa.get_config().get_starts_for_each_pattern() {
                    return Err(StartError::unsupported_anchored(anchored));
                }
                if pid.as_usize() >= self.dfa.pattern_len() {
                    return Ok(self.dead_id());
                }
                (2 * Start::len())
                    + (Start::len() * pid.as_usize())
                    + start_index
            }
        };
        Ok(self.cache.starts[index])
    }

    /// Return the cached NFA/DFA powerset state for the given ID.
    ///
    /// This panics if the given ID does not address a valid state.
    fn get_cached_state(&self, sid: LazyStateID) -> &State {
        let index = sid.as_usize_untagged() >> self.dfa.stride2();
        &self.cache.states[index]
    }

    /// Returns true if and only if the given ID corresponds to a "sentinel"
    /// state.
    ///
    /// A sentinel state is a state that signifies a special condition of
    /// search, and where every transition maps back to itself. See LazyStateID
    /// for more details. Note that start and match states are _not_ sentinels
    /// since they may otherwise be real states with non-trivial transitions.
    /// The purposes of sentinel states is purely to indicate something. Their
    /// transitions are not meant to be followed.
    fn is_sentinel(&self, id: LazyStateID) -> bool {
        id == self.unknown_id() || id == self.dead_id() || id == self.quit_id()
    }

    /// Returns the ID of the unknown state for this lazy DFA.
    fn unknown_id(&self) -> LazyStateID {
        // This unwrap is OK since 0 is always a valid state ID.
        LazyStateID::new(0).unwrap().to_unknown()
    }

    /// Returns the ID of the dead state for this lazy DFA.
    fn dead_id(&self) -> LazyStateID {
        // This unwrap is OK since the maximum value here is 1 * 512 = 512,
        // which is <= 2047 (the maximum state ID on 16-bit systems). Where
        // 512 is the worst case for our equivalence classes (every byte is a
        // distinct class).
        LazyStateID::new(1 << self.dfa.stride2()).unwrap().to_dead()
    }

    /// Returns the ID of the quit state for this lazy DFA.
    fn quit_id(&self) -> LazyStateID {
        // This unwrap is OK since the maximum value here is 2 * 512 = 1024,
        // which is <= 2047 (the maximum state ID on 16-bit systems). Where
        // 512 is the worst case for our equivalence classes (every byte is a
        // distinct class).
        LazyStateID::new(2 << self.dfa.stride2()).unwrap().to_quit()
    }

    /// Returns true if and only if the given ID is valid.
    ///
    /// An ID is valid if it is both a valid index into the transition table
    /// and is a multiple of the DFA's stride.
    fn is_valid(&self, id: LazyStateID) -> bool {
        let id = id.as_usize_untagged();
        id < self.cache.trans.len() && id % self.dfa.stride() == 0
    }

    /// Returns true if adding the state given would fit in this cache.
    fn state_fits_in_cache(&self, state: &State) -> bool {
        let needed = self.cache.memory_usage()
            + self.memory_usage_for_one_more_state(state.memory_usage());
        trace!(
            "lazy DFA cache capacity check: {:?} ?<=? {:?}",
            needed,
            self.dfa.cache_capacity
        );
        needed <= self.dfa.cache_capacity
    }

    /// Returns true if adding the state to be built by the given builder would
    /// fit in this cache.
    fn state_builder_fits_in_cache(&self, state: &StateBuilderNFA) -> bool {
        let needed = self.cache.memory_usage()
            + self.memory_usage_for_one_more_state(state.as_bytes().len());
        needed <= self.dfa.cache_capacity
    }

    /// Returns the additional memory usage, in bytes, required to add one more
    /// state to this cache. The given size should be the heap size, in bytes,
    /// that would be used by the new state being added.
    fn memory_usage_for_one_more_state(
        &self,
        state_heap_size: usize,
    ) -> usize {
        const ID_SIZE: usize = size_of::<LazyStateID>();
        const STATE_SIZE: usize = size_of::<State>();

        self.dfa.stride() * ID_SIZE // additional space needed in trans table
        + STATE_SIZE // space in cache.states
        + (STATE_SIZE + ID_SIZE) // space in cache.states_to_id
        + state_heap_size // heap memory used by state itself
    }
}

/// A simple type that encapsulates the saving of a state ID through a cache
/// clearing.
///
/// A state ID can be marked for saving with ToSave, while a state ID can be
/// saved itself with Saved.
#[derive(Clone, Debug)]
enum StateSaver {
    /// An empty state saver. In this case, no states (other than the special
    /// sentinel states) are preserved after clearing the cache.
    None,
    /// An ID of a state (and the state itself) that should be preserved after
    /// the lazy DFA's cache has been cleared. After clearing, the updated ID
    /// is stored in 'Saved' since it may have changed.
    ToSave { id: LazyStateID, state: State },
    /// An ID that of a state that has been persisted through a lazy DFA
    /// cache clearing. The ID recorded here corresponds to an ID that was
    /// once marked as ToSave. The IDs are likely not equivalent even though
    /// the states they point to are.
    Saved(LazyStateID),
}

impl StateSaver {
    /// Create an empty state saver.
    fn none() -> StateSaver {
        StateSaver::None
    }

    /// Replace this state saver with an empty saver, and if this saver is a
    /// request to save a state, return that request.
    fn take_to_save(&mut self) -> Option<(LazyStateID, State)> {
        match core::mem::replace(self, StateSaver::None) {
            StateSaver::None | StateSaver::Saved(_) => None,
            StateSaver::ToSave { id, state } => Some((id, state)),
        }
    }

    /// Replace this state saver with an empty saver, and if this saver is a
    /// saved state (or a request to save a state), return that state's ID.
    ///
    /// The idea here is that a request to save a state isn't necessarily
    /// honored because it might not be needed. e.g., Some higher level code
    /// might request a state to be saved on the off chance that the cache gets
    /// cleared when a new state is added at a lower level. But if that new
    /// state is never added, then the cache is never cleared and the state and
    /// its ID remain unchanged.
    fn take_saved(&mut self) -> Option<LazyStateID> {
        match core::mem::replace(self, StateSaver::None) {
            StateSaver::None => None,
            StateSaver::Saved(id) | StateSaver::ToSave { id, .. } => Some(id),
        }
    }
}

/// The configuration used for building a lazy DFA.
///
/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
/// advantage of the former is that it often lets you avoid importing the
/// `Config` type directly.
///
/// A lazy DFA configuration is a simple data object that is typically used
/// with [`Builder::configure`].
///
/// The default configuration guarantees that a search will never return a
/// "gave up" or "quit" error, although it is possible for a search to fail
/// if [`Config::starts_for_each_pattern`] wasn't enabled (which it is not by
/// default) and an [`Anchored::Pattern`] mode is requested via [`Input`].
#[derive(Clone, Debug, Default)]
pub struct Config {
    // As with other configuration types in this crate, we put all our knobs
    // in options so that we can distinguish between "default" and "not set."
    // This makes it possible to easily combine multiple configurations
    // without default values overwriting explicitly specified values. See the
    // 'overwrite' method.
    //
    // For docs on the fields below, see the corresponding method setters.
    match_kind: Option<MatchKind>,
    pre: Option<Option<Prefilter>>,
    starts_for_each_pattern: Option<bool>,
    byte_classes: Option<bool>,
    unicode_word_boundary: Option<bool>,
    quitset: Option<ByteSet>,
    specialize_start_states: Option<bool>,
    cache_capacity: Option<usize>,
    skip_cache_capacity_check: Option<bool>,
    minimum_cache_clear_count: Option<Option<usize>>,
    minimum_bytes_per_state: Option<Option<usize>>,
}

impl Config {
    /// Return a new default lazy DFA builder configuration.
    pub fn new() -> Config {
        Config::default()
    }

    /// Set the desired match semantics.
    ///
    /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
    /// match semantics of Perl-like regex engines. That is, when multiple
    /// patterns would match at the same leftmost position, the pattern that
    /// appears first in the concrete syntax is chosen.
    ///
    /// Currently, the only other kind of match semantics supported is
    /// [`MatchKind::All`]. This corresponds to classical DFA construction
    /// where all possible matches are added to the lazy DFA.
    ///
    /// Typically, `All` is used when one wants to execute an overlapping
    /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
    /// sense to use `All` with the various "leftmost" find routines, since the
    /// leftmost routines depend on the `LeftmostFirst` automata construction
    /// strategy. Specifically, `LeftmostFirst` adds dead states to the
    /// lazy DFA as a way to terminate the search and report a match.
    /// `LeftmostFirst` also supports non-greedy matches using this strategy
    /// where as `All` does not.
    ///
    /// # Example: overlapping search
    ///
    /// This example shows the typical use of `MatchKind::All`, which is to
    /// report overlapping matches.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     hybrid::dfa::{DFA, OverlappingState},
    ///     HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .build_many(&[r"\w+$", r"\S+$"])?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "@foo";
    /// let mut state = OverlappingState::start();
    ///
    /// let expected = Some(HalfMatch::must(1, 4));
    /// dfa.try_search_overlapping_fwd(
    ///     &mut cache, &Input::new(haystack), &mut state,
    /// )?;
    /// assert_eq!(expected, state.get_match());
    ///
    /// // The first pattern also matches at the same position, so re-running
    /// // the search will yield another match. Notice also that the first
    /// // pattern is returned after the second. This is because the second
    /// // pattern begins its match before the first, is therefore an earlier
    /// // match and is thus reported first.
    /// let expected = Some(HalfMatch::must(0, 4));
    /// dfa.try_search_overlapping_fwd(
    ///     &mut cache, &Input::new(haystack), &mut state,
    /// )?;
    /// assert_eq!(expected, state.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: reverse automaton to find start of match
    ///
    /// Another example for using `MatchKind::All` is for constructing a
    /// reverse automaton to find the start of a match. `All` semantics are
    /// used for this in order to find the longest possible match, which
    /// corresponds to the leftmost starting position.
    ///
    /// Note that if you need the starting position then
    /// [`hybrid::regex::Regex`](crate::hybrid::regex::Regex) will handle this
    /// for you, so it's usually not necessary to do this yourself.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     nfa::thompson::NFA,
    ///     Anchored, HalfMatch, Input, MatchKind,
    /// };
    ///
    /// let input = Input::new("123foobar456");
    /// let pattern = r"[a-z]+r";
    ///
    /// let dfa_fwd = DFA::new(pattern)?;
    /// let dfa_rev = DFA::builder()
    ///     .thompson(NFA::config().reverse(true))
    ///     .configure(DFA::config().match_kind(MatchKind::All))
    ///     .build(pattern)?;
    /// let mut cache_fwd = dfa_fwd.create_cache();
    /// let mut cache_rev = dfa_rev.create_cache();
    ///
    /// let expected_fwd = HalfMatch::must(0, 9);
    /// let expected_rev = HalfMatch::must(0, 3);
    /// let got_fwd = dfa_fwd.try_search_fwd(&mut cache_fwd, &input)?.unwrap();
    /// // Here we don't specify the pattern to search for since there's only
    /// // one pattern and we're doing a leftmost search. But if this were an
    /// // overlapping search, you'd need to specify the pattern that matched
    /// // in the forward direction. (Otherwise, you might wind up finding the
    /// // starting position of a match of some other pattern.) That in turn
    /// // requires building the reverse automaton with starts_for_each_pattern
    /// // enabled.
    /// let input = input
    ///     .clone()
    ///     .range(..got_fwd.offset())
    ///     .anchored(Anchored::Yes);
    /// let got_rev = dfa_rev.try_search_rev(&mut cache_rev, &input)?.unwrap();
    /// assert_eq!(expected_fwd, got_fwd);
    /// assert_eq!(expected_rev, got_rev);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn match_kind(mut self, kind: MatchKind) -> Config {
        self.match_kind = Some(kind);
        self
    }

    /// Set a prefilter to be used whenever a start state is entered.
    ///
    /// A [`Prefilter`] in this context is meant to accelerate searches by
    /// looking for literal prefixes that every match for the corresponding
    /// pattern (or patterns) must start with. Once a prefilter produces a
    /// match, the underlying search routine continues on to try and confirm
    /// the match.
    ///
    /// Be warned that setting a prefilter does not guarantee that the search
    /// will be faster. While it's usually a good bet, if the prefilter
    /// produces a lot of false positive candidates (i.e., positions matched
    /// by the prefilter but not by the regex), then the overall result can
    /// be slower than if you had just executed the regex engine without any
    /// prefilters.
    ///
    /// Note that unless [`Config::specialize_start_states`] has been
    /// explicitly set, then setting this will also enable (when `pre` is
    /// `Some`) or disable (when `pre` is `None`) start state specialization.
    /// This occurs because without start state specialization, a prefilter
    /// is likely to be less effective. And without a prefilter, start state
    /// specialization is usually pointless.
    ///
    /// By default no prefilter is set.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     util::prefilter::Prefilter,
    ///     Input, HalfMatch, MatchKind,
    /// };
    ///
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
    /// let re = DFA::builder()
    ///     .configure(DFA::config().prefilter(pre))
    ///     .build(r"(foo|bar)[a-z]+")?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new("foo1 barfox bar");
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 11)),
    ///     re.try_search_fwd(&mut cache, &input)?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Be warned though that an incorrect prefilter can lead to incorrect
    /// results!
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     util::prefilter::Prefilter,
    ///     Input, HalfMatch, MatchKind,
    /// };
    ///
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
    /// let re = DFA::builder()
    ///     .configure(DFA::config().prefilter(pre))
    ///     .build(r"(foo|bar)[a-z]+")?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new("foo1 barfox bar");
    /// assert_eq!(
    ///     // No match reported even though there clearly is one!
    ///     None,
    ///     re.try_search_fwd(&mut cache, &input)?,
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
        self.pre = Some(pre);
        if self.specialize_start_states.is_none() {
            self.specialize_start_states =
                Some(self.get_prefilter().is_some());
        }
        self
    }

    /// Whether to compile a separate start state for each pattern in the
    /// lazy DFA.
    ///
    /// When enabled, a separate **anchored** start state is added for each
    /// pattern in the lazy DFA. When this start state is used, then the DFA
    /// will only search for matches for the pattern specified, even if there
    /// are other patterns in the DFA.
    ///
    /// The main downside of this option is that it can potentially increase
    /// the size of the DFA and/or increase the time it takes to build the
    /// DFA at search time. However, since this is configuration for a lazy
    /// DFA, these states aren't actually built unless they're used. Enabling
    /// this isn't necessarily free, however, as it may result in higher cache
    /// usage.
    ///
    /// There are a few reasons one might want to enable this (it's disabled
    /// by default):
    ///
    /// 1. When looking for the start of an overlapping match (using a reverse
    /// DFA), doing it correctly requires starting the reverse search using the
    /// starting state of the pattern that matched in the forward direction.
    /// Indeed, when building a [`Regex`](crate::hybrid::regex::Regex), it
    /// will automatically enable this option when building the reverse DFA
    /// internally.
    /// 2. When you want to use a DFA with multiple patterns to both search
    /// for matches of any pattern or to search for anchored matches of one
    /// particular pattern while using the same DFA. (Otherwise, you would need
    /// to compile a new DFA for each pattern.)
    ///
    /// By default this is disabled.
    ///
    /// # Example
    ///
    /// This example shows how to use this option to permit the same lazy DFA
    /// to run both general searches for any pattern and anchored searches for
    /// a specific pattern.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     Anchored, HalfMatch, Input, PatternID,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().starts_for_each_pattern(true))
    ///     .build_many(&[r"[a-z0-9]{6}", r"[a-z][a-z0-9]{5}"])?;
    /// let mut cache = dfa.create_cache();
    /// let haystack = "bar foo123";
    ///
    /// // Here's a normal unanchored search that looks for any pattern.
    /// let expected = HalfMatch::must(0, 10);
    /// let input = Input::new(haystack);
    /// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
    /// // We can also do a normal anchored search for any pattern. Since it's
    /// // an anchored search, we position the start of the search where we
    /// // know the match will begin.
    /// let expected = HalfMatch::must(0, 10);
    /// let input = Input::new(haystack).range(4..);
    /// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
    /// // Since we compiled anchored start states for each pattern, we can
    /// // also look for matches of other patterns explicitly, even if a
    /// // different pattern would have normally matched.
    /// let expected = HalfMatch::must(1, 10);
    /// let input = Input::new(haystack)
    ///     .range(4..)
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
    /// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
        self.starts_for_each_pattern = Some(yes);
        self
    }

    /// Whether to attempt to shrink the size of the lazy DFA's alphabet or
    /// not.
    ///
    /// This option is enabled by default and should never be disabled unless
    /// one is debugging the lazy DFA.
    ///
    /// When enabled, the lazy DFA will use a map from all possible bytes
    /// to their corresponding equivalence class. Each equivalence class
    /// represents a set of bytes that does not discriminate between a match
    /// and a non-match in the DFA. For example, the pattern `[ab]+` has at
    /// least two equivalence classes: a set containing `a` and `b` and a set
    /// containing every byte except for `a` and `b`. `a` and `b` are in the
    /// same equivalence classes because they never discriminate between a
    /// match and a non-match.
    ///
    /// The advantage of this map is that the size of the transition table
    /// can be reduced drastically from `#states * 256 * sizeof(LazyStateID)`
    /// to `#states * k * sizeof(LazyStateID)` where `k` is the number of
    /// equivalence classes (rounded up to the nearest power of 2). As a
    /// result, total space usage can decrease substantially. Moreover, since a
    /// smaller alphabet is used, DFA compilation during search becomes faster
    /// as well since it will potentially be able to reuse a single transition
    /// for multiple bytes.
    ///
    /// **WARNING:** This is only useful for debugging lazy DFAs. Disabling
    /// this does not yield any speed advantages. Namely, even when this is
    /// disabled, a byte class map is still used while searching. The only
    /// difference is that every byte will be forced into its own distinct
    /// equivalence class. This is useful for debugging the actual generated
    /// transitions because it lets one see the transitions defined on actual
    /// bytes instead of the equivalence classes.
    pub fn byte_classes(mut self, yes: bool) -> Config {
        self.byte_classes = Some(yes);
        self
    }

    /// Heuristically enable Unicode word boundaries.
    ///
    /// When set, this will attempt to implement Unicode word boundaries as if
    /// they were ASCII word boundaries. This only works when the search input
    /// is ASCII only. If a non-ASCII byte is observed while searching, then a
    /// [`MatchError::quit`] error is returned.
    ///
    /// A possible alternative to enabling this option is to simply use an
    /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
    /// option is if you absolutely need Unicode support. This option lets one
    /// use a fast search implementation (a DFA) for some potentially very
    /// common cases, while providing the option to fall back to some other
    /// regex engine to handle the general case when an error is returned.
    ///
    /// If the pattern provided has no Unicode word boundary in it, then this
    /// option has no effect. (That is, quitting on a non-ASCII byte only
    /// occurs when this option is enabled _and_ a Unicode word boundary is
    /// present in the pattern.)
    ///
    /// This is almost equivalent to setting all non-ASCII bytes to be quit
    /// bytes. The only difference is that this will cause non-ASCII bytes to
    /// be quit bytes _only_ when a Unicode word boundary is present in the
    /// pattern.
    ///
    /// When enabling this option, callers _must_ be prepared to
    /// handle a [`MatchError`] error during search. When using a
    /// [`Regex`](crate::hybrid::regex::Regex), this corresponds to using the
    /// `try_` suite of methods. Alternatively, if callers can guarantee that
    /// their input is ASCII only, then a [`MatchError::quit`] error will never
    /// be returned while searching.
    ///
    /// This is disabled by default.
    ///
    /// # Example
    ///
    /// This example shows how to heuristically enable Unicode word boundaries
    /// in a pattern. It also shows what happens when a search comes across a
    /// non-ASCII byte.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     HalfMatch, Input, MatchError,
    /// };
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().unicode_word_boundary(true))
    ///     .build(r"\b[0-9]+\b")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // The match occurs before the search ever observes the snowman
    /// // character, so no error occurs.
    /// let haystack = "foo 123  ☃";
    /// let expected = Some(HalfMatch::must(0, 7));
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
    /// assert_eq!(expected, got);
    ///
    /// // Notice that this search fails, even though the snowman character
    /// // occurs after the ending match offset. This is because search
    /// // routines read one byte past the end of the search to account for
    /// // look-around, and indeed, this is required here to determine whether
    /// // the trailing \b matches.
    /// let haystack = "foo 123 ☃";
    /// let expected = MatchError::quit(0xE2, 8);
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack));
    /// assert_eq!(Err(expected), got);
    ///
    /// // Another example is executing a search where the span of the haystack
    /// // we specify is all ASCII, but there is non-ASCII just before it. This
    /// // correctly also reports an error.
    /// let input = Input::new("β123").range(2..);
    /// let expected = MatchError::quit(0xB2, 1);
    /// let got = dfa.try_search_fwd(&mut cache, &input);
    /// assert_eq!(Err(expected), got);
    ///
    /// // And similarly for the trailing word boundary.
    /// let input = Input::new("123β").range(..3);
    /// let expected = MatchError::quit(0xCE, 3);
    /// let got = dfa.try_search_fwd(&mut cache, &input);
    /// assert_eq!(Err(expected), got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
        // We have a separate option for this instead of just setting the
        // appropriate quit bytes here because we don't want to set quit bytes
        // for every regex. We only want to set them when the regex contains a
        // Unicode word boundary.
        self.unicode_word_boundary = Some(yes);
        self
    }

    /// Add a "quit" byte to the lazy DFA.
    ///
    /// When a quit byte is seen during search time, then search will return a
    /// [`MatchError::quit`] error indicating the offset at which the search
    /// stopped.
    ///
    /// A quit byte will always overrule any other aspects of a regex. For
    /// example, if the `x` byte is added as a quit byte and the regex `\w` is
    /// used, then observing `x` will cause the search to quit immediately
    /// despite the fact that `x` is in the `\w` class.
    ///
    /// This mechanism is primarily useful for heuristically enabling certain
    /// features like Unicode word boundaries in a DFA. Namely, if the input
    /// to search is ASCII, then a Unicode word boundary can be implemented
    /// via an ASCII word boundary with no change in semantics. Thus, a DFA
    /// can attempt to match a Unicode word boundary but give up as soon as it
    /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
    /// to be quit bytes, then Unicode word boundaries will be permitted when
    /// building lazy DFAs. Of course, callers should enable
    /// [`Config::unicode_word_boundary`] if they want this behavior instead.
    /// (The advantage being that non-ASCII quit bytes will only be added if a
    /// Unicode word boundary is in the pattern.)
    ///
    /// When enabling this option, callers _must_ be prepared to
    /// handle a [`MatchError`] error during search. When using a
    /// [`Regex`](crate::hybrid::regex::Regex), this corresponds to using the
    /// `try_` suite of methods.
    ///
    /// By default, there are no quit bytes set.
    ///
    /// # Panics
    ///
    /// This panics if heuristic Unicode word boundaries are enabled and any
    /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
    /// Unicode word boundaries requires setting every non-ASCII byte to a quit
    /// byte. So if the caller attempts to undo any of that, then this will
    /// panic.
    ///
    /// # Example
    ///
    /// This example shows how to cause a search to terminate if it sees a
    /// `\n` byte. This could be useful if, for example, you wanted to prevent
    /// a user supplied pattern from matching across a line boundary.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().quit(b'\n', true))
    ///     .build(r"foo\p{any}+bar")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "foo\nbar";
    /// // Normally this would produce a match, since \p{any} contains '\n'.
    /// // But since we instructed the automaton to enter a quit state if a
    /// // '\n' is observed, this produces a match error instead.
    /// let expected = MatchError::quit(b'\n', 3);
    /// let got = dfa.try_search_fwd(
    ///     &mut cache,
    ///     &Input::new(haystack),
    /// ).unwrap_err();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn quit(mut self, byte: u8, yes: bool) -> Config {
        if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
            panic!(
                "cannot set non-ASCII byte to be non-quit when \
                 Unicode word boundaries are enabled"
            );
        }
        if self.quitset.is_none() {
            self.quitset = Some(ByteSet::empty());
        }
        if yes {
            self.quitset.as_mut().unwrap().add(byte);
        } else {
            self.quitset.as_mut().unwrap().remove(byte);
        }
        self
    }

    /// Enable specializing start states in the lazy DFA.
    ///
    /// When start states are specialized, an implementor of a search routine
    /// using a lazy DFA can tell when the search has entered a starting state.
    /// When start states aren't specialized, then it is impossible to know
    /// whether the search has entered a start state.
    ///
    /// Ideally, this option wouldn't need to exist and we could always
    /// specialize start states. The problem is that start states can be quite
    /// active. This in turn means that an efficient search routine is likely
    /// to ping-pong between a heavily optimized hot loop that handles most
    /// states and to a less optimized specialized handling of start states.
    /// This causes branches to get heavily mispredicted and overall can
    /// materially decrease throughput. Therefore, specializing start states
    /// should only be enabled when it is needed.
    ///
    /// Knowing whether a search is in a start state is typically useful when a
    /// prefilter is active for the search. A prefilter is typically only run
    /// when in a start state and a prefilter can greatly accelerate a search.
    /// Therefore, the possible cost of specializing start states is worth it
    /// in this case. Otherwise, if you have no prefilter, there is likely no
    /// reason to specialize start states.
    ///
    /// This is disabled by default, but note that it is automatically
    /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
    /// `specialize_start_states` has already been set, [`Config::prefilter`]
    /// will automatically enable or disable it based on whether a prefilter
    /// is present or not, respectively. This is done because a prefilter's
    /// effectiveness is rooted in being executed whenever the DFA is in a
    /// start state, and that's only possible to do when they are specialized.
    ///
    /// Note that it is plausibly reasonable to _disable_ this option
    /// explicitly while _enabling_ a prefilter. In that case, a prefilter
    /// will still be run at the beginning of a search, but never again. This
    /// in theory could strike a good balance if you're in a situation where a
    /// prefilter is likely to produce many false positive candidates.
    ///
    /// # Example
    ///
    /// This example shows how to enable start state specialization and then
    /// shows how to check whether a state is a start state or not.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
    ///
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().specialize_start_states(true))
    ///     .build(r"[a-z]+")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "123 foobar 4567".as_bytes();
    /// let sid = dfa.start_state_forward(&mut cache, &Input::new(haystack))?;
    /// // The ID returned by 'start_state_forward' will always be tagged as
    /// // a start state when start state specialization is enabled.
    /// assert!(sid.is_tagged());
    /// assert!(sid.is_start());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Compare the above with the default lazy DFA configuration where
    /// start states are _not_ specialized. In this case, the start state
    /// is not tagged and `sid.is_start()` returns false.
    ///
    /// ```
    /// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
    ///
    /// let dfa = DFA::new(r"[a-z]+")?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "123 foobar 4567".as_bytes();
    /// let sid = dfa.start_state_forward(&mut cache, &Input::new(haystack))?;
    /// // Start states are not tagged in the default configuration!
    /// assert!(!sid.is_tagged());
    /// assert!(!sid.is_start());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn specialize_start_states(mut self, yes: bool) -> Config {
        self.specialize_start_states = Some(yes);
        self
    }

    /// Sets the maximum amount of heap memory, in bytes, to allocate to the
    /// cache for use during a lazy DFA search. If the lazy DFA would otherwise
    /// use more heap memory, then, depending on other configuration knobs,
    /// either stop the search and return an error or clear the cache and
    /// continue the search.
    ///
    /// The default cache capacity is some "reasonable" number that will
    /// accommodate most regular expressions. You may find that if you need
    /// to build a large DFA then it may be necessary to increase the cache
    /// capacity.
    ///
    /// Note that while building a lazy DFA will do a "minimum" check to ensure
    /// the capacity is big enough, this is more or less about correctness.
    /// If the cache is bigger than the minimum but still "too small," then the
    /// lazy DFA could wind up spending a lot of time clearing the cache and
    /// recomputing transitions, thus negating the performance benefits of a
    /// lazy DFA. Thus, setting the cache capacity is mostly an experimental
    /// endeavor. For most common patterns, however, the default should be
    /// sufficient.
    ///
    /// For more details on how the lazy DFA's cache is used, see the
    /// documentation for [`Cache`].
    ///
    /// # Example
    ///
    /// This example shows what happens if the configured cache capacity is
    /// too small. In such cases, one can override the cache capacity to make
    /// it bigger. Alternatively, one might want to use less memory by setting
    /// a smaller cache capacity.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let pattern = r"\p{L}{1000}";
    ///
    /// // The default cache capacity is likely too small to deal with regexes
    /// // that are very large. Large repetitions of large Unicode character
    /// // classes are a common way to make very large regexes.
    /// let _ = DFA::new(pattern).unwrap_err();
    /// // Bump up the capacity to something bigger.
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().cache_capacity(100 * (1<<20))) // 100 MB
    ///     .build(pattern)?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
    /// let expected = Some(HalfMatch::must(0, 2000));
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(&haystack))?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn cache_capacity(mut self, bytes: usize) -> Config {
        self.cache_capacity = Some(bytes);
        self
    }

    /// Configures construction of a lazy DFA to use the minimum cache capacity
    /// if the configured capacity is otherwise too small for the provided NFA.
    ///
    /// This is useful if you never want lazy DFA construction to fail because
    /// of a capacity that is too small.
    ///
    /// In general, this option is typically not a good idea. In particular,
    /// while a minimum cache capacity does permit the lazy DFA to function
    /// where it otherwise couldn't, it's plausible that it may not function
    /// well if it's constantly running out of room. In that case, the speed
    /// advantages of the lazy DFA may be negated. On the other hand, the
    /// "minimum" cache capacity computed may not be completely accurate and
    /// could actually be bigger than what is really necessary. Therefore, it
    /// is plausible that using the minimum cache capacity could still result
    /// in very good performance.
    ///
    /// This is disabled by default.
    ///
    /// # Example
    ///
    /// This example shows what happens if the configured cache capacity is
    /// too small. In such cases, one could override the capacity explicitly.
    /// An alternative, demonstrated here, let's us force construction to use
    /// the minimum cache capacity if the configured capacity is otherwise
    /// too small.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
    ///
    /// let pattern = r"\p{L}{1000}";
    ///
    /// // The default cache capacity is likely too small to deal with regexes
    /// // that are very large. Large repetitions of large Unicode character
    /// // classes are a common way to make very large regexes.
    /// let _ = DFA::new(pattern).unwrap_err();
    /// // Configure construction such it automatically selects the minimum
    /// // cache capacity if it would otherwise be too small.
    /// let dfa = DFA::builder()
    ///     .configure(DFA::config().skip_cache_capacity_check(true))
    ///     .build(pattern)?;
    /// let mut cache = dfa.create_cache();
    ///
    /// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
    /// let expected = Some(HalfMatch::must(0, 2000));
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(&haystack))?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn skip_cache_capacity_check(mut self, yes: bool) -> Config {
        self.skip_cache_capacity_check = Some(yes);
        self
    }

    /// Configure a lazy DFA search to quit after a certain number of cache
    /// clearings.
    ///
    /// When a minimum is set, then a lazy DFA search will *possibly* "give
    /// up" after the minimum number of cache clearings has occurred. This is
    /// typically useful in scenarios where callers want to detect whether the
    /// lazy DFA search is "efficient" or not. If the cache is cleared too many
    /// times, this is a good indicator that it is not efficient, and thus, the
    /// caller may wish to use some other regex engine.
    ///
    /// Note that the number of times a cache is cleared is a property of
    /// the cache itself. Thus, if a cache is used in a subsequent search
    /// with a similarly configured lazy DFA, then it could cause the
    /// search to "give up" if the cache needed to be cleared, depending
    /// on its internal count and configured minimum. The cache clear
    /// count can only be reset to `0` via [`DFA::reset_cache`] (or
    /// [`Regex::reset_cache`](crate::hybrid::regex::Regex::reset_cache) if
    /// you're using the `Regex` API).
    ///
    /// By default, no minimum is configured. Thus, a lazy DFA search will
    /// never give up due to cache clearings. If you do set this option, you
    /// might consider also setting [`Config::minimum_bytes_per_state`] in
    /// order for the lazy DFA to take efficiency into account before giving
    /// up.
    ///
    /// # Example
    ///
    /// This example uses a somewhat pathological configuration to demonstrate
    /// the _possible_ behavior of cache clearing and how it might result
    /// in a search that returns an error.
    ///
    /// It is important to note that the precise mechanics of how and when
    /// a cache gets cleared is an implementation detail.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{hybrid::dfa::DFA, Input, MatchError, MatchErrorKind};
    ///
    /// // This is a carefully chosen regex. The idea is to pick one
    /// // that requires some decent number of states (hence the bounded
    /// // repetition). But we specifically choose to create a class with an
    /// // ASCII letter and a non-ASCII letter so that we can check that no new
    /// // states are created once the cache is full. Namely, if we fill up the
    /// // cache on a haystack of 'a's, then in order to match one 'β', a new
    /// // state will need to be created since a 'β' is encoded with multiple
    /// // bytes. Since there's no room for this state, the search should quit
    /// // at the very first position.
    /// let pattern = r"[aβ]{100}";
    /// let dfa = DFA::builder()
    ///     .configure(
    ///         // Configure it so that we have the minimum cache capacity
    ///         // possible. And that if any clearings occur, the search quits.
    ///         DFA::config()
    ///             .skip_cache_capacity_check(true)
    ///             .cache_capacity(0)
    ///             .minimum_cache_clear_count(Some(0)),
    ///     )
    ///     .build(pattern)?;
    /// let mut cache = dfa.create_cache();
    ///
    /// // Our search will give up before reaching the end!
    /// let haystack = "a".repeat(101).into_bytes();
    /// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
    /// assert!(matches!(
    ///     *result.unwrap_err().kind(),
    ///     MatchErrorKind::GaveUp { .. },
    /// ));
    ///
    /// // Now that we know the cache is full, if we search a haystack that we
    /// // know will require creating at least one new state, it should not
    /// // be able to make much progress.
    /// let haystack = "β".repeat(101).into_bytes();
    /// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
    /// assert!(matches!(
    ///     *result.unwrap_err().kind(),
    ///     MatchErrorKind::GaveUp { .. },
    /// ));
    ///
    /// // If we reset the cache, then we should be able to create more states
    /// // and make more progress with searching for betas.
    /// cache.reset(&dfa);
    /// let haystack = "β".repeat(101).into_bytes();
    /// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
    /// assert!(matches!(
    ///     *result.unwrap_err().kind(),
    ///     MatchErrorKind::GaveUp { .. },
    /// ));
    ///
    /// // ... switching back to ASCII still makes progress since it just needs
    /// // to set transitions on existing states!
    /// let haystack = "a".repeat(101).into_bytes();
    /// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
    /// assert!(matches!(
    ///     *result.unwrap_err().kind(),
    ///     MatchErrorKind::GaveUp { .. },
    /// ));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn minimum_cache_clear_count(mut self, min: Option<usize>) -> Config {
        self.minimum_cache_clear_count = Some(min);
        self
    }

    /// Configure a lazy DFA search to quit only when its efficiency drops
    /// below the given minimum.
    ///
    /// The efficiency of the cache is determined by the number of DFA states
    /// compiled per byte of haystack searched. For example, if the efficiency
    /// is 2, then it means the lazy DFA is creating a new DFA state after
    /// searching approximately 2 bytes in a haystack. Generally speaking, 2
    /// is quite bad and it's likely that even a slower regex engine like the
    /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM) would be faster.
    ///
    /// This has no effect if [`Config::minimum_cache_clear_count`] is not set.
    /// Namely, this option only kicks in when the cache has been cleared more
    /// than the minimum number. If no minimum is set, then the cache is simply
    /// cleared whenever it fills up and it is impossible for the lazy DFA to
    /// quit due to ineffective use of the cache.
    ///
    /// In general, if one is setting [`Config::minimum_cache_clear_count`],
    /// then one should probably also set this knob as well. The reason is
    /// that the absolute number of times the cache is cleared is generally
    /// not a great predictor of efficiency. For example, if a new DFA state
    /// is created for every 1,000 bytes searched, then it wouldn't be hard
    /// for the cache to get cleared more than `N` times and then cause the
    /// lazy DFA to quit. But a new DFA state every 1,000 bytes is likely quite
    /// good from a performance perspective, and it's likely that the lazy
    /// DFA should continue searching, even if it requires clearing the cache
    /// occasionally.
    ///
    /// Finally, note that if you're implementing your own lazy DFA search
    /// routine and also want this efficiency check to work correctly, then
    /// you'll need to use the following routines to record search progress:
    ///
    /// * Call [`Cache::search_start`] at the beginning of every search.
    /// * Call [`Cache::search_update`] whenever [`DFA::next_state`] is
    /// called.
    /// * Call [`Cache::search_finish`] before completing a search. (It is
    /// not strictly necessary to call this when an error is returned, as
    /// `Cache::search_start` will automatically finish the previous search
    /// for you. But calling it where possible before returning helps improve
    /// the accuracy of how many bytes have actually been searched.)
    pub fn minimum_bytes_per_state(mut self, min: Option<usize>) -> Config {
        self.minimum_bytes_per_state = Some(min);
        self
    }

    /// Returns the match semantics set in this configuration.
    pub fn get_match_kind(&self) -> MatchKind {
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
    }

    /// Returns the prefilter set in this configuration, if one at all.
    pub fn get_prefilter(&self) -> Option<&Prefilter> {
        self.pre.as_ref().unwrap_or(&None).as_ref()
    }

    /// Returns whether this configuration has enabled anchored starting states
    /// for every pattern in the DFA.
    pub fn get_starts_for_each_pattern(&self) -> bool {
        self.starts_for_each_pattern.unwrap_or(false)
    }

    /// Returns whether this configuration has enabled byte classes or not.
    /// This is typically a debugging oriented option, as disabling it confers
    /// no speed benefit.
    pub fn get_byte_classes(&self) -> bool {
        self.byte_classes.unwrap_or(true)
    }

    /// Returns whether this configuration has enabled heuristic Unicode word
    /// boundary support. When enabled, it is possible for a search to return
    /// an error.
    pub fn get_unicode_word_boundary(&self) -> bool {
        self.unicode_word_boundary.unwrap_or(false)
    }

    /// Returns whether this configuration will instruct the lazy DFA to enter
    /// a quit state whenever the given byte is seen during a search. When at
    /// least one byte has this enabled, it is possible for a search to return
    /// an error.
    pub fn get_quit(&self, byte: u8) -> bool {
        self.quitset.map_or(false, |q| q.contains(byte))
    }

    /// Returns whether this configuration will instruct the lazy DFA to
    /// "specialize" start states. When enabled, the lazy DFA will tag start
    /// states so that search routines using the lazy DFA can detect when
    /// it's in a start state and do some kind of optimization (like run a
    /// prefilter).
    pub fn get_specialize_start_states(&self) -> bool {
        self.specialize_start_states.unwrap_or(false)
    }

    /// Returns the cache capacity set on this configuration.
    pub fn get_cache_capacity(&self) -> usize {
        self.cache_capacity.unwrap_or(2 * (1 << 20))
    }

    /// Returns whether the cache capacity check should be skipped.
    pub fn get_skip_cache_capacity_check(&self) -> bool {
        self.skip_cache_capacity_check.unwrap_or(false)
    }

    /// Returns, if set, the minimum number of times the cache must be cleared
    /// before a lazy DFA search can give up. When no minimum is set, then a
    /// search will never quit and will always clear the cache whenever it
    /// fills up.
    pub fn get_minimum_cache_clear_count(&self) -> Option<usize> {
        self.minimum_cache_clear_count.unwrap_or(None)
    }

    /// Returns, if set, the minimum number of bytes per state that need to be
    /// processed in order for the lazy DFA to keep going. If the minimum falls
    /// below this number (and the cache has been cleared a minimum number of
    /// times), then the lazy DFA will return a "gave up" error.
    pub fn get_minimum_bytes_per_state(&self) -> Option<usize> {
        self.minimum_bytes_per_state.unwrap_or(None)
    }

    /// Returns the minimum lazy DFA cache capacity required for the given NFA.
    ///
    /// The cache capacity required for a particular NFA may change without
    /// notice. Callers should not rely on it being stable.
    ///
    /// This is useful for informational purposes, but can also be useful for
    /// other reasons. For example, if one wants to check the minimum cache
    /// capacity themselves or if one wants to set the capacity based on the
    /// minimum.
    ///
    /// This may return an error if this configuration does not support all of
    /// the instructions used in the given NFA. For example, if the NFA has a
    /// Unicode word boundary but this configuration does not enable heuristic
    /// support for Unicode word boundaries.
    pub fn get_minimum_cache_capacity(
        &self,
        nfa: &thompson::NFA,
    ) -> Result<usize, BuildError> {
        let quitset = self.quit_set_from_nfa(nfa)?;
        let classes = self.byte_classes_from_nfa(nfa, &quitset);
        let starts = self.get_starts_for_each_pattern();
        Ok(minimum_cache_capacity(nfa, &classes, starts))
    }

    /// Returns the byte class map used during search from the given NFA.
    ///
    /// If byte classes are disabled on this configuration, then a map is
    /// returned that puts each byte in its own equivalent class.
    fn byte_classes_from_nfa(
        &self,
        nfa: &thompson::NFA,
        quit: &ByteSet,
    ) -> ByteClasses {
        if !self.get_byte_classes() {
            // The lazy DFA will always use the equivalence class map, but
            // enabling this option is useful for debugging. Namely, this will
            // cause all transitions to be defined over their actual bytes
            // instead of an opaque equivalence class identifier. The former is
            // much easier to grok as a human.
            ByteClasses::singletons()
        } else {
            let mut set = nfa.byte_class_set().clone();
            // It is important to distinguish any "quit" bytes from all other
            // bytes. Otherwise, a non-quit byte may end up in the same class
            // as a quit byte, and thus cause the DFA stop when it shouldn't.
            //
            // Test case:
            //
            //   regex-cli find match hybrid --unicode-word-boundary \
            //     -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
            if !quit.is_empty() {
                set.add_set(&quit);
            }
            set.byte_classes()
        }
    }

    /// Return the quit set for this configuration and the given NFA.
    ///
    /// This may return an error if the NFA is incompatible with this
    /// configuration's quit set. For example, if the NFA has a Unicode word
    /// boundary and the quit set doesn't include non-ASCII bytes.
    fn quit_set_from_nfa(
        &self,
        nfa: &thompson::NFA,
    ) -> Result<ByteSet, BuildError> {
        let mut quit = self.quitset.unwrap_or(ByteSet::empty());
        if nfa.look_set_any().contains_word_unicode() {
            if self.get_unicode_word_boundary() {
                for b in 0x80..=0xFF {
                    quit.add(b);
                }
            } else {
                // If heuristic support for Unicode word boundaries wasn't
                // enabled, then we can still check if our quit set is correct.
                // If the caller set their quit bytes in a way that causes the
                // DFA to quit on at least all non-ASCII bytes, then that's all
                // we need for heuristic support to work.
                if !quit.contains_range(0x80, 0xFF) {
                    return Err(
                        BuildError::unsupported_dfa_word_boundary_unicode(),
                    );
                }
            }
        }
        Ok(quit)
    }

    /// Overwrite the default configuration such that the options in `o` are
    /// always used. If an option in `o` is not set, then the corresponding
    /// option in `self` is used. If it's not set in `self` either, then it
    /// remains not set.
    fn overwrite(&self, o: Config) -> Config {
        Config {
            match_kind: o.match_kind.or(self.match_kind),
            pre: o.pre.or_else(|| self.pre.clone()),
            starts_for_each_pattern: o
                .starts_for_each_pattern
                .or(self.starts_for_each_pattern),
            byte_classes: o.byte_classes.or(self.byte_classes),
            unicode_word_boundary: o
                .unicode_word_boundary
                .or(self.unicode_word_boundary),
            quitset: o.quitset.or(self.quitset),
            specialize_start_states: o
                .specialize_start_states
                .or(self.specialize_start_states),
            cache_capacity: o.cache_capacity.or(self.cache_capacity),
            skip_cache_capacity_check: o
                .skip_cache_capacity_check
                .or(self.skip_cache_capacity_check),
            minimum_cache_clear_count: o
                .minimum_cache_clear_count
                .or(self.minimum_cache_clear_count),
            minimum_bytes_per_state: o
                .minimum_bytes_per_state
                .or(self.minimum_bytes_per_state),
        }
    }
}

/// A builder for constructing a lazy deterministic finite automaton from
/// regular expressions.
///
/// As a convenience, [`DFA::builder`] is an alias for [`Builder::new`]. The
/// advantage of the former is that it often lets you avoid importing the
/// `Builder` type directly.
///
/// This builder provides two main things:
///
/// 1. It provides a few different `build` routines for actually constructing
/// a DFA from different kinds of inputs. The most convenient is
/// [`Builder::build`], which builds a DFA directly from a pattern string. The
/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
/// from an NFA.
/// 2. The builder permits configuring a number of things.
/// [`Builder::configure`] is used with [`Config`] to configure aspects of
/// the DFA and the construction process itself. [`Builder::syntax`] and
/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
/// construction, respectively. The syntax and thompson configurations only
/// apply when building from a pattern string.
///
/// This builder always constructs a *single* lazy DFA. As such, this builder
/// can only be used to construct regexes that either detect the presence
/// of a match or find the end location of a match. A single DFA cannot
/// produce both the start and end of a match. For that information, use a
/// [`Regex`](crate::hybrid::regex::Regex), which can be similarly configured
/// using [`regex::Builder`](crate::hybrid::regex::Builder). The main reason
/// to use a DFA directly is if the end location of a match is enough for your
/// use case. Namely, a `Regex` will construct two lazy DFAs instead of one,
/// since a second reverse DFA is needed to find the start of a match.
///
/// # Example
///
/// This example shows how to build a lazy DFA that uses a tiny cache capacity
/// and completely disables Unicode. That is:
///
/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
///   and `\b` are ASCII-only while `.` matches any byte except for `\n`
///   (instead of any UTF-8 encoding of a Unicode scalar value except for
///   `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
/// * The pattern itself is permitted to match invalid UTF-8. For example,
///   things like `[^a]` that match any byte except for `a` are permitted.
///
/// ```
/// use regex_automata::{
///     hybrid::dfa::DFA,
///     nfa::thompson,
///     util::syntax,
///     HalfMatch, Input,
/// };
///
/// let dfa = DFA::builder()
///     .configure(DFA::config().cache_capacity(5_000))
///     .thompson(thompson::Config::new().utf8(false))
///     .syntax(syntax::Config::new().unicode(false).utf8(false))
///     .build(r"foo[^b]ar.*")?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
/// let expected = Some(HalfMatch::must(0, 10));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
    config: Config,
    #[cfg(feature = "syntax")]
    thompson: thompson::Compiler,
}

impl Builder {
    /// Create a new lazy DFA builder with the default configuration.
    pub fn new() -> Builder {
        Builder {
            config: Config::default(),
            #[cfg(feature = "syntax")]
            thompson: thompson::Compiler::new(),
        }
    }

    /// Build a lazy DFA from the given pattern.
    ///
    /// If there was a problem parsing or compiling the pattern, then an error
    /// is returned.
    #[cfg(feature = "syntax")]
    pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
        self.build_many(&[pattern])
    }

    /// Build a lazy DFA from the given patterns.
    ///
    /// When matches are returned, the pattern ID corresponds to the index of
    /// the pattern in the slice given.
    #[cfg(feature = "syntax")]
    pub fn build_many<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<DFA, BuildError> {
        let nfa = self
            .thompson
            .clone()
            // We can always forcefully disable captures because DFAs do not
            // support them.
            .configure(
                thompson::Config::new()
                    .which_captures(thompson::WhichCaptures::None),
            )
            .build_many(patterns)
            .map_err(BuildError::nfa)?;
        self.build_from_nfa(nfa)
    }

    /// Build a DFA from the given NFA.
    ///
    /// Note that this requires owning a `thompson::NFA`. While this may force
    /// you to clone the NFA, such a clone is not a deep clone. Namely, NFAs
    /// are defined internally to support shared ownership such that cloning is
    /// very cheap.
    ///
    /// # Example
    ///
    /// This example shows how to build a lazy DFA if you already have an NFA
    /// in hand.
    ///
    /// ```
    /// use regex_automata::{
    ///     hybrid::dfa::DFA,
    ///     nfa::thompson,
    ///     HalfMatch, Input,
    /// };
    ///
    /// let haystack = "foo123bar";
    ///
    /// // This shows how to set non-default options for building an NFA.
    /// let nfa = thompson::Compiler::new()
    ///     .configure(thompson::Config::new().shrink(true))
    ///     .build(r"[0-9]+")?;
    /// let dfa = DFA::builder().build_from_nfa(nfa)?;
    /// let mut cache = dfa.create_cache();
    /// let expected = Some(HalfMatch::must(0, 6));
    /// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_from_nfa(
        &self,
        nfa: thompson::NFA,
    ) -> Result<DFA, BuildError> {
        let quitset = self.config.quit_set_from_nfa(&nfa)?;
        let classes = self.config.byte_classes_from_nfa(&nfa, &quitset);
        // Check that we can fit at least a few states into our cache,
        // otherwise it's pretty senseless to use the lazy DFA. This does have
        // a possible failure mode though. This assumes the maximum size of a
        // state in powerset space (so, the total number of NFA states), which
        // may never actually materialize, and could be quite a bit larger
        // than the actual biggest state. If this turns out to be a problem,
        // we could expose a knob that disables this check. But if so, we have
        // to be careful not to panic in other areas of the code (the cache
        // clearing and init code) that tend to assume some minimum useful
        // cache capacity.
        let min_cache = minimum_cache_capacity(
            &nfa,
            &classes,
            self.config.get_starts_for_each_pattern(),
        );
        let mut cache_capacity = self.config.get_cache_capacity();
        if cache_capacity < min_cache {
            // When the caller has asked us to skip the cache capacity check,
            // then we simply force the cache capacity to its minimum amount
            // and mush on.
            if self.config.get_skip_cache_capacity_check() {
                debug!(
                    "given capacity ({}) is too small, \
                     since skip_cache_capacity_check is enabled, \
                     setting cache capacity to minimum ({})",
                    cache_capacity, min_cache,
                );
                cache_capacity = min_cache;
            } else {
                return Err(BuildError::insufficient_cache_capacity(
                    min_cache,
                    cache_capacity,
                ));
            }
        }
        // We also need to check that we can fit at least some small number
        // of states in our state ID space. This is unlikely to trigger in
        // >=32-bit systems, but 16-bit systems have a pretty small state ID
        // space since a number of bits are used up as sentinels.
        if let Err(err) = minimum_lazy_state_id(&classes) {
            return Err(BuildError::insufficient_state_id_capacity(err));
        }
        let stride2 = classes.stride2();
        let start_map = StartByteMap::new(nfa.look_matcher());
        Ok(DFA {
            config: self.config.clone(),
            nfa,
            stride2,
            start_map,
            classes,
            quitset,
            cache_capacity,
        })
    }

    /// Apply the given lazy DFA configuration options to this builder.
    pub fn configure(&mut self, config: Config) -> &mut Builder {
        self.config = self.config.overwrite(config);
        self
    }

    /// Set the syntax configuration for this builder using
    /// [`syntax::Config`](crate::util::syntax::Config).
    ///
    /// This permits setting things like case insensitivity, Unicode and multi
    /// line mode.
    ///
    /// These settings only apply when constructing a lazy DFA directly from a
    /// pattern.
    #[cfg(feature = "syntax")]
    pub fn syntax(
        &mut self,
        config: crate::util::syntax::Config,
    ) -> &mut Builder {
        self.thompson.syntax(config);
        self
    }

    /// Set the Thompson NFA configuration for this builder using
    /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
    ///
    /// This permits setting things like whether the DFA should match the regex
    /// in reverse or if additional time should be spent shrinking the size of
    /// the NFA.
    ///
    /// These settings only apply when constructing a DFA directly from a
    /// pattern.
    #[cfg(feature = "syntax")]
    pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
        self.thompson.configure(config);
        self
    }
}

/// Represents the current state of an overlapping search.
///
/// This is used for overlapping searches since they need to know something
/// about the previous search. For example, when multiple patterns match at the
/// same position, this state tracks the last reported pattern so that the next
/// search knows whether to report another matching pattern or continue with
/// the search at the next position. Additionally, it also tracks which state
/// the last search call terminated in.
///
/// This type provides little introspection capabilities. The only thing a
/// caller can do is construct it and pass it around to permit search routines
/// to use it to track state, and also ask whether a match has been found.
///
/// Callers should always provide a fresh state constructed via
/// [`OverlappingState::start`] when starting a new search. Reusing state from
/// a previous search may result in incorrect results.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OverlappingState {
    /// The match reported by the most recent overlapping search to use this
    /// state.
    ///
    /// If a search does not find any matches, then it is expected to clear
    /// this value.
    pub(crate) mat: Option<HalfMatch>,
    /// The state ID of the state at which the search was in when the call
    /// terminated. When this is a match state, `last_match` must be set to a
    /// non-None value.
    ///
    /// A `None` value indicates the start state of the corresponding
    /// automaton. We cannot use the actual ID, since any one automaton may
    /// have many start states, and which one is in use depends on several
    /// search-time factors.
    pub(crate) id: Option<LazyStateID>,
    /// The position of the search.
    ///
    /// When `id` is None (i.e., we are starting a search), this is set to
    /// the beginning of the search as given by the caller regardless of its
    /// current value. Subsequent calls to an overlapping search pick up at
    /// this offset.
    pub(crate) at: usize,
    /// The index into the matching patterns of the next match to report if the
    /// current state is a match state. Note that this may be 1 greater than
    /// the total number of matches to report for the current match state. (In
    /// which case, no more matches should be reported at the current position
    /// and the search should advance to the next position.)
    pub(crate) next_match_index: Option<usize>,
    /// This is set to true when a reverse overlapping search has entered its
    /// EOI transitions.
    ///
    /// This isn't used in a forward search because it knows to stop once the
    /// position exceeds the end of the search range. In a reverse search,
    /// since we use unsigned offsets, we don't "know" once we've gone past
    /// `0`. So the only way to detect it is with this extra flag. The reverse
    /// overlapping search knows to terminate specifically after it has
    /// reported all matches after following the EOI transition.
    pub(crate) rev_eoi: bool,
}

impl OverlappingState {
    /// Create a new overlapping state that begins at the start state of any
    /// automaton.
    pub fn start() -> OverlappingState {
        OverlappingState {
            mat: None,
            id: None,
            at: 0,
            next_match_index: None,
            rev_eoi: false,
        }
    }

    /// Return the match result of the most recent search to execute with this
    /// state.
    ///
    /// A searches will clear this result automatically, such that if no
    /// match is found, this will correctly report `None`.
    pub fn get_match(&self) -> Option<HalfMatch> {
        self.mat
    }
}

/// Runs the given overlapping `search` function (forwards or backwards) until
/// a match is found whose offset does not split a codepoint.
///
/// This is *not* always correct to call. It should only be called when the
/// underlying NFA has UTF-8 mode enabled *and* it can produce zero-width
/// matches. Calling this when both of those things aren't true might result
/// in legitimate matches getting skipped.
#[cold]
#[inline(never)]
fn skip_empty_utf8_splits_overlapping<F>(
    input: &Input<'_>,
    state: &mut OverlappingState,
    mut search: F,
) -> Result<(), MatchError>
where
    F: FnMut(&Input<'_>, &mut OverlappingState) -> Result<(), MatchError>,
{
    // Note that this routine works for forwards and reverse searches
    // even though there's no code here to handle those cases. That's
    // because overlapping searches drive themselves to completion via
    // `OverlappingState`. So all we have to do is push it until no matches are
    // found.

    let mut hm = match state.get_match() {
        None => return Ok(()),
        Some(hm) => hm,
    };
    if input.get_anchored().is_anchored() {
        if !input.is_char_boundary(hm.offset()) {
            state.mat = None;
        }
        return Ok(());
    }
    while !input.is_char_boundary(hm.offset()) {
        search(input, state)?;
        hm = match state.get_match() {
            None => return Ok(()),
            Some(hm) => hm,
        };
    }
    Ok(())
}

/// Based on the minimum number of states required for a useful lazy DFA cache,
/// this returns the minimum lazy state ID that must be representable.
///
/// It's not likely for this to have any impact 32-bit systems (or higher), but
/// on 16-bit systems, the lazy state ID space is quite constrained and thus
/// may be insufficient if our MIN_STATES value is (for some reason) too high.
fn minimum_lazy_state_id(
    classes: &ByteClasses,
) -> Result<LazyStateID, LazyStateIDError> {
    let stride = 1 << classes.stride2();
    let min_state_index = MIN_STATES.checked_sub(1).unwrap();
    LazyStateID::new(min_state_index * stride)
}

/// Based on the minimum number of states required for a useful lazy DFA cache,
/// this returns a heuristic minimum number of bytes of heap space required.
///
/// This is a "heuristic" because the minimum it returns is likely bigger than
/// the true minimum. Namely, it assumes that each powerset NFA/DFA state uses
/// the maximum number of NFA states (all of them). This is likely bigger
/// than what is required in practice. Computing the true minimum effectively
/// requires determinization, which is probably too much work to do for a
/// simple check like this.
///
/// One of the issues with this approach IMO is that it requires that this
/// be in sync with the calculation above for computing how much heap memory
/// the DFA cache uses. If we get it wrong, it's possible for example for the
/// minimum to be smaller than the computed heap memory, and thus, it may be
/// the case that we can't add the required minimum number of states. That in
/// turn will make lazy DFA panic because we assume that we can add at least a
/// minimum number of states.
///
/// Another approach would be to always allow the minimum number of states to
/// be added to the lazy DFA cache, even if it exceeds the configured cache
/// limit. This does mean that the limit isn't really a limit in all cases,
/// which is unfortunate. But it does at least guarantee that the lazy DFA can
/// always make progress, even if it is slow. (This approach is very similar to
/// enabling the 'skip_cache_capacity_check' config knob, except it wouldn't
/// rely on cache size calculation. Instead, it would just always permit a
/// minimum number of states to be added.)
fn minimum_cache_capacity(
    nfa: &thompson::NFA,
    classes: &ByteClasses,
    starts_for_each_pattern: bool,
) -> usize {
    const ID_SIZE: usize = size_of::<LazyStateID>();
    const STATE_SIZE: usize = size_of::<State>();

    let stride = 1 << classes.stride2();
    let states_len = nfa.states().len();
    let sparses = 2 * states_len * NFAStateID::SIZE;
    let trans = MIN_STATES * stride * ID_SIZE;

    let mut starts = Start::len() * ID_SIZE;
    if starts_for_each_pattern {
        starts += (Start::len() * nfa.pattern_len()) * ID_SIZE;
    }

    // The min number of states HAS to be at least 4: we have 3 sentinel states
    // and then we need space for one more when we save a state after clearing
    // the cache. We also need space for one more, otherwise we get stuck in a
    // loop where we try to add a 5th state, which gets rejected, which clears
    // the cache, which adds back a saved state (4th total state) which then
    // tries to add the 5th state again.
    assert!(MIN_STATES >= 5, "minimum number of states has to be at least 5");
    // The minimum number of non-sentinel states. We consider this separately
    // because sentinel states are much smaller in that they contain no NFA
    // states. Given our aggressive calculation here, it's worth being more
    // precise with the number of states we need.
    let non_sentinel = MIN_STATES.checked_sub(SENTINEL_STATES).unwrap();

    // Every `State` has 5 bytes for flags, 4 bytes (max) for the number of
    // patterns, followed by 32-bit encodings of patterns and then delta
    // varint encodings of NFA state IDs. We use the worst case (which isn't
    // technically possible) of 5 bytes for each NFA state ID.
    //
    // HOWEVER, three of the states needed by a lazy DFA are just the sentinel
    // unknown, dead and quit states. Those states have a known size and it is
    // small.
    let dead_state_size = State::dead().memory_usage();
    let max_state_size = 5 + 4 + (nfa.pattern_len() * 4) + (states_len * 5);
    let states = (SENTINEL_STATES * (STATE_SIZE + dead_state_size))
        + (non_sentinel * (STATE_SIZE + max_state_size));
    // NOTE: We don't double count heap memory used by State for this map since
    // we use reference counting to avoid doubling memory usage. (This tends to
    // be where most memory is allocated in the cache.)
    let states_to_sid = (MIN_STATES * STATE_SIZE) + (MIN_STATES * ID_SIZE);
    let stack = states_len * NFAStateID::SIZE;
    let scratch_state_builder = max_state_size;

    trans
        + starts
        + states
        + states_to_sid
        + sparses
        + stack
        + scratch_state_builder
}

#[cfg(all(test, feature = "syntax"))]
mod tests {
    use super::*;

    // Tests that we handle heuristic Unicode word boundary support in reverse
    // DFAs in the specific case of contextual searches.
    //
    // I wrote this test when I discovered a bug in how heuristic word
    // boundaries were handled. Namely, that the starting state selection
    // didn't consider the DFA's quit byte set when looking at the byte
    // immediately before the start of the search (or immediately after the
    // end of the search in the case of a reverse search). As a result, it was
    // possible for '\bfoo\b' to match 'β123' because the trailing \xB2 byte
    // in the 'β' codepoint would be treated as a non-word character. But of
    // course, this search should trigger the DFA to quit, since there is a
    // non-ASCII byte in consideration.
    //
    // Thus, I fixed 'start_state_{forward,reverse}' to check the quit byte set
    // if it wasn't empty. The forward case is tested in the doc test for the
    // Config::unicode_word_boundary API. We test the reverse case here, which
    // is sufficiently niche that it doesn't really belong in a doc test.
    #[test]
    fn heuristic_unicode_reverse() {
        let dfa = DFA::builder()
            .configure(DFA::config().unicode_word_boundary(true))
            .thompson(thompson::Config::new().reverse(true))
            .build(r"\b[0-9]+\b")
            .unwrap();
        let mut cache = dfa.create_cache();

        let input = Input::new("β123").range(2..);
        let expected = MatchError::quit(0xB2, 1);
        let got = dfa.try_search_rev(&mut cache, &input);
        assert_eq!(Err(expected), got);

        let input = Input::new("123β").range(..3);
        let expected = MatchError::quit(0xCE, 3);
        let got = dfa.try_search_rev(&mut cache, &input);
        assert_eq!(Err(expected), got);
    }
}